Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

w Sibliothek,
Your knowledge hub

FAKULTAT
FUR INFORMATIK

Personengestuzte
Informationengewinning durch
Bluetooth Low Energy auf
Android

Faculty of Informatics

DIPLOMARBEIT

zur Erlangung des akademischen Grades
Diplom-Ingenieur
im Rahmen des Studiums
Medizinische Informatik
eingereicht von

Gabor Zoltan Szivos, BSc
Matrikelnummer 01227443

an der Fakultat fir Informatik
der Technischen Universitat Wien

Betreuung: Privatdoz. Dipl.-Ing. Mag.rer.soc.oec. Dr.techn. Edgar Weippl
Mitwirkung: Dipl.-Ing. Dr.techn. Georg Merzdovnik

Wien, 22. August 2019

Gabor Zoltan Szivos Edgar Weippl

Technische Universitat Wien
A-1040 Wien = Karlsplatz 13 = Tel. +43-1-58801-0 - www.tuwien.ac.at

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

“}auioljqig usipn NL e ud ul s|ge[rene si sisayl SIUl JO UOISIaA feulBblio pasoidde ay < any a8pajmoun Jnoa
“regBnpian 3ayiolgig Usip NL Jap ue 1si liaglewoldiq Jasalp uoisiaAfeulBuO aponipab ausiqoidde aiq v_ﬂ_-_u.o__n__m

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

w Sibliothek,
Your knowledge hub

FAKULTAT
FUR INFORMATIK

Human-assisted information
extraction through Bluetooth Low
Energy on Android

Faculty of Informatics

DIPLOMA THESIS

submitted in partial fulfillment of the requirements for the degree of
Diplom-Ingenieur
in
Medical Informatics
by

Gabor Zoltan Szivos, BSc
Registration Number 01227443

to the Faculty of Informatics

at the TU Wien

Advisor: Privatdoz. Dipl.-Ing. Mag.rer.soc.oec. Dr.techn. Edgar Weippl
Assistance: Dipl.-Ing. Dr.techn. Georg Merzdovnik

Vienna, 22" August, 2019

Gabor Zoltan Szivos Edgar Weippl

Technische Universitat Wien
A-1040 Wien = Karlsplatz 13 = Tel. +43-1-58801-0 - www.tuwien.ac.at

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

“}auioljqig usipn NL e ud ul s|ge[rene si sisayl SIUl JO UOISIaA feulBblio pasoidde ay < any a8pajmoun Jnoa
“regBnpian 3ayiolgig Usip NL Jap ue 1si liaglewoldiq Jasalp uoisiaAfeulBuO aponipab ausiqoidde aiq v_ﬂ_-_u.o__n__m

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
lio
nowledge

b

i
r

Erklarung zur Verfassung der
Arbeit

Gabor Zoltan Szivos, BSc
Fred-Zinnemann-Platz 4/4/65, 1030 Wien

Hiermit erklére ich, dass ich diese Arbeit selbstédndig verfasst habe, dass ich die verwen-
deten Quellen und Hilfsmittel vollstdndig angegeben habe und dass ich die Stellen der
Arbeit — einschliefSlich Tabellen, Karten und Abbildungen —, die anderen Werken oder
dem Internet im Wortlaut oder dem Sinn nach entnommen sind, auf jeden Fall unter
Angabe der Quelle als Entlehnung kenntlich gemacht habe.

Wien, 22. August 2019

Gabor Zoltan Szivos

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

“}auioljqig usipn NL e ud ul s|ge[rene si sisayl SIUl JO UOISIaA feulBblio pasoidde ay < any a8pajmoun Jnoa
“regBnpian 3ayiolgig Usip NL Jap ue 1si liaglewoldiq Jasalp uoisiaAfeulBuO aponipab ausiqoidde aiq v_ﬂ_-_u.o__n__m

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
lio
nowledge

b

i
r

Kurzfassung

Die Sicherheitspriifung der Firmware von Embedded-Geréten ist wichtig, um das hochste
Sicherheitsniveau fiir die BenutzerInnen leisten zu kénnen. Die Sicherheitspriifung hat eine
besondere Bedeutung fiir Geréte, deren Aufgabe das Sammeln von Medizindaten ist, oder
die implantiert werden, um beispielsweise die Herzfrequenz zu regulieren, Medikamente
automatisch zu verabreichen usw. In den meisten Féllen jedoch haben solche Geréte eine
closed-source Firmware. Fiir weitere Analysen muss diese erst aus dem Gerét extrahiert
werden, und dieser Vorgang verursacht bestimmte Schwierigkeiten.

Eine sehr verbreitete Methode um Updates fiir Embedded-Geréte zu verteilen ist heut-
zutage, sie mit einem Smartphone zu verbinden und durch Applikationen auf diesem
Smartphone zu betreiben. In dieser Arbeit wurde ein System beschrieben, das im Stande
ist, solche Applikationen zu analysieren und aus ihnen relevante Daten zu extrahieren,
um einen Bluetooth-Low-Energy-Server aufzusetzen. Dieser Server kann dazu verwendet
werden, um ein echtes Gerét zu ersetzen. Mit dieser Methode kann man sowohl das
Protokoll, das fiir die Kommunikation zwischen Handy und Gerédt verwendet wird ana-
lysieren, als auch die gesendeten Daten, wie ein Firmwareupdate, auslesen. Auf diese
Weise wird einerseits das echte Gerét iiberfliissig, anderseits kann auf die komplizierte
Firmware-Extrahieren verzichtet werden.

Zusatzlich wird im Laufe der vorliegenden Arbeit iiber die aktuellsten Methoden in
Bereichen Firmwareanalyse, Sicherheit und Datenschutz von Embedded-Gerédten und
Android Applikationsanalyse berichtet.

vii

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

“}auioljqig usipn NL e ud ul s|ge[rene si sisayl SIUl JO UOISIaA feulBblio pasoidde ay < any a8pajmoun Jnoa
“regBnpian 3ayiolgig Usip NL Jap ue 1si liaglewoldiq Jasalp uoisiaAfeulBuO aponipab ausiqoidde aiq v_ﬂ_-_u.o__n__m

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
blio
nowledge

(]
|
rk

Abstract

Analyzing the security of the firmware of embedded devices is critical to provide the
highest degree of safety and privacy for the user. This is true especially if the device is
used to collect medical rated data, or is implanted into someone to regulate the heart
rate of the patient, or to administrate drugs automatically. But most of such devices
have a closed-source firmware, which can only be extracted from the device itself, which
has its own difficulties.

Nowadays a widely used method to provide updates for consumer grade embedded devices
is to connect them to a smartphone and operate them through an application on the
phone. This thesis describes a system which is capable to analyze such smartphone
applications, and extract relevant data from them to set up a generic Bluetooth Low
Energy server which can pretend to be a real device. This makes it possible to analyze
both the protocol used for the communication between device and phone as well as
to dump any data which is sent from the phone to de device, like a firmware update.
This eliminates both the need to have the device in question as well as the cumbersome
firmware extraction.

This thesis also provides a thorough literature review in the fields of firmware analysis
techniques and frameworks, the security and privacy of embedded devices and techniques
and tools used to analyze Android applications.

ix

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

“}auioljqig usipn NL e ud ul s|ge[rene si sisayl SIUl JO UOISIaA feulBblio pasoidde ay < any a8pajmoun Jnoa
“regBnpian 3ayiolgig Usip NL Jap ue 1si liaglewoldiq Jasalp uoisiaAfeulBuO aponipab ausiqoidde aiq v_ﬂ_-_u.o__n__m

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
lio
nowledge

b

i
r

Kurzfassung
Abstract
Contents

1 Introduction

Contents

1.1 Motivation
1.2 Problem Statement
1.3 Aimof Work
1.4 Methodological Approach

1.5 Structure of Work

2 Background

2.1 Bluetooth
2.2 Android
2.3 Binary Analysis
2.4 Manual Reverse Engineering of APKs

3 State of the Art
3.1 Firmware Analysis

3.2 Security and Privacy in the Field of IoT

3.3 Android Application Analysis L.
4 Implementation

4.1 Generic GATT Server

4.2 Extending TaintDroid

4.3 Aggregating Results L.

4.4 Final Architecture

5 Evaluation
5.1 Sample Set . . .
5.2 Analysis Results
5.3 Result correlation

vii

ix

W W N =

11
15
17

21
21
23
24

31
31
32
35
36

39
39
40
61

Xi

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

65

6 Discussion and Results

65

6.1 Comparison to Existing Solutions

6.2 Limitations

66

69

6.3 Discussion e e

71

7 Summary and Future Work

73

8 Appendix

75

List of Figures

77

List of Tables

Lo
2 =
wm
2
op— h
o
Qg
S 2

p—
5 =2
- M

“}auioljqig usipn NL e ud ul s|ge[rene si sisayl SIUl JO UOISIaA feulBblio pasoidde ay
“JeqBnyan 3auloljqig usipn N1 Jap ue isi iagrewoldiq Jasalp uoisiaAfeulBuO apjonipalb ausiqoidde aiqg

qny a8pajmoud| INoA

Saylolqie

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
blio
nowledge

(]
I
rk

CHAPTER

Introduction

This chapter describes the motivation for writing this thesis, and discusses the problem
regarding smartphone applications and smart device framework analysis. Afterwards, the
goals required to solve the described problem are specified along with the methodological
approach to meet these goals. Last but not least, the structure of the remaining part of
the thesis is laid out shortly.

1.1 Motivation

The idea of automating time consuming or tiresome tasks has long been thriving humanity.
Often these tasks include reading out the measured value of a sensor and act depending
on the result.

For example: due to an illness a patient needs to go to the doctor’s office every day,
lets run some tests and measurements, and in case the results exceed some thresholds
s/he should be given some medicaments, which for the sake of this example has to be
prescribed by the doctor. The first step to automate this procedure might be to implant
the measuring device into the patient to save time for both. However, it still requires the
patient to go to the doctor, and let’s say most of the time the threshold is not exceeded.
The next step would be to integrate some connectivity modules into the implant which
automatically sends the values to another node that decides whether or not an action
should be taken, and if so, it sends a notification to the patient to see the doctor.

However, the firmware of such hardware was originally not designed to be connected to
other devices or the Internet and so some design flaws which used to be untriggerable
(because of physical inaccessibility) now might become exploitable.

This thesis summarizes the risks of such connectivity and gives a tool to help identify
such hidden vulnerabilities.

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
blio
nowledge

(]
I
rk

1.

INTRODUCTION

1.2 Problem Statement

In the last couple of years the number of connected devices - also called smart device or
“Internet of Things” device (IoT) - has steadily increased and presumably it will be over
31 billion by 2020. [1] This growth is mostly due to the fact that the price of connectivity
modules, like WiFi- and Bluetooth-chips has significantly decreased, allowing consumer
grade devices to be equipped with them.

The main issue regarding such connected devices is that because of the market pressure
and the short time to market (TTM) security vulnerabilities are often included. [2] And
despite serious certification processes [3], the same can happen to medical devices as
well. The U.S. Food & Drug Administration (FDA) has reported that some selected
pacemakers need to be updated due to security concerns. [4]

While such vulnerabilities are not new, due to the increased connectivity attackers can
now exploit such vulnerabilities remotely and cause harm or death to people. !

As the software running these devices is often closed-source, the only way for independent
security researchers to analyze them is to reverse engineer the firmware itself. The nature
of embedded firmware poses specific problems to analysis, like interaction with additional
hardware, lack of standardized distribution forms or limited access to process internals.
These problems introduce complex challenges for automated analysis, as depending on the
vendor of the device different approaches need to be applied. Furthermore, obfuscation
might be applied to make the analysis more challenging.

Currently a widely accepted practice is that the IoT device, especially wearable devices
like fitness-trackers, step-counters or heart rate sensors, do not communicate directly
with the backend servers, but use the smartphone as a middle man. This is beneficial
because of multiple reasons:

« using Bluetooth Low Energy (BLE) allows longer battery life and usage of smaller
batteries

e syncing is not restricted to WiFi networks, as the device can utilize the smartphones
data connection

Analyzing the smartphone counterpart of a smart device is easier because of many reasons.
First and foremost, smartphone applications are easily and freely available, as they are
hosted in application stores like Google Play, and not on the backend of the manufacturer
like the firmware images of the devices. Secondly, smartphone applications - at least
Android applications, which this thesis focuses on - are mainly written in Java, which is
compiled into bytecode. It is relatively easy to decompile, not like binary images, for
example a firmware. However, Android applications are often heavily obfuscated which
makes manual analysis cumbersome, even for middle sized applications.

! Although up until 2015 no injuries or deaths have been reported from such intrusions. [5]

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
blio
nowledge

(]
I
rk

1.3. Aim of Work

1.3 Aim of Work

The aim of this work is to provide a human-assisted, semi-automatic framework for
analysis of the communication between the smartphone application and the smart device.
It includes static and dynamic analysis of Android applications to identify and pinpoint
places where communication with the device counterpart is initiated.

In particular, the focus of this thesis will be put on the following topics:

¢ An analysis of existing methods for Android application analysis: This
will provide an overview of the current state of the art and serve as a starting point
for future work.

¢ Requirement analysis for a semi-automated “application to device” com-
munication analysis framework: Based on the evaluation of existing analysis
platforms, we will provide an in-depth analysis and taxonomy of concepts and
problems that arise during analysis of Android applications.

¢ Analysis framework for human-assisted communication analysis: The
identified requirements will be developed into an analysis framework to support
analysts. It includes extracting data sent to and from the device, pinpointing places
inside the application where communication is initiated and attempting to simulate
the presence of the real smart device.

o Evaluation of the framework and comparison to existing systems: Based
on the state of the art analysis and the selected Android applications we will
provide a comparison of previous analysis approaches as well as our newly developed
framework.

1.4 Methodological Approach

The methodological approach consists of the following parts:

1. Literature review: A comprehensive review of existing methodologies and tech-
nologies for analyzing Android applications, like taint tracking and Bluetooth
communication analysis. It includes finding and analyzing existing frameworks
which perform similar tasks.

2. Sample set creation: Search, collect and create Android applications which
can be used for testing and comparing results. This is a very important task, as
these example applications are going to be used during the implementation and
testing phase of the framework. This set should represent the variety of ways and
application can connect and communicate with a smart device.

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
blio
nowledge

(]
|
rk

1.

INTRODUCTION

3. Development of an improved application to device connection analysis

framework: In the context of evaluation possible optimizations and coverage
for Android application analyses and extensions for existing tools and alternative
approaches will be designed and developed.

. Prototype implementation: Based on the findings and results of the previous

steps a prototype will be developed, which will be able to conduct the required
analysis tasks.

. Framework evaluation: In this step a set of Android applications will be supplied

for the developed framework and to other existing tools. The results of these different
systems will be compared and evaluated to find possibilities for improvement.

1.5 Structure of Work

The rest of the thesis structures as follows:

Chapter 2 describes concepts and technologies related to the remaining part of the
thesis.

Chapter 3 describes the current state of the art of the Android applications and
binary analysis methods.

Chapter 4 explains how the framework has been implemented.

Chapter 5 evaluates the performance of the framework with the help of real-life
fitness applications.

Chapter 6 describes the obstacles during the implementation as well as compares
the implemented framework to existing solutions and discusses the results of the
evaluation.

Chapter 7 concludes the findings of this thesis and lays out topics which will be
addressed in the future.

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
blio
nowledge

(]
I
rk

CHAPTER

Background

In this chapter we are going to present some background information needed to understand
the concepts and ideas in the following chapters. Firstly, we summarize the inner workings
of the Bluetooth classic and Bluetooth Low energy technology. Secondly we dive into the
system architecture and the layers of the Android operating system which is currently
one of the most widespread mobile operating systems. Next, we present various binary
analysis techniques, and their respective advantages and disadvantages. Lastly, we
describe the steps taken during the analysis of the applications written for the Android

OS.

2.1 Bluetooth

According to the Bluetooth Special Interest Group (SIG) - the creator and maintainer of
the Bluetooth Standard - almost 4 billion Bluetooth devices were expected to be shipped
only in 2018. [6] It makes Bluetooth one of the most widespread connectivity standards
in the world.

The Bluetooth Standard was first published in 2002 as part of the IEEE 802.15 working
group. Until 2010 only one form of Bluetooth existed which was called Basic Rate (BR).
It was later extended with upgraded data transfer options and was called Enhanced Data
Rate (EDR). This operation mode is also called Bluetooth Classic nowadays. In the
4.0 version of Bluetooth, which was released in 2010, SIG released the specification for
Bluetooth Low Energy (BLE), which promised cheaper components and lower energy
consumption.

2.1.1 Bluetooth Stack

The Bluetooth specification defines the core system as a host and one or more controllers.
The host and the controller(s) communicate through the Host Controller Interface (HCI).

5

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

2. BACKGROUND

The controller is the logical representation of the components under the HCI, whereas
the host represents everything above the HCI. The specification defines three types of
controllers with the first two being primary while the last one being secondary.

« BR/EDR controller
e LE controller

o Alternate MAC/PHY (AMP) controller

Figure 2.1 shows the core Bluetooth stack, which will be described in the next few
subsections.

s FS
" e _'>
B - - =
ATT!
SMP S0OP AMP Manager
‘ Channel Manager K L
h
L2cap Resource

L2CAP

Manager

Host

HCI

| !
-------- R CO D ST S S e <1><“>

Link Link
Manager Manager
v b 4

Baseband Resource

I AMP MAC

‘ Link Controller ‘ Link

Controller

‘ BREDR Radic and LE Radig (PHY) ‘

B

AMP PAL

Device
Manager

| AMP PHY

BR/EDR Controller

LE Controller AMP Controller(s)

{_:> C-plane and control services

ﬁ U-plane and data traffic

@_E_) Command/ Event
C ACL " Asynchronous(ACL) data path

ErO
\chf) Synchronous{SC0, e5CO) data path

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
lio
nowledge

b

i
r

Figure 2.1: Bluetooth-stack [7]

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

M Sibliothek,
Your knowledge hub

2.1. Bluetooth

As one device can include several controllers, there are multiple ways how controllers
can be combined, only providing exclusively BR/EDR or LE or a combination of these
two with or without one or more Alternate MAC/PHY (AMP) controllers. It is worth
to mention that although multiple secondary controllers can be found in a device, the
specification states that only one primary controller can exist. See Figure 2.2a and 2.2b
for the visual representation.

‘s £
Host Host Host Host
l.\ sy
| i 4 1
o
LE BREDR BREDR AMP
Controller Controller Controller Controller
o LS g
(a)
by N ™
Host Host Host
A
BR/EDR LE BRIEDR LE AMP
Contreller | Controller
S ' Ly

P

Controller | Cantroller Controller

(b)

Figure 2.2: Possible controller configurations|7]

2.1.2 Bluetooth Classic

Devices which connect through Bluetooth form piconets. Inside this network there is
a device called the master and every other device is a slave. A device can participate
in multiple piconets and is allowed to have the master role in one and be a slave in
another one. The master device provides the clock and the frequency hopping pattern
for the network. The slaves synchronize themselves to the master. A minimal BR/EDR
controller should have the following components which are going to be described in detail
later in this subsection:

» Radio
o Baseband Resource Manager

e Link Manager

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
blio
nowledge

(]
I
rk

2.

BACKGROUND

o Host Controller Interface (HCI)

Physical Layer or also called Radio Layer is responsible for the transmission of the
assembled Bluetooth packages over the unlicensed 2.4 GHz radio band. This radio
frequency band is divided into 79 channels which are separated by 1 MHz. To reduce
possible interference between devices frequency hopping is applied. It means that at
certain times the devices which are connected to each other change the currently used
channel to another one. The default rate of frequency hopping is 1600 hops every second.
To reduce interference even more, optionally Adaptive Frequency Hopping (AFH) can be
used. This means the currently used channels are detected through active measurements
and are excluded from the list of usable channels.

Baseband Resource Manager grants access to the physical layer. The responsibili-
ties of the Baseband Resource Manager are twofold. On the one hand it schedules entities
to get access to the physical layer for the specific time they have negotiated. On the
other hand, it negotiates with new entities for access time in the form of contracts. These
contracts represent the commitment of the manager that the specific quality of service
will be met to guarantee the expected performance for the higher level applications.

Link Manager as the name suggests manages logical links between devices. It includes
the creation, modification and release of these links, as well as the modification of the
physical link properties of the connected devices. For this the so called Link Manager
Protocol is used.

The following operations can be performed by a BR/EDR device, which is initiated by
the Link Manager:

Inquiry A scanning device broadcasts inquiry requests, and the devices which are
visible to other devices answer with a response.

Paging This is also called connecting. One device sends a page request to a
special channel which is used by the connectable device for listening to
connection requests.

Role Switching Switching master and slave roles.

Host Controller Interface provides an interface through which the functionality of
the controllers can be accessed, regardless of the type of the controller.

2.1.3 BLE

Bluetooth Low Energy shares some similarities to Bluetooth Classic. As Figure 2.1 shows
BLE controllers have similarly a physical layer - also called as “LE PHY” -, which also
operates in the same unlicensed 2.4 GHz ISM band, however with only 40 channels which

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
blio
nowledge

(]
I
rk

2.1. Bluetooth

are separated by 2 MHz. From these 40 channels three are used for primary advertising
and the rest for secondary advertising and data transfer.

One significant difference to the Link Manager of BLE is that, unlike the Bluetooth
Classic controller, it uses the Link Layer Protocol for managing logical links between
devices and not the Link Manager Protocol. Furthermore, the Link Manager of BLE
performs different operations than the Bluetooth Classic counterpart:

Advertising An advertiser sends and an advertising package on one or more primary
advertising channels. The advertiser can send additional data packages as
well, if it decides to, which may or may not be sent on the primary channels.

Scanning A scanner can either scan passively, that is the scanner only listens to and
processes advertising packages, or scan actively when receiving an advertising
package it sends an additional scanning package to the advertiser to learn
more about it. [§]

Connecting A scanner upon receiving a connectable advertising package can send a
connection request, effectively changing into the role of an initiator.

Although connected devices form a piconet, it also has some differences compared to
Bluetooth Classic. First of all, each slave in a piconet has its own data channel, whereas
in a Bluetooth Classic piconet it is shared with every slave. Although the classical master
and slave roles are present in a piconet, there are additional types of actors defined for
BLE. A device which periodically sends out so called advertising packages on one of
the advertising channels is called an advertiser. A scanner is a device, which listens
to advertising packages on the advertising channels, without being connected to the
advertiser. And last but not least an initiator is a device which initiates a connection to
the advertiser. Having successfully connected to the advertiser the initiator becomes the
slave and the advertiser the master, in this way a piconet is formed.

2.1.4 AMP

The secondary controller type called AMP is only mentioned for the sake of completeness
as describing it in detail would go beyond the scope of this thesis.

After connecting through BR/EDR, the AMP manager can discover AMP capabilities
on the other device and transfer the data transmission to use the AMP interface in order
to reach significantly higher transfer speeds.

2.1.5 Logical Link Control and Adaptation Protocol (L2CAP)

The L2CAP handles channel and protocol multiplexing, segmentation and reassembly
(SAR) of packages, flow control for every channel and error handling. It makes possible
for the various controllers (BR/EDR, LE or AMP) to interact with higher level protocols,
like Attribute Protocol (ATT)

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
blio
nowledge

(]
I
rk

2.

BACKGROUND

10

The Attribute Protocol runs through a dedicated L2CAP channel during the communi-
cation between the attribute server and the client. The client is able to send requests,
commands and confirmations, to which the server answers with notifications, responses
and indications. The requests and commands enable the client to read out or write to an
attribute of the server.

2.1.6 Bluetooth Profiles

Bluetooth profiles define what kind of feature requirements the device or the application
has to make communication with other devices or applications possible. Moreover, they
also define data formats used by the application/device and its behavior.

Generic Access Profile (GAP) is a profile that every device must have, as it provides
its basic system definition. In case of BLE the GAP would require the device to have
the predefined controller elements (PHY, the Link Layer), on the host side the L2CAP
module, a security manager for encrypting the traffic and both support for both ATT
and the Generic Attribute Profile (GATT). Furthermore, it defines the LE-GAP different
roles a device can have:

Broadcaster the application using this role only broadcasts data, but does not accept
connections

Observer the application only receives broadcasts, and like the Broadcaster, does not
support connections

Peripheral is used by devices which support a single connection and never take the
master role

Central is a device that is able to connect to more than one peripheral devices

GATT is a protocol which must be implemented in case of BLE. As GATT builds
on top of ATT, there is a GATT server and a GATT client. GATT also defines that
the data should be stored as Services and Characteristics on the server. A server can
have one or more services, which again can include multiple characteristics, whereas the
characteristics can include any number of descriptors, which describe the data stored in
a characteristic.

A service can be either primary or secondary. Primary services provide the main
functionality of the device. Secondary services provide additional functionality, and must
be referenced by at least one primary service. Referencing a service means that every
element of the referenced service becomes a part of the referee as if it were its own, during
which the referenced service still exists as an individual one.

A characteristic is nothing else than a value stored on the server. As stated before it
can have multiple descriptors, which can provide a context for the user what that value
means and where it is used.

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

M Sibliothek,
Your knowledge hub

2.2. Android

A GATT profile defines which devices should have which roles and which services the
device should provide. As an example the Health Thermometer Profile (HTP) states
that the thermometer itself should take the server’s role and the collector the client’s role.
The server should include the Device Information Service and the Health Thermometer
Service. [9] The Device Information Service is defined as a primary service which has
the 0x180A UUID, and includes multiple characteristics like the “Manufacturer Name
String” or the “Serial Number String” which have predefined UUIDs. [10] The Health
Thermometer Service, on the other hand, has the UUID 0x1809 and has characteristics
like “Temperature Measurement” or “Measurement Interval”. [11]

2.2 Android

Like Figure 2.3 shows, Android is one of the most widespread operating systems in the
mobile device world. It started off as an operation system for phones, but nowadays it
can be deployed on tablets, IoT devices, like smart watches, laptops, like Chromebooks
or even in car infotainment systems.

StatCounter Global Stats
Mobile Operating System Market Share Worldwide from Apr 2018 - Apr 2019
BO%
S ——ia »
e Gt e

— e

I
—
) ek
o 2 Q G 2 > > ol a 3 G &
$ $ $ $ $ $ 3 3 g $ E E
$ $ G & e 3 $ § 3 $ $ $
=Y @ o 3 © -
F y
:

4
4,

& z

5 g
3 < & £ o < &

O

< Android - i0S Unknown <O KaiOS < Windows <O~ Samsung < Series 40 ‘C- Nokia Unknown — Other (dotted)

Figure 2.3: Worldwide mobile OS market share [12]

In the next sections each element of the Android software stack, see Figure 2.4, will be
described.

2.2.1 Android Stack

Android is built on the Linux Kernel which is extended with the SELinux module to
provide additional security features. On the top of that is the Hardware Abstraction

11

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
lio
nowledge

b

i
r

2.

BACKGROUND

12

% ALARM +« BROWSER + CALCULATOR «
CALENDAR * CAMERA » CLOCK + CONTACTS *
DIALER * EMAIL + HOME + IM « MEDIA PLAYER
* PHOTO ALBUM « SMS/MMS « VOICE DIAL

| CONTENT PROVIDERS - MANAGERS
(ACTIVITY, LOCATION, PACKAGE,
. NOTIFICATION, RESOURCE, TELEPHONY,

AUDIO MANAGER - WINDOW) = VIEW SYSTEM

FREETYPE « LIBC+ ¢

MEDIA FRAMEWORK » B
OPENGL/ES «
SOLITE-SSL -
SURFACE MAMAGER +
WEBKIT

CORE LIBRARIES +
ART « DALVIK VM

| AUDIO - BLUETOOTH - CAMERA - DRM
* EXTERNAL STORAGE * GRAPHICS -
INPUT « MEDIA « SENSORS « TV

DRIVERS (AUDIO, BINDER (IPC),
BLUETOOTH, CAMERA, DISPLAY,
KEYPAD, SHARED MEMORY, USE,
WIFI) - POWER MANAGEMENT

Figure 2.4: Android-stack [13]

Layer, which allows seamless interaction with the actual device drivers without changing
the higher levels of the stack. The next layer includes native libraries like LibC or SSL-
Implementations like OpenSSL, and the core libraries along with the runtime environment
of Android, which up until Android 4.4 was the Dalvik Virtual Machine (DVM) and
later it was changed to the Android Runtime (ART). Between any application and the
runtime is the Application Framework which provides various utilities for applications to
interact with the phone itself.

Kernel As Maker et. al. describe, although Android is built on the Linux kernel there
are some differences. For one Android includes additional modules, like the alarm driver,
or the binder driver just to name a few. [14]

As mentioned before SELinux is turned on by default on all Android devices to enforce a
strong security policy. The core idea of SELinux is to label every entity in Linux, like
files, processes, users and so on. These labels are used by the security policy to decide
what a particular entity with a specific label can do. Another concept of SELinux is that
everything is prohibited that is not explicitly allowed. [15]

Furthermore, the kernel includes the actual device drivers either as kernel modules or
being compiled into the kernel itself.

HAL Yaghmour describes the HAL as a hardware library loader, as it consists of
several shared libraries which are implemented by either the manufacturer or Android
itself. Through these libraries higher layers of Android can interact with the hardware
without using directly the kernel itself. [16]

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
lio
nowledge

b

i
r

2.2.

Android

Figure 2.5 visualizes how the HAL is built up.

Apps
android.*
¢ Binder
System Server Provider: AOSP
Java HW-related License: ASL
N=========q service f---
‘ ;
HW lib loader
HW lib“so” Provider: Manuf. or AOSP
D50 License: Manuf. or ASL
User-Space ____3 _________ 1
Keemel D Provider: Manuf. or Android
e License: GPL
Subsystem

Figure 2.5: Layers of the Hardware Abstraction Layer [16]

Android Runtime There are two runtime systems on Android. The newer one is
called Android Runtime (ART) and was introduced with Android 4.4 as experimental,
and with Android 5.0 it replaced the older one completely. As mentioned before the older
runtime is called the Dalvik Virtual Machine (DVM), which is very similar to the Java
VM (JVM).

One major difference between the JVM and DVM is that JVM uses the class-files - the
output of the Java compiler - directly, while for DVM these class-files are converted into
a new file which is called Dalvik Ezecutable (dex). The main idea behind dex-files is
to eliminate duplicates within multiple classes, and so reduce the memory needed for
applications and libraries. [17]

During the booting of the device a process called Zygote is started in the DVM which
loads core libraries and after having started it waits for further commands. As soon as
an application starts, the Zygote forks, and the child process inherits the loaded libraries
and becomes the application. In this way the starting time of an application can be
reduced as often used libraries are already loaded by the Zygote. [18]

13

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
blio
nowledge

(]
I
rk

2.

BACKGROUND

14

Dalvik also houses a Just-in-Time (JIT) compiler, which gets executed as the application
is started. With JIT the byte-code is turned into native binaries which, on the one hand,
makes loading the application longer, on the other hand, as it runs, everything gets faster,
as the code is not executed through the VM anymore. [16]

Although this thesis mainly concerns with the DVM, for sake of completeness the ART
will be discussed shortly as well. The main difference to DVM is that ART uses Ahead-of-
Time (AOT) compilation with the combination of the JIT. Basically the idea is that the
byte-code of the installed application is not compiled right away into native executable
but either it gets JITed or it is executed by an interpreter, but in both cases the most
frequently used parts of the application are marked. Later as the device is idle these
frequently used parts get compiled into native code by the AOT compiler. As the
application is restarted the AOT compiled parts are executed as native code without
the need of JIT, and the analysis continues, so on demand more and more parts of the
application gets AOTed. [19]

Native Libraries Some system functions are implemented as native libraries. They are
called native, as these libraries are implemented in C or C++ and compiled specifically
for the CPU-architecture of the device. The application framework, or also called as
Android framework can call these libraries through the Java Native Interface (JNI).
Native libraries can exist on the application layer as well as application developers have
the right to implement functionality in compiled languages.

Native system libraries include for example Bionic which is the LibC used for Android, or
a lightweight SQLite-engine, as SQLite is used for persistent storage by the applications.
[17]

Android Framework The last layer beneath the application layer is the Android
Framework or Application Framework. This layer provides several services which makes
it easy for the developers to access system functions through a defined API without using
the native libraries directly. For example: if the developed application were able to read
or send SMSs and MMSs or provide calling functionality, the Telephony Manager would
be called. If the application were to access the GPS sensors or were to scan the available
WiFi-networks, the Location Manager would be the right entity to ask. [17]

Applications Although until now we have referred to an application as it was one
single entity, in fact consists of multiple components. There are four types of application
components, and a single application can include any number of those. Activities are
components which provide a graphical user interface, and thus are used to interact with
the user. An activity can be as simple as some static text on a white background, or
as complex as the Ul of a mobile game. Services are background running tasks which
do not provide any user interface, and are meant not to interact with the user directly.
Broadcast receivers listen to specific broadcasts, and upon receiving the broadcast they
trigger an event. A broadcast receiver can for example listen to state changes of the

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
blio
nowledge

(]
I
rk

2.3. Binary Analysis

Bluetooth interface, like turning on or off. Lastly, a content provider represents an entity
which manages the data of an application. This could abstract anything from an SQL
database to a backend server on the Internet. [20]

2.3 Binary Analysis

As firmware analysis, which is discussed in Chapter 3, is a specialized form of binary
analysis, this section provides an overview about the core techniques and approaches
used during binary analysis.

2.3.1 Static Binary Analysis

The goal of static analysis is to gather as much information about the binary object as
possible without ever starting it. The advantage of this approach is, that setting up the
proper runtime environment is not needed to conduct the analysis. This advantage is
very handy in cases where running the binary has special needs regarding its environment.
These needs can be anything from finding a specific file at a specific directory on the
file system through requiring additional, in some circumstances even proprietary and
expensive software to cases where dedicated hardware is needed on which the binary can
run.

Apart from obvious techniques like extracting strings and files packed into the binary,
there are two main methods which can provide insight into the inner workings of a binary
executable, which are disassembly and decompilation of the executable.

Disassembly

Disassembly of binaries is a technique, where the binary is converted into a more human-
readable format represented by the assembly code. Depending on the architecture this
process can get more or less complicated. Binaries, compiled for CPU architectures like
ARM, where the length of an instruction is well defined and set to either 4 bytes (in
ARM state) or 2 bytes (in Thumb state), can be disassembled easier, as the disassembler
does not have to decide how many bytes belong to the next instruction, thus it will less
likely be tricked. Whereas binaries for architectures with a variable instruction length,
like x86, can confuse the disassembler easier in some cases.

The two different methods, which can be used by disassemblers to disassemble binaries
with variable length instructions, are linear sweep and recursive traversal.

Linear Sweep disassemblers take one instruction after another starting at the begin-
ning of the segment containing instructions. They are not very complicated to implement
and work efficiently, however, they can be confused in cases where data is mixed in-
between instructions, which can lead to a desynchronized state outputting incorrect
instructions.

15

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
blio
nowledge

(]
|
rk

2.

BACKGROUND

16

Recursive Traversal disassemblers, on the other hand, use additional information
found in the binary. They follow the control flow of the binary, like calling a function,
or following a jump, and only return to the call-site after that branch has been fully
explored. However, as soon as addresses used by jumps are generated at runtime, also
called as indirect jumps, this strategy cannot provide any additional information and has
to revert to linear sweep.

Decompilation

Although assembly is considered to be a completely human-readable language, the nature
of low level languages and the big amount of code generated can be very daunting. The
goal of decompilation is to generate higher level language representation of the binary
from the disassembly (or other intermediate representation of the executable). The main
difficulty, at least for compiled languages like C, at decompilation is, that the compiler
discards information which is not valuable for the CPU itself, like types or variable names.
Additionally one instruction on the higher level usually maps to multiple instructions on
the machine level. The combination of these two properties make it really hard to create
a correct mapping in the other direction.

2.3.2 Dynamic Binary Analysis

The complement of static analysis is dynamic analysis, during which the binary is
executed and observed to gather information during runtime. It can overcome difficulties
static analysis faces, like inspecting dynamically generated contents, self-modification
during runtime or determining the target of indirect jumps. The disadvantage is however,
that only the currently executing path can be observed, so it is really hard to gather
information about the whole binary. And, as mentioned before, the binary might need a
special environment to run.

In the following some of the most widespread dynamic analysis techniques will be
described.

Symbolic Execution

It is not uncommon that an executable does different things depending on the inputs it
was fed, or what options it was started. The main idea behind the symbolic execution
is to execute the binary “virtually” instead of running it manually or with randomly
chosen inputs or starting options. Virtually in this case means that every input variable
is changed to a symbolic one, which can have any possible value. As soon as a decision
is to be made which path the execution should take based on the value of a symbolic
variable, both paths are followed and so more execution paths can be explored. [21]

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
blio
nowledge

(]
I
rk

2.4. Manual Reverse Engineering of APKs

Taint Analysis

The idea behind taint tracking or also called as information-flow tracking is that pieces
of relevant information, like user input, or sensitive data is observed during execution to
see where it lands. Information gets tainted at the so called sources, and a notification is
generated if tainted information arrives at a sink. The taint policy defines what kind of
information gets tainted in which cases and where the taint gets checked. The policy
specifies the strategy for taint propagation. Taint must be propagated if the new variable
or information was effected either explicitly or implicitly by another already tainted data.

Explicit data flow is where tainted data is directly involved in the creation of a new value,
whereas implicit data flow is where the tainted data has an affect on the control flow of
the program, and thus the value of untainted data is effected. [22]

If this policy is poorly chosen either the framework will either overtaint values, which
means data gets tainted which is neither comes from a source nor is it derived directly or
indirectly from other data that has already been tainted, or undertaint values, which
means data which should have been tainted will not be. [23]

Although taint analysis is listed under dynamic analysis techniques, there are static
information-flow analysis methods. Static analysis can either be built into the language
itself [24] or can operate on existing applications. In the latter case it usually generates
some sort of graph in which data-flow can be modeled and tracked. [25, 26, 27, 28, 29, 30]
One major drawback of static analysis is that, as the program is not executed, information
which is generated during runtime cannot be analyzed. One such case would be reflection,

in which case with the help of dynamically generated strings an existing function is called.

Dynamic analysis tools, on the contrary, operate with the help of instrumentation. It
means the tainting logic is built into the instrumented runtime environment effectively
extending runtime functionality with applying and checking taint. [31, 32]

Fuzzing

Fuzzing is a technique which can be used to identify bugs based on receiving unexpected
data or data in an unexpected format. The fuzzer sends a specific input to the firmware
or the program under analysis, and in the next round the input is mutated. Mutation
in this context means that the input gets slightly changed. Every crash of the program
is reported as it potentially means, that there is some sort of an unhandled case which
might mean that it is exploitable.

2.4 Manual Reverse Engineering of APKs

The first step to analyze any application is to acquire a copy of it. In case of Android the
main source of applications is the official application repository, the Play Store provided by
Google . Unfortunately, Google does not provide any API to interact with the repository
to search for or download applications directly. In order to get the application files the

17

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
blio
nowledge

(]
I
rk

2.

BACKGROUND

18

app needs to be installed on a phone. After the installation with the help of the official
debug interface for Android phones the APK can be searched for and downloaded from
the phone. Listing 2.1 shows how we can search for the APK file of a given application
and with the adb pull command the APK file can be downloaded from the phone.

Get the package name of the app we search for
APP_PATH=$ (adb shell pm list package —f | grep <app name>)
First stage of parsing —> remove unnecessary prefiz
APP_PATH=$ (echo $APP_PATH | awk —F':' '{print $2}')

Second stage of parsing —> remove unnecessary postfix
echo $APP PATH | awk —F'.apk' '{print $1".apk"}'

Listing 2.1: Search for an application on the phone

Alternatively, some APKs are hosted on third party mirror sites like apkmirror'. Through
such sites often more versions of the same application are available.

As soon as the APK of the application is acquired, it can be disassembled with one of the
tools mentioned in Section 3.3.1, like apktool. The result will be the decoded Manifest
file, the disassembled classfiles in smali format and the decoded resources. Figure 2.6
shows what apktool does with an APK.

Figure 2.6: Output of apktool

At this point the actual analysis could be started, however, even a moderately big APK
like the one used in the previously mentioned Figure includes around 13000 smali files.
About half of these files are, however, libraries which were compiled into the application,
and only in special circumstances are they important for the analysis of the application
logic. The rest of the smali files have an average length of around 300 lines. Obviously,
understanding such a big amount of disassembly without a specific goal is just unfeasible.
If the great number of files and huge amount of code are not be enough, the applications
are obfuscated in most cases, which only makes manual analysis using the disassembly
even more cumbersome.

'https://apkmirror.com

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

M Sibliothek,
Your knowledge hub

2.4. Manual Reverse Engineering of APKs

However, as described later in Section 3.3.1, decompiling APKs is not that hard, which
results in Java-code. At this point IDE-like environments like jadz-gui or the bytecode
viewer can be utilized. They not only include the required tools like decompilers and
disassemblers, but also provide functionality like text and code search or jump to object
or method definitions.

Changing the decompiled application, building it again to test a hypothesis or adding
functionality, will not work all the time, as in some cases the decompiler will not be able
to decompile certain parts of the application which would result in compile errors during
the building. If changing the application is absolutely necessary, it is advisable to apply
the change directly in smali and re-build the APK from smali again using for example
apktool.

19

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

“}auioljqig usipn NL e ud ul s|ge[rene si sisayl SIUl JO UOISIaA feulBblio pasoidde ay < any a8pajmoun Jnoa
“regBnpian 3ayiolgig Usip NL Jap ue 1si liaglewoldiq Jasalp uoisiaAfeulBuO aponipab ausiqoidde aiq v_ﬂ_-_u.o__n__m

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
blio
nowledge

(]
I
rk

CHAPTER

State of the Art

This chapter investigates the current state of the art research in the fields of static and
dynamic binary analyses, as well as the security and privacy of connected embedded
systems, and last but not least, various techniques to analyze Android applications.

3.1 Firmware Analysis

In the following sections different dynamic and static state of the art solutions - which
are specialized to analyze firmwares - are going to be presented.

3.1.1 Dynamic Analysis
In the following section existing dynamic analysis frameworks are described.

It is not an easy task to dynamically analyze firmwares. Mainly because they need an
environment provided by a special hardware. It means they will most likely try to access
some special peripherals and expect a very defined behavior from them. Zaddach et. al.
[33] describe three common ways of dynamically analyze firmwares which run on a special
hardware, and thus expect a special behavior. Complete hardware emulation means that
the needed hardware of the firmware in question is emulated completely, which works very
well for documented and standardized systems, but it is almost impossible to achieve for
undocumented complex and proprietary system-on-chips. Hardware Over-Approximation
is a technique where the emulator models the hardware in a generic way where some
properties are assumed, as an interruption can occur at any point of time. As it is
described it works well for small systems, but one should count on false positives, since
this technique on larger systems usually leads to state explosion. Last but not least
firmware adaptation is where the firmware, or a part of it, is ported to another more
generic emulator-environment. A fourth option is also proposed, which is a hybrid
solution, where they execute part of the firmware directly on the hardware.

21

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
blio
nowledge

(]
I
rk

3.

STATE OF THE ART

22

Although both firmalice [34] and the framework proposed by Costin et. al. [35] can
mainly be categorized as dynamic analysis tools, in reality both of them utilize static
techniques as well. The former uses static analysis to identify interesting parts in the
firmware to save resources and time during the dynamic analysis, and the latter tries to
find known bugs in PHP code and CGIs. The dynamic analysis is, however, different from
the previously mentioned frameworks. Firmalice executes the framework dynamically
with a custom symbolic execution engine, whereas Costin’s framework starts the web
server with QEMU and various web penetration tester tools.

FIRMADYNE ([36], which is similar to Costin’s framework, uses QEMU with custom
kernels. However, to infer system and network settings instead of searching and parsing
the unpacked file system, they initiate a pre-emulation, and the custom kernel reports back
the needed information. According to the acquired information QEMU gets reconfigured
and the real analysis is started.

Both Avatar [33] and SURROGATES [37] utilize hybrid dynamic analysis techniques. It
means that instead of emulating or assuming peripheral behavior the system forwards
memory access requests to the real hardware, whereas the hardware response is channeled
back to the emulator achieving high precision regarding memory operations. The main
difference is that Koscher et. al. implemented an FPGA-based PCI-Express JTAG
adapter instead of a serial one like in Avatar, which enables near-real-time dynamic
analysis.

On the contrary to the previously mentioned frameworks, FIE [38] requires the source
code of the firmware. During Davidsons’ analysis the source code is compiled into LLVM
bytecode, which then gets executed by the KLEE [21] symbolic execution engine.

Subramanyan et. al. [39] propose a method to find confidentiality and integrity violations
of critical information within firmwares with the help of symbolic execution. To achieve it
they provide a modeling language for information flow properties which can be translated
into symbolic variable constraints. Moreover, Subramanyan et. al. also provide an
algorithm for verifying the absence of information flow violations.

To enhance the efficiency of the fuzzing, it can be guided by for example symbolic
execution or taint-tracking. [40, 41, 42]

Directly comparing executables, even if they are just two versions of the same codebase,
can be problematic, as compilers can reorganize the whole executable due to optimizations.
If one tries to directly compare different executables, like a compression program and a
web server, it is more or less impossible, as their codebase is so different. The previously
mentioned problems make it hard to verify if a security patch really fixed the vulnerability,
or if the same vulnerability could be found in different applications due to code reuse.
One way to overcome it is extracting the control flow graph of the respective programs.
The control flow graph (CFG) of a program is a directed graph where the nodes are
considered to be basic blocks - a sequence of instructions with only one entry and exit
point - and the edges are control flow paths. [43] One way to compare CFGs is to execute
the basic blocks of two binaries symbolically and to apply a theorem solver to verify if

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
blio
nowledge

(]
I
rk

3.2. Security and Privacy in the Field of IoT

the effects of the block is always the same. [44] On the other side Ming et. al. use taint
analysis, so that the number of matching candidates can be reduced to speed up the
process. [45]

3.1.2 Static Analysis

In the following section we describe existing static analysis frameworks designed to work
with firmwares.

Costin et. al. [46] propose a framework which is capable of analyzing firmware images
on a large scale. Instead of performing a code analysis, their main goal is to extract
sensitive information, like RSA private keys and passwords, from firmware images by
unpacking them. Besides the information extraction they try to identify packages with
known vulnerabilities and dangerous misconfigurations, like running a web server with a
privileged user.

Several frameworks [47, 48, 49, 50] extract the control flow graph of binaries, but instead
of using it for decompilation they try to match it with other known control flow graph
signatures in order to find known bugs and vulnerabilities. Control flow graphs can also
be used to identify changes among different versions of the same executable. This way
one can easily identify which parts of the binary have been patched. This also enables
the propagation of previously created meta-information, like function names and other
annotations, to a newer version of an executable to save time to redo parts of the analysis.
[51, 52]

Thomas et. al. [53] utilize machine learning to find backdoors in the firmware of consumer
off-the-shelf embedded devices. A trained classifier puts a class label on every executable
found in the firmware in question. For each class of binaries there is a functionality profile
which declares the expected functionality for this class. Within the scope of the static
analysis of the binaries their functionality is compared with the functionality profile.

3.2 Security and Privacy in the Field of IoT

Embedded devices are usually designed to execute one specific task and not to be
multipurpose like a laptop or PC. To make the production cost-effective their power-
source, if they only operate with batteries, and the amount of memory they have is
adjusted to the needs of their task. It naturally leads to hardware based limitations in the
security domain. Security related tasks, like encryption, are usually computation intensive
operations, which means such algorithms cannot be directly ported to an embedded
device, due to the limited computational and battery power. Moreover, the limited
volatile memory poses another problem, as encryption algorithms are not necessarily
designed to be memory efficient. [54, 55]

In the field of implantable medical devices privacy and security is even more critical,
as unauthorized access to the device can potentially lead to life threatening situations.

23

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
blio
nowledge

(]
I
rk

3.

STATE OF THE ART

24

However, as Halperin et. al. [55] describe there are clear tensions between security and
utility or safety goals. One such tension is how someone can access or deactivate an
implanted device. It is clear, that for everyday use strong access control is desired, but
in an emergency situation in which the patient may not be able to allow access, the
implantable device might even hinder the healthcare professionals or even threaten them,
for instance in case of an implantable cardiac defibrillator. Proposals for solving or at least
reducing the aforementioned tensions would be for example to validate the emergency
access by connecting the external programmer to the Internet, where a backend could
decide whether the emergency access is justified or not. Another idea by Halperin et. al.
is to be able to revoke privileges for stolen programmers with the help of for example a
certificate infrastructure.

It is not unusual that the operation environment of a device is potentially hostile or
at least it cannot be secured easily, because the device serves the public and it must
be accessible for anybody, like for example an automated external defibrillator. For
such devices it is crucial that a malicious actor cannot just upload his or her malicious
firmware, which potentially could just break the device causing denial of service or
implement malicious functions which would alter the expected behavior. Hanna et. al.
[56] recommend the usage of cryptographically secure device updates, which means that
the device should not only check a specific checksum to determine transfer errors but
also verify the validity of the signature of the update file, which was created by a secure
cryptographic algorithm.

Folk et. al. [57] address several more issues which need to be clarified in the field of ToT,
like data ownership or operation issues from the point of view of the different actors.
The main idea of the IoT-devices that they collect data and send them to be analyzed.
However, as Folk et. al. describe the question arises whom this data belongs to, as this
field is not well regulated, except for medical data, but again what about data which
is not directly used for diagnosis or treatment, like the number of steps taken a day.
Different actors have different expectations and issues regarding the operation which
can be conflicting. For example the end-user and the system administrators require
that the system in use should secure, however, supporting old devices is a cost issue for
the manufacturer, whose goal is to rapidly develop new devices and make older devices
relatively fast obsolete in order to increase sales. This, of course, leads to the conflict,
that an older device will not get any updates after a certain time, which can be right
after being introduced to the market, and it leaves devices vulnerable. As long as such
issues are not regulated, these conflicts remain unsolved and mostly lead to the fact that
the manufacturer chooses the most cost effective solution.

3.3 Android Application Analysis
Similar to binaries, Android applications can be analyzed both statically and dynami-

cally. Some parts of the analysis are even easier for compiled languages, since Android
applications are mostly written in Java, which gets compiled into bytecode which by its

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
blio
nowledge

(]
|
rk

3.3. Android Application Analysis

nature must include a relatively great number of metadata.

In the following sections different methods and tools are shown to analyze Android
applications.

3.3.1 Static Analysis

Pure static analysis on Android is not utterly complicated. There are around 230
different instructions, which are completely manageable. It makes the disassembly of
the application also relatively straightforward. And additionally the generated bytecode
includes additional sources of information, like class and method names, which makes
the decompilation of the application considerably easier than for example in the case of
compiled languages.

Apkanalyser [58] and apktool [59] are very similar tools. Both of them are able to
retrieve various resources, like XML-files or images. They also include a disassembler which
turns a Dex file into multiple smali files, where smali is an assembly-like representation
of the Dalvik bytecode. Additionally, apktool can also rebuild an apk using the decoded
resources, even if they are modified.

Dex2jar [60] is a tool which maps Dalvik bytecode to java bytecode. The former has
several sub components:

dex-reader reads files in the Dalvik Executable format
dex-translator converts Dalvik instructions into dex—ir format
dex-ir represents a Dalvik instruction

dex-tools lets the user work with the Java class files, like modify the apk or decrypt
the strings

d2j-smali disassembles the dex file into smali files

dex-writer acts as a dex-reader just for writing

Similarly dex2jar, ded [61] converts dex files to Java classes by “retargeting” the Dalvik
bytecode to java bytecode. Additionally, ded optimizes the generated java bytecodes with
Soot to make the results more user friendly. After having been generated, the class-files
can be decompiled into Java source files with tools like the Java decompiler (jd) [62].

The android equivalent of jd is jadx [63]. It decompiles apk files directly into Java
classes and offers “de-obfuscation” options, although the de-obfuscator of jadx only gives
each variable, method, class and package a unique auto-generated name. The user can,
however, supply a mapping file to use, in this case that one will be used. Jadx can also
export an apk as a Gradle project.

25

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
blio
nowledge

(]
I
rk

3.

STATE OF THE ART

26

Last but not least, androguard [64] is a framework implemented in Python to analyze
Android applications. It features a disassembler for dex and apk files, a decompiler
which is based on a control flow graph retrieval and abstract syntax trees. Furthermore,
androguard is capable of decoding the binary XML format of Android and so recovering
the manifest file of the application and the used resources. Androguard also supports the
jadx decompiler, in case the built-in one did not work.

Tainting based static analysis methods will be described in Section 3.3.3.

3.3.2 De-obfuscation of Android Applications

Although obfuscation is often connected with malign programs, in the Android ecosystem
obfuscated applications are not uncommon. This is because the Android SDK provides a
tool called ProGuard, which is recommended to be used for releases. ProGuard not only
obfuscates the application by changing its layout, but also minifies the application by
removing unused code parts and resources.

DeGuard [65] applies probabilistic models to de-obfuscate Android applications. For
the de-obfuscation DeGuard creates an annotated dependency graph, where nodes
are program elements. Each node is annotated either as known (non-obfuscated) or
unknown (obfuscated). An example for known program element would be something
which is provided by Android itself like TelephonyManager. Such elements cannot
be obfuscated, as otherwise the classloader would not find them. A set of constraints is
generated for the application to prevent renames which would result in a syntactically or
semantically incorrect application. Based on the constraints and the generated dependency
graph, DeGuard predicts the most suitable names for unknown nodes. For the prediction
the relationship to known nodes is used, with a weight value. To deliver the most accurate
prediction a name with maximized weight sum will be chosen. It means that for each
choice the impact of the naming on the whole application is considered. The value for
the weight of a relationship is computed during the learning phase, where DeGuard is
trained with non-obfuscated applications found in public repositories. DeGuard can
only handle layout obfuscations, which only changes the names of classes, methods and
packages. Data obfuscation, control-flow and cryptographic obfuscations are currently
not supported by DeGuard.

Anti-ProGuard [66] is mainly designed to identify and de-obfuscate known third party
libraries. Similarly to DeGuard, it only targets the obfuscation applied by ProGuard.
First, the apk-file is unpacked and the dex-files disassembled into smali files with an
appropriate smali-package directory tree. Every package is analyzed, and if more than
82.5% of the classnames are shorter than 5 characters, the package is marked as obfuscated.
Each obfuscated package is checked with known packages to calculate its similarity. The
similarity is computed in two consecutive runs, one in a bottom-up and one in a top to
bottom style. For the bottom-up similarity calculations, n-grams and Simhashes are used,
whereas the top-down computation tries to map the files and methods to known ones.
The final step of the de-obfuscation is to rename the identified files and methods. This

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
blio
nowledge

(]
I
rk

3.3. Android Application Analysis

happens in a bottom-up fashion starting with the methods, then the classes and, last but
not least, the packages. The de-obfuscation might result in broken applications, due to
invalidated reflective accesses or incorrect renaming of overloaded methods, interfaces or
superclasses.

3.3.3 Android Taint Analysis

Although taint analysis has already been discussed in Section 2.3.2 and mentioned in
Section 3.1.1, the special nature of Android applications, like having multiple entry points
require to discuss this topic separately.

Static Taint Analysis for Android

Static taint analysis in Android is not an easy task because of several challenges. Android
applications have multiple entry points and multiple components, which can usually be
started in any desired order. Moreover, the different components inside an application can
communicate with each other through different channels, for example remote procedure
calls (RPC) or Intents. This communication, just like the starting one, is not necessarily
synchronous and might occur through registered callback functions.

SCanDroid [67], AndroidLeaks [68] and CHEX [69] all utilize WALA [70] to generate a
call graph. SCanDroid using the generated call graph runs the flow analysis using in-
and outflow filters, where the inflow filter is basically a map from inflow methods to
inflow tags, and the outflow filter is a map from inflow tags to outflow tags. Parallel to
the flow analysis a string analysis is started as in Android several pieces of important
information, for example permissions, are stored as strings. In the end, additional
metadata gathered from the manifest of the app is combined with the analysis to present
the results. AndroidLeaks, on the other hand, uses a mapping between permissions and
API-functions partly as a source and a sink for the taint analysis and it also marks
callback functions as they are registered to see if they register to a service which can
potentially leak information. CHEX divides the application into so called splits. A split
is according to Lu et. al., a part of the application which can be reached from an entry
point. CHEX analyzes the data-flow among the different splits, and in order to “simulate”
the behavior, where different parts can be called in different orders, they run the taint
analysis on every possible permutation of the splits.

FlowDroid [27], similarly to the previous ones, assumes that every component of an
application can run in any order. To overcome this it uses a path insensitive analysis
framework called IFDS [71]. Furthermore, FlowDroid models the life cycle of an Android
app to achieve higher precision. Along the forward-taint analysis, which means propagat-
ing the taint along the path, it also does on-demand backward-alias analysis, that is upon
taint propagation FlowDroid tries to find aliases on the heap along the executed path.

The biggest limitation of FlowDroid is that it cannot handle inter-component and
inter-application communications. WeChecker [72], IccTA [73] and Amandroid [74]
try to overcome this limitation with different methods. WeChecker uses a two-round

27

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
blio
nowledge

(]
I
rk

3.

STATE OF THE ART

28

taint analysis. First, the data flow is analyzed on an intra-component basis, then the
results are aggregated and used in the analysis of the whole application. IccTA, on the
contrary, instruments the bytecode and changes the invocation of other components to
direct calls shortcutting the event based on the nature of the framework. Although it
solves the issue with calls through intents, remote procedure calls remain still untracked.
Amandroid, however, provides a component-based analysis instead of a application-based
one. Similarly to WeChecker it computes the data-flow for every component individually,
moreover it also keeps in mind the points through which any data could enter or leave
the component. In the next phase, based on the information of the point where the data
can enter and leave and a component, the data flow is computed in the inter-component
manner. Naturally, this approach supports the inter-application-communication tracking
too, since inter-application-communication is nothing else than communication among
components, but this time from two different applications.

Last but not least, DroidSafe [75] uses the so called Android Device Implementation
(ADI) to achieve a very high precision. It is basically a very precise model of the Android
Runtime, which includes language specific features, like inheritance or polymorphic
code reuse, which in fact is heavily used by Android applications. To allow better
scalability and performance DroidSafe eliminates classes which are irrelevant regarding
the information flow. To provide support for asynchronous callbacks and varying order
of code execution flow-insensitive information-flow analysis is used. DroidSafe supports
inter-component and inter-application information-flow-tracking to some extent.

Dynamic Taint Analysis for Android

TaintDroid [31] was designed to work with the older runtime environment of Android
called Dalvik. TaintDroid utilizes a 32-bit vector for storing taint tags, thus there is
support for 32 different tags. It also propagates taint through JNI calls to some extent
and supports inter-process communication. To prevent losing a tag after it has been
written to the file system, the tag is propagated into the file as well in the form of
extended attributes provided by the file system itself. During analysis the tags are stored
in-memory thus resulting in a memory overhead. Figure 3.1 shows the different rules
for taint propagation, where vy is a register variable, fx represents a class field, R is the
return value, F denotes an exception, and A, B and C are byte-code constants. These
rules show for example, that if a method returns a tainted variable the callee receives the
tainted value, too (rule return-op va).

NDroid [76] using TaintDroid as a basis specializes in taint tracking for JNI related calls.
As the authors of NDroid describe TaintDroid is limited if it comes to tracking tags in
native libraries. TaintDroid can handle scenarios if a java class calls into a native library
with tainted values, and as the native function returns the same class sends the return
value to a source. It happens because return values, if they are related to tainted values,
get tainted as well. However, in situations where for example a Java class sends tainted
values to a native function and either the native function sends the value to a sink, or
another Java class accesses these values by calling the native function itself, it can happen

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

M 3ibliothek,
Your knowledge hu

3.3. Android Application Analysis

Op Format Op S Taint Propagation Description

const-op vy C vg — C T(va) — B Clear v 4 taint

move-op vA VB VA — VB T(va) — t(ve) Set v 4 taint to v g taint
move-op-R vy vqg — R T{vy) — T(R) Set v 4 taint to return taint
return-op v 4 R—uvy T(R) — 7(v4) Set return taint () if void)
move-op-E v 4 v — E Tva) — T(E) Set v 4 taint to exception taint
throw-op va E—wvay 7(E) «— 7{va) Set exception taint

unary-op va vg vy — BUp T(va) — T(vB) Set v 4 taint to v g @int

Set v 4 taint to v g taint U ver taint
va) — T(va) Ur(vg) Update v 4 taint with v taint

va) — T(vB) Set v 4 taint to vg taint

vg[]) — m(vgl])Ur(va) Update array v taint with v taint

binary-opv s vg v vy — vg B g
binary-op vy v vp +— vy BUg
binary-opva vy C vy —vg ®C
aput-op vy vg ve vg[vcvj — Uy

44 A

agel-op vy vp ve vq — vglvc) T(va) — T(vg[]) UT(ve) Set v 4 taint to array and index taint
sput-opva fr fB —va 7(fB) — 7(va) Set field f taint 1o v taint
sget-opua fB va — fB T(va) — 7(fB) Set v 4 taint to field fp taint

vp(fo) — va T(vp(fo)) «— 7(va) Set field f taint to v 4 taint
va — ve(fc) T(va) — T(vp(fo))UT(vg) Setw, taintto field f and object reference taint

ipur-op v g vg fo
iget-op va vg fo

(
(
(
(
(
(
(
E'UA) — 7(vg)U(ve)
(
(
(
(
(
(
(

Figure 3.1: TaintDroid propagation rules [31]

the other way round. In both cases TaintDroid loses the taint, as tags are not propagated
so intensively in the native context. To overcome this limitation of TaintDroid, NDroid
proposes the solution shown on Figure 3.2.

Android

System Libs

ﬁ Madified by TaintDroid . Instrumented by NDroid

D Modified by NDroid ' Developed by NDroid

Figure 3.2: NDroid architecture [76]

It is important to notice that NDroid starts Android inside an extended version of the
QEMU emulator. The taint engine keeps track of the taints in the native context with
the help of shadow registers and maps for tainted memories. The most popular system
library calls like memset get instrumented to allow taint propagation. It happens in
the System Lib Hook Engine. JNI related functions, which take part in the context of

switching between Java and native contexts, get instrumented by the DVM Hook Engine.

29

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
lio
nowledge

b

i
r

3.

STATE OF THE ART

30

NDroid generally uses the “or” operation for propagating two different tags, which means
the two tags are combined. For more information regarding propagation rules, see Figure

3.3.

Insn Format

Insn Semantics

Taint Propagation

Description

binary-op Ry, R,, . R,

Ry =R, op Ry,

tRy) = uR;,) OR UR,,,)

set R, taint to R, taint OR R,,, taint

binary-op Rg. Rin R4 =Rs op Ry, tRy) = {R4) OR t{Ry) add R,,, taint to Ry taint
binary-op Rg. R, #imm Ry =R, op #imm tRay) = tRy) set Ry taint 1o Ry, taint
unary Ry, R, Ra =op Ry, tRy) = uR,,) set Ry taint to Ry, raint
mov Ry, #imm Ry = #imm H{Ry) = TAINT_CLEAR clear the Ry taint

mov Rg. Ry, Ry =R, HRy) =tiR,,) set Ry taint to R, taint

LDR+ Ry, R,,. #imm

addr = Cal(R,,, #imm), Ry = Mladdr]

YRy) = YMladdr]) OR ((Ry,)

set Ry taint to M[addr] taint OR R,, taint

LDM(POP) regList, R, #imm

startAddr = Cal(R,,. #mm), endAd-

t{Ri. R; }) = t(R,,) OR t({M[startAddr],

set R; taint to M[startAddr] aim OR R,,

dr = Cal(R,. #imm). {R.. R;} = M[endAddr]}) taint, set R,y maint to M[startAddr+4]
{M[startAddr]. M{endAddr] } taint OR R,, taint, ... set R; mint to
MlendAddr] taint OR R, taint
STR# Ry, Ry, #imm addr = Cal(R,,. #imm), M[addr] = Ry t{M[addr]} = tRy4) set M[addr] taint to Ry taint

STM(PUSH) regList, R,,. #imm

startAddr = Cal(R,,. #imm), endAd-
dr = Cal(R,, #imm), {M[startAddr],
MlendAddr]} = {R;. R; }

t({M[startAddr]. MlendAddr]}) = (({R;.

R; })

set M[startAddr] taint o R; taint, set
MstartAddr+4] taint to R; taint, ..., set
MlendAddr] taint to R; taint

Figure 3.3: NDroid propagation rules [76]

TaintART [32] is one of the recently developed dynamic taint analysis systems for
Android, supporting Android 5.0 and 6.0. It extends the dez20at ahead-of-time compiler
to instrument the already optimized native code with logic for taint propagation. It also
extends the runtime environment to provide policy enforcement and to alert if tainted
data would reach a sink. The tags are stored in registers in the CPU to minimize the
performance overhead due to tainting. Figure 3.4 describes the different propagation
rules defined by TaintART. It shows us for example that in case of binary operations the
max value of the parameters’ tag is taken, see rule HBinaryOperation.

Taint Propagation Logic Description

Hinstruction (Location) Semantic
HParallelMove(dest, src) dest + src Set dest taint to src taint, if src is constant then clear dest taint
HUnaryOperation(out, in)

out + in Set out taint to inm taint, unary operations € {!, -, ~}

HBooleanNot, HNeg, HNot

HBinaryOperation(out, first, second)

HAdd, HSub, HMul, HDiv, HRen,
HShl, HShr, HAnd, HOr, HEer

HArrayGet (out, obj, index)

HArraySet(value, obj,

index)

out + first & second

out + obj[index]

obj [index] 4 value

Set out taint to max(first taint, second taint),

®@ei+ -, % /% <<, 22 08 |, 7}

Set out taint to obj taint

Set obj taint to value taint

HStaticFieldGet(out, base, offset)
HStaticFieldSet(value, base, offset)
HInstanceFieldGet (out, base, offset)

HInstanceFieldSet (value, base, offset)

out 4+ base[offset]
base [offset] ¢ value
out + base[offset]

base [offset] + value

Set out taint to base[offset] field taint
Set base [offset] field taint to value taint
Set out taint to base[offset] field taint
Set base [offset] field taint to value taint

Figure 3.4: TaintART propagation rules [31]

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
blio
nowledge

(]
I
rk

CHAPTER

Implementation

In this chapter we describe the three main components of our system, and how they were
implemented. At the end of the chapter we present the final architecture, and a summary
of the systems capabilities.

4.1 Generic GATT Server

Analyzing IoT devices and their Android applications is cumbersome. Mainly because
the device needs to be purchased, which might be too expensive, or it is not available for
purchase at all. And secondly, Android applications get bigger and more complex, and
they use obfuscation to make analysis harder. To partly overcome these obstacles and
make analysis easier a generic and easily configured test device should be created. For
this device a Raspberry Pi has been chosen, and the BlueZ project has been extended.

BlueZ provides an example implementation of a BLE advertiser service. However there
was no other way to configure the server than hardcoding the service-, characteristic-
and description-UUIDs. For this, the server has been extended with the option to parse
a JSON configuration file, and loading the required UUIDs from there.

The next step after enabling an easy configuration for the advertiser, is to fill the
configuration with the required UUIDs. To find UUIDs in an application both static
and dynamic techniques can be used. The static method would be just to search for
them in the decompiled or disassembled code, as to create a UUID one could use the
fromString method, which requires the 128-bit representation of the UUID as a string.
To find such strings one could use the regular expression in Listing 4.1.

[a—f0 —9]{8,8} —([a—f0 —9]{4,4} —){3,3}[a—f0 —9]{12,12}
Listing 4.1: UUID regex

31

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
blio
nowledge

(]
I
rk

4.

IMPLEMENTATION

32

Finding the required UUIDs is, however, not enough, as the context where this UUID
belongs to and the fact if it is relevant at all are still missing. To connect a UUID through
static analysis to a service, characteristic or a description is not really viable, which
means we have to use dynamic methods again. Its details are described in Section 4.2,
but for now let’s assume that this information is provided as well.

This approach would have worked, if during the initial connection the user had chosen
his or her device manually. The process is, however, not how it was expected. In reality
the real device sends out special packages periodically to advertise it’s presence. The
application waits for such packages, and upon arrival it parses its content. The content
of this package can include multiple information including the name of the device, the
service UUIDs it has, and the custom manufacturer defined data. Apart from the custom
manufacturer data the leaked UUIDs can be put on display in various forms specified by
the standard to increase the chance of detectability.

Manual analysis of two Android applications (FitBit and MI Fit) has lead to the assump-
tion, that the manufacturer data is not used during the initial device filtering. Thus
faking it is not necessary. During evaluation, the absence of the manufacturer data caused
no immediate problems, so it seem to confirm our hypothesis.

However, extending BlueZ to advertise the leaked UUIDs cannot overcome the limitation
posed by the Bluetooth standard itself. The 4.0 Bluetooth standard allows only 31
bytes of data in the advertising package including the data length fields. UUIDs can be
advertised in multiple formats, like using only their 16-bit representation of the whole
128-bit one. Using the 16-bit variant allows us to advertise 14 of the found UUIDs, as
one byte of the package will be used as length indicator. But the 16-bit format can only
be used if it has been issued by the Bluetooth SIG, and thus the base UUID can be
omitted. Thus we only can advertise a limited amount of UUIDs.

4.2 Extending TaintDroid

TaintDroid was designed with the idea to protect the users privacy from applications
which leak sensitive information to outside services. It could be GPS-coordinates or the
number of the SIM card. It mainly means that the sources of the tainting were placed at
points where this sensitive information was generated, and the sinks were at points like
the implementation of HT'TP or HT'TPS sockets, where the sensitive information would
leave the phone.

To use TaintDroid for analyzing the Bluetooth traffic between a phone and an external
device, we had to extend the TaintDroid framework. In this section these extensions will
be described.

To make our contribution distinguishable first we introduced a new type of taint tag.
TaintDroid, as it was mentioned before uses 32 bit numbers as taint tags. Originally the
creators of TaintDroid only used 17 of the possible 33 tags, which conveniently leaves us
enough room for our extensions. The new tag was named SSLINPUT mostly because we

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
blio
nowledge

(]
|
rk

4.2. Extending TaintDroid

started extending TaintDroid by extending the implementation of the SSLInputStream.

Although taints are only propagated in native context in a limited manner, almost the
whole tainting interface is implemented as native code. This meant we had to extend
both the java interface of the tainting API (dalvik.system.Taint in the project
framework/base), and the native header file (Taint .h in the project dalvik) with the
newly defined tag. As Android is hardwired for actually releasing the code for thousands
of devices, the API-documentation had to be upgraded as well, since the new tag was
exposed publicly for every other class to use.

As mentioned previously TaintDroid mainly warns the user as sensitive information on
the phone leaves the device. However, what we would like to see is what comes in from
the Internet and later leaves the device through the Bluetooth or gets written out to the
file system. To achieve it new taint sources have been defined in HTTPS and HTTP
socket implementations. During the development we noticed that a high amount of traffic
was received from advertisement networks and performance monitoring services. To
reduce the output of non-relevant information we implemented a filter to ignore specific
sources in regard of tainting, see Listing 4.2. Currently this filter is hard-coded in the
respective classes, but it should be fairly easy to read in the filter from a file.

private class SSLInputStream extends InputStream{
private String[] f = {

"graph.facebook.com",

"sdk.hockeyapp.net"

"decide . mixpanel.com" ,
n

}s
//

@Override
public int read(byte[] buf,
int offset ,
int byteCount) throws IOException {
if (hname =— null) {
// set host name to "unknown' if real one is mnot known
hname = "unknown'
}
// Do the SSL crypto stuff like normal
int toRet = NativeCrypto.SSL_read(sslNativePointer ,
socket.getFileDescriptor$ (),
OpenSSLSocketImpl. this
buf,

api.mixpanel.com"

33

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
blio
nowledge

(]
|
rk

4.

IMPLEMENTATION

34

offset ,
byteCount ,
getSoTimeout ());

ArrayList<String> filter = new ArrayList<String >(
Arrays.asList (f)
E
if (!filter.contains(hname)) {
// do tainting

}

return toRet;

//

Listing 4.2: Don’t taint traffic for specific domains

Extending the original Android code for implementing a sink at HTTP and HTTPS
socket implementations, like the original authors of TaintDroid did, is easy. The only
thing to do is, to check if the byte array, which is to be written into the socket, has
any taints, and if so to generate a warning to notify the user. However, implementing a
source at these places turned out to be more complicated as it had been expected. The
reason for this was, that although the tainting worked for incoming traffic, as soon as
the Content-Encoding header was set for example to gzip the taint was lost at some
point. The cause of it was that the inflater allocated a new byte array for the inflated
data, which was filled in the native context, as for this, the zlib library was used. As
it has already been stated multiple times taint tags are not propagated by default in
native context except for some special cases, and this resulted in the loss of the tag. To
correct it the responsible java class was extended to copy the tag of the input array to
the output if it was needed.

As mentioned in the previous section searching for UUIDs is essential if one would try to
simulate the presence of a BLE device. Although the previously mentioned fromString
method requires a well defined and easily searchable string, there is another way to create
UUIDs, which is not easily searchable. This would require to pass two long integers
through the constructor of the UUID class representing the most and least significant bits
of the UUID. To catch these instances as well, and also other edge cases like using a mask
and another string generating the UUID at runtime, we extended both the constructor
and the fromString methods to leak the generated UUIDs, see Listing 4.3.

public final class UUID implements Serializable ,
Comparable<UUID> {
public UUID(long mostSigBits, long leastSigBits) {

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
blio
nowledge

(]
|
rk

4.3. Aggregating Results

this. mostSigBits = mostSigBits;

this.leastSigBits = leastSigBits;

init ();

Taint . log ("UUID-LEAK: " 4 this.toString ());
}

//

public static UUID fromString(String uuid) {

//

Taint.log ("UUID-LEAK: " + uuid);
return new UUID(msb, Isb);

}

Listing 4.3: Leaking UUIDs as soon as they are created

The last piece of the puzzle is to connect the UUIDs to the actual resources of relevance,
namely the services, characteristics and descriptions. Fortunately, the Android interface
requires to pass the UUID of that resource to access a service, a characteristic or a
descriptor. It means to extend the classes representing the aforementioned resources to
leak the missing information we can connect the UUIDs to the type of the resource to
use it later.

Last but not least, the different types of Bluetooth classes, which are able to send out
information, have been extended to be taint sinks. That is if tainted information leaves
the phone through either Bluetooth Classic or Bluetooth Low Energy, the user will be
notified. Additionally to the notification, if the data was tainted with the SSLINPUT tag,
it will be written out to a predefined path on the file system. We think this is necessary
as the update files are also transmitted over Bluetooth to the peripheral device, which
could be a source of more information during the analysis. On the top of all the call
trace is also dumped through the logs to help the analyst to identify where the writing
request came from within the application.

4.3 Aggregating Results

Although the previously mentioned pieces of information are presented to the user
through the Android logs, so are several other unrelated entires as well, which should be
filtered out. To aggregate and display the information in an organized manner a python
framework has been developed.

35

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
blio
nowledge

(]
I
rk

4.

IMPLEMENTATION

36

The framework uses the Android log reader facility called 1ogcat to read the logs. As
soon as an information, like a UUID has been leaked through the logging mechanism of
Android the framework picks it up and stores it. If possible, the information is categorized
to make the life during analysis easier. It means as soon as a UUID turns out to be used
as a service identifier, the framework stores this information as well. Additionally, the
number of occurrences of the UUIDs is also stored, as this way potentially false positive
UUIDs can be identified and excluded.

Besides the UUIDs specially crafted stacktraces are collected as well, since they can
pinpoint where the Bluetooth related code can be found in an application. During
visualization of the stacktraces if a mapping file from old names to new names is provided
in a special format, the relevant parts of the stacktrace gets rewritten. This is relevant if
the application gets de-obfuscated, but to counteract potential information losses, like
dynamic reflection due to renaming, the original application is used for the dynamic
analysis and the de-obfuscated application is only analyzed statically.

To obtain the previously mentioned mapping file the framework provides a binding to the
external tool called apk—deguard which perform de-obfuscation by applying statistical
methods. As a result apk-deguard provides a rewritten APK and decompiled Java sources
as well besides the mapping, however, the previous two are at the moment not used
directly by the framework..

4.4 Final Architecture

Figure 4.1 depicts the final architecture of the implemented framework. As an input we
use the downloaded APK of the application we would like to analyze. It gets installed
on the test phone, which runs the modified version of the TaintDroid taint-analysis
framework. Optionally the APK can be loaded into the collector as well. When it
happens the APK is sent to the DeGuard framework to undo the obfuscation applied by
ProGuard, which is the default obfuscator written for Android.

The phone acts as a middle-man and relays the communication between the service
backend on the Internet and the Bluetooth fitness device, as it was intended by the
developers of the application. Meanwhile, the collector collects specially tagged log
entries, generated by TaintDroid. As soon as the analysis is considered done, the collected
information gets sorted and is presented to the user in a structured format.

The framework offers limited options to simulate the presence of an actual Bluetooth
device. To use this capability a preliminary analysis is required through which it can be
determined what kind of Bluetooth Low Energy services and characteristics are expected
to be present. If this analysis is done the system can be configured easily to include the
given services with the given characteristics. This subsystem is not only able to show the
data which was sent to it by the phone, but can send back user defined data as well, as if
it were a standard Bluetooth device.

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
blio
nowledge

(]
I
rk

4.4. Final Architecture

Collector -

v

Output:

 UUID

* Tainted BLE
traffic

Deguard

Figure 4.1: Architecture of the implemented system

4.4.1 Degree of Automation

The current system was designed to conduct human assisted analysis, thus it still heavily
relies on human work. Currently the application is capable of collecting and identifying
known Bluetooth UUIDs by mapping them to the database of the Bluetooth SIG assigned
numbers. Besides the UUIDs, if tainted data is written out through the Bluetooth
interface, a warning is generated to help identifying the relevant classes inside the
application which are responsible for handling the Bluetooth traffic. These warnings are
collected and presented by the framework. To enable further analysis of such a tainted
data, before sending it to the device it gets written out to the file system of the phone

37

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

@ Sibliothek,
Your knowledge hub

4.

IMPLEMENTATION

38

and through the framework it can be downloaded easily.

If DeGuard had been used, these trace would have no value, as the classes are partially
or completely renamed. That is why we use the mapping file provided by DeGuard to
rewrite the collected traces to the new names.

On the Raspberry Pi, the extended version of the GATT-Server of BlueZ can handle
JSON configuration files, thus setting up the required services and characteristics is
relatively easy. Some applications require the device to advertise its presence either by
broadcasting specific information like a service UUID or by a specially chosen device
name. Either way this is left to be configured by the user, using the management tools
provided by the BlueZ project.

Furthermore extracting and analyzing the protocol used by the device and the application
to communicate with each other is not automated yet, and is required to be done by the
user conducting the analysis.

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
blio
nowledge

(]
I
rk

CHAPTER

Evaluation

In the first part of this chapter we are going to describe the applications we used to test
our framework. In the second part we present the results of our tests with the chosen
applications.

5.1 Sample Set

Initially, the implemented framework was tested with a self written Android application.
After starting the application it searched for the Bluetooth MAC of the test device, which
was a Raspberry Pi with some readable and writable BLE characteristics. As soon as
the Raspberry Pi had been found, the app connected to it and downloaded the front
page of “Google”. This way we acquired some data which got tainted with the newly
implemented tag. This data was then sent to one of the BLE characteristics, which - as
expected - generated a warning in the logging system that the tainted data had left the
device through a Bluetooth sink.

This application was really helpful during the development, however, the logic and the size
does not represent real applications. In the following few paragraphs real life applications
will be described shortly.

Through the Fitbit application the user can set up and remove devices connected to
the account. It also manages the synchronization between the connected devices and
the account stored on the servers provided by the Fitbit company. The application
also fetches the logged data from the server to present it for the user. Besides the data
generated by the connected device the user is able to log additional information like
water or food consumption and weight. The authors had access to an older Fitbit device,
the Fitbit One, which was partially used for testing.

Very similarly to Fitbit, MI Fit, implemented by the Chinese company Xiaomi, manages
the connections between a phone and devices like the MI Band. MI Fit is, however, not so

39

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
blio
nowledge

(]
I
rk

5.

EvVALUATION

40

feature packed as Fitbit. The user can only log his/her weight as additional information.
Besides that and by setting a daily goal for step count a workout session can be tracked,
where data like GPS, distance, heart rate and step counting are recorded with a higher
precision of time. During the evaluation the authors had access to an older version (2)
MI Band.

Mio GO is a plain workout tracker with the main focus on heart rate monitoring. The
Mio devices are advertised as strapless ECG accurate heart rate monitors. Although the
app is relatively minimalist in features and design the user is not required to have a Mio
GO account. Additionally, unlike the previous apps with Mio GO exporting the data
into CSV is supported natively.

Polar produces different fitness trackers ranging from pure heart-rate monitors to sport
watches. To download the data from these devices the user is required to use either Polar
Flow or Polar Beat. Polar Beat is designed to track individual training sessions and pull
“live” data from the fitness device, whereas Polar Flow serves as an overview and data
accumulator for day-to-day usage beyond a training session. It is worth to mention, that
Polar Flow is only compatible with selected Polar devices, whereas Polar Beat supports
not only Polar HR monitors but works with third party sensors as well. However, in
case of third party sensors, Polar Beat only offers real-time heart rate monitoring and
features like burnt calories or fitness tests are restricted.

Misfit is an everyday activity and sleep tracking application written to be used with
wearables manufactured by the same-named US based company. Besides tracking basic
activities, like steps-per-day, the users can specifically tag movements where they are
doing some sort of sport in the form of a workout like swimming, cycling or even yoga.
To encourage more movements users can set daily goals, and the application sends
notifications every now and then to remind them, that it is time for the movement. Misfit
also offers social experience in the form of competing against friends and other users and
also by sharing results with others.

5.2 Analysis Results

For each previously described application the following evaluation steps have been applied.
First without any device emulation or real device nearby the app has been started. Then
an initial binding step is initiated as if someone connected the application to a device.
Through it the application is going to search for a device eventually resulting in a timeout
as no device is nearby. Although the initialization of the connection fails the analysis
framework records valuable information.

At this point we can only evaluate the false discovery rate of the leaked UUIDs, as there
was nothing to connect to, hence there can be no call trace leaks, as that code never
becomes executed. To be able to count the false positives, without the need of manual
reverse engineering at this point, we execute the analysis three times in total. Between
each execution the application in test is going to be terminated and the logs on the phone

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
blio
nowledge

(]
I
rk

5.2. Analysis Results

are going to be purged to eliminate the contamination of results and to prevent the reuse
of UUIDs generated randomly. This way we have a way to compare which UUIDs appear
even after restarting the application, which is an indicator for the UUID being created
specifically and not randomly.

Besides determining the false discovery rate of the UUIDs we can use the most likely
true positive UUIDs for the next step, which are trying to emulate a device.

Last but not least, the effectiveness of the information retrieval can be evaluated with
the help of a real device as well.

5.2.1 MI Fit

At the first test, trying to make a connection without a device, the framework was able
to find 33, 39 and 37 unique UUIDs for the three analysis executions respectively, which
were used by the application. None of the found UUIDs were categorized as service-
characteristic- or descriptor UUIDs, and no call trace was recorded, as it had been
expected.

Eleven UUIDs were found in all the three sets of the recorded UUIDs, they are listed
in Table 5.1. The table also shows what that UUID can be used for according to the
Bluetooth specification or which SIG member it belongs to. Correlating the results of
the three analysis results we were able to prune around 70% of the irrelevant UUIDs.

Filtering with the help of open information provided by the Bluetooth SIG we can identify
and categorize some of the eleven UUIDs found in every execution. The UUIDs with
0000fee0 and 0000feel belong to the company Anhui Huami Information Technology
Co., Ltd. which is the manufacturer of the Xiaomi devices. Manual reversing, online
research and inspecting the actual device confirmed that these are two of the three
custom services on the MI Band 2. The UUID with 0000fee7 belongs to another
Chinese company called “Tencent”. Manual reverse engineering revealed that this service
is used for showing messages sent through the Chinese messaging and social media
service “WeChat”. The last two UUIDs beginning with 00002901 and 00002902 belong
to two standardized descriptors namely “Characteristic User Descriptor” and “Client
Characteristic Configuration”. Former is used, as the name suggests, to provide a human
readable description the way the given characteristic it belongs to does, and latter holds
a client specific configuration to enable or disable notifications and indications. The
remaining common UUIDs neither could be categorized by the framework nor have been
found through manual online research, except the UUID with f0000000 which is the base
UUID for devices manufactured by the company “Tezxas Instruments”. However, manual
reverse engineering revealed no usage for these UUIDs in any way, and the real device
did not include them either.

It means after the initial cleanup, i.e. correlation of the three executions, the framework
had a false discovery rate of 55%.

41

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
blio
nowledge

(]
I
rk

5.

EvVALUATION

42

UvuID Meaning

00000000-0000-3512-2118-0009af100700 -
00000000-1212-efde-1523-785feabcdl23 -
000009£f0-0000-1000-8000-00805f9p34fb -
00000af0-0000-1000-8000-00805f9p34fb -
00002901-0000-1000-8000-00805f9b34fb | Characteristic User Description
00002902-0000-1000-8000-00805£9p34fb Client Characteristic Config.
0000£fee0-0000-1000-8000-00805£9b34fb Anhui Huami IT Co., Ltd.
0000£feel-0000-1000-8000-00805£f9b34fb Anhui Huami IT Co., Ltd.
0000fee7-0000-1000-8000-00805£f9b34fb Tencent Holdings Limited.
cbbfelel-f7£f3-4206-84e0-84cbb3d09dfc -
£0000000-0451-4000-b000-000000000000 Texas Instruments™*

Table 5.1: Similar UUIDs throughout three analysis executions and their meaning (entries
with * were categorized manually)

The next step was to try to simulate the presence of a real device. At this point we
had three service UUIDs (two registered to Huami and one to Tencent) and we could
advertise those with the Raspberry Pi method which was previously described in Section
4.1.

Our log analysis framework picked up a clear pattern for trying to access a non-existent
characteristic, see Listing 5.1. As we could see the app grabbed the 0000feel service and
tried to set up a notification listener for the characteristic 00000009. After re-configuring
the Raspberry Pi by following the same principle looking for patterns provided by our
framework, we were able to mimic the presence of a Mi Band 2.

Found SERVICE-UUID: 0000feel —0000—1000—8000—00805f9b34fb
Found CHARACTERISTIC-UUID: 00000009—-0000—-3512—2118—-0009af100700
Found DESCRIPTOR-UUID: 00002902—-0000—1000—-8000—00805{f9b34fb

Listing 5.1: Pattern to access a specific characteristic

Figure 5.1 shows that the application actually sends some data to the handle 0z00e9
which in fact corresponds with the characteristic with the UUID 00000009.

Figure 5.1: First package after connection

With the help of the applications internal logs and an open source project' we were able

https://github.com/creotiv/MiBand?2

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
blio
nowledge

(]
I
rk

5.2. Analysis Results

to send back a valid response. The first package which we saw was sending an encryption
key from the app to the device. The device had to send back the acknowledgment of
receiving the encryption key. The application then asked for 16 random bytes, which were
then encrypted by the application and the encrypted bytes were sent back for verification.
After receiving the last acknowledgment the application read out the device information
like the serial number, the hardware and software revisions, from the standardized BLE
characteristics. For these stats we just returned zeros.

At this point the application reported that the pairing had been successful and showed
the device options on the GUIL. However, the connection was canceled. If we had moved
back on the GUI the paired device would have disappears. According to the logs of the
application, the device manager was missing on our device. In the future we are going to
look into it, why the pairing failed, even though the GUI showed that it was successful.

Last but not least, a real MI Band 2 was used to test the performance of the framework.
The MI Band was set back to factory defaults, and during the test the initial pairing to
a registered account was started.

Immediately after pairing the real MI Band 2 to our test account the applications notified
us, that there was a firmware update available. Although we could see in both our
framework and the Android logs that two characteristics are being read and written
rapidly, the framework was not able to dump any data written out through the Bluetooth
interface. The reason for this was, that we suspected, that the firmware images would
be downloaded from the Internet, and thus would be tagged with our taint tag, and we
only would dump tainted data to minimize the false positive dumps. However, MI Fit
packed the firmware update files into the APK, thus avoiding to be tainted, which in
fact prevented the framework to dump the images.

5.2.2 Fitbit

Unfortunately, Fitbit dropped the support for devices running pre-Android 5.0 operating
systems in the third quarter of 2018, thus we were required to use an older version (version
2.19) of the application, which was downloaded from a third party website specialized in
providing different versions of different applications. Although there would have been
newer compatible versions, the most up to date one resulted in several crashes. Because
of this, starting with the oldest version of the application the first working version was
been chosen.

Before starting the previously defined sequence of tests to evaluate the performance of
the framework on Fitbit, the Fitbit application was started without any assigned user. It
means the application could only reach the login screen. To this point the framework had
already picked up 46 unique leaked UUIDs from which 5 were identified as an existing
Bluetooth SIG issued UUID.

During logging into the newly created account more than a 1000 UUIDs were picked up,
however, these were with high certainty randomly generated and used for other purposes

43

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
blio
nowledge

(]
I
rk

5.

EvVALUATION

44

than Bluetooth, as UUIDs are used not only for graphical user interface (GUI) related
actions, but also for parcels, which are the effective ways of transferring data among
applications or modules of an application like a service. It means we most likely will not
have to deal with this daunting amount of UUIDs.

The three executions without any nearby device and without any device trying to emulate
the presence of a real device resulted in 311, 344 and 346 UUIDs respectively. Between
the three independent executions 50 common UUIDs were identified from which the
framework automatically identified 24 known UUIDs. Table 5.2 shows the identified
UUIDs defined by the Bluetooth SIG. Interestingly enough, a UUID (last row in the table)
was picked up as well which actually belonged to MI Fit devices. This happened because
the actual MI Band 2 device was in the scanning range of the test phone, and it was
advertising its presence. To confirm this hypothesis, a fourth execution was performed
with the MI Band removed from the Bluetooth range of the phone, and as suspected it
was not present in the logs either.

Table 5.3 shows the UUIDs which were common for the three executions, although were
not identified by the framework. With manual online research most of the UUIDs were
identified. The manually identified list contained a relatively high number of Apple
related UUIDs. This can be explained in the same way why the MI Band related UUID
was found in the logs. Some Apple devices were in the scanning range of the test phone.
Unfortunately, these devices were not removable from the range because they did not
belong to the author and the author had no way to shield the phone used for testing
from picking up “rouge” devices.

Through the initial cleanup step, by correlating the three executions we were able to
eliminate around 85% of the not relevant and probably randomly generated UUIDs.
From the remaining 50 UUIDs the framework was able to identify, i.e. connect the UUID
to a human understandable meaning, almost 50%. After manual identification of the
UUIDs the identification rate rose to 80%. Considering the application relevant UUIDs
(including the UUIDs defined by the Bluetooth SIG, as they could be found in the APK,
with exception of the manufacturer UUIDs) as true positives and everything else as false
positives, the false discovery rate of the framework was 32%.

Although the framework unfortunately could not identify these UUIDs alone, we were
going to use them nonetheless for the second stage of our evaluation tests, namely trying
to emulate the presence of a real Fitbit One step and floor counter device. It should be
mentioned that the manually identified UUIDs were added to the frameworks database,
so this way they will be identified during future analysis runs.

The previous step of the analysis revealed 3 relevant services, namely adabf00 which
was believed to be the control service of Fitbit devices, through which the phone can
send commands and receive their result, 558dfa00 which served the collected fitness data,
and last but not least, 16bcfd00 which was a service on the phone and to which the real
device connected back. All of these three services would be advertised and created on
the Raspberry Pi along with their corresponding characteristics.

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
10
edge

b

now!

(]
I
rk

5.2. Analysis Results

UUID ‘ Meaning ‘
00000000-0000-1000-8000-00805f9034fDb BASE UUID
0000000f-0000-1000-8000-00805f9034fb BNEP
00001105-0000-1000-8000-00805f9034fb OBEXODbjectPush
00001108-0000-1000-8000-00805f9034fb Headset
0000110a-0000-1000-8000-00805f9p34fb AudioSource
0000110b-0000-1000-8000-00805£9b34fb AudioSink
0000110c-0000-1000-8000-00805£f9034fDb A/V_RemoteControlTarget
0000110d-0000-1000-8000-00805£f9034fb Advanced AudioDistribution
0000110e-0000-1000-8000-00805£f9034fb A/V_RemoteControl
00001112-0000-1000-8000-00805£9b34fb | Headset - Audio Gateway (AG)
00001115-0000-1000-8000-00805£f9034fb PANU
00001116-0000-1000-8000-00805f9034fb NAP
0000111e-0000-1000-8000-00805f9034fb Handsfree
0000111£-0000-1000-8000-00805f9p34fb HandsfreeAudioGateway
00001124-0000-1000-8000-00805f9b34fb | HumanlnterfaceDeviceService
0000112f-0000-1000-8000-00805f9b34fb Phonebook Access - PSE
00001132-0000-1000-8000-00805£9034fb Message Access Server
00001133-0000-1000-8000-00805£9p34fb Message Notification Server
00001134-0000-1000-8000-00805f9b34fb Message Access Profile
00001800-0000-1000-8000-00805£9b34fb Generic Access
00001812-0000-1000-8000-00805f9b34fb Human Interface Device
00002902-0000-1000-8000-00805£f9034fb Client Characteristic Config.
00002a00-0000-1000-8000-00805f9p34fb Device Name
0000fee0-0000-1000-8000-00805£f9034fb Anhui Huami IT Co., Ltd.

Table 5.2: Similar UUIDs throughout three analysis executions and their meaning for
the Fitbit application

After creating the previously mentioned services and characteristics, first the control
service was advertised. The reason why not every service was advertised is two-fold. As
the UUIDs were not issued by the Bluetooth SIG, the device most unlikely advertised
only with a 16-bit UUID, as it might have collided with a UUID which was issued by the
Bluetooth SIG and this way might have violate the uniqueness of the ID. To overcome it
one can advertise the full 128-bit UUID, however, this takes up 18 bytes (16 bytes UUID,
1 byte length field and 1 byte data type field) from the available 31 bytes according to

the Bluetooth standard. This means only one service can be advertised at the same time.

After setting up the advertisement for the designated service the connection procedure
was initiated. Observing the logs of the application it actually found the Raspberry Pi
and identified it as a valid Fitbit device, however, the application tried to determine
unsuccessfully the type of the device. Manual reverse engineering of the relevant parts

45

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
blio
nowledge

(]
I
rk

5.

EvVALUATION

46

UUID

Meaning

066bd727-1864-4bd4-8£95-bc5089p52£5d

16bcfd00-253f-c348-e831-0db3e334d580

Fitbit Service

l16bcfd01-253f-c348-e831-0db3e334d580

Fitbit Characteristic

lebcfd02-253f-c348-e831-0db3e334d580

Fitbit Characteristic

l6bcfd03-253f-c348-e831-0db3e334d580

Fitbit Characteristic

16bcfd04-253f-c348-e831-0db3e334d580

Fitbit Characteristic

1880d30a-1fbe-44c2-903d-0d061£5a9cl12

22eacb6e9-24d6-4bb5-bedd-b3b6ace’cTbfb

Apple Data Source

dcedb2a9-8aea-40fb-851la-6ed0783c7a28

558dfa00-4fa8-4105-9f02-4eaa93e62980

Fitbit Data Service

558dfa01-4fa8-4105-9f02-4eaa93e62980

Fitbit Data Characteristic

69d1d8£f3-45e1-49a8-9821-9bbdfdaad9d9

Apple Control Point

6c43daz2d-e71d-4db3-83e2-57657a129bd9

6df£7b09-b857-4d36-b5c0-blb27b42edd6

7905£431-b5ce—-4e99-a40£f-4b1el22d400d0

Apple Notif. Center Service

88492498-ccd7-42d5-88b2-59dd4697dc83

9fbf120d-6301-42d9-8c58-25e69%a21dbd

Apple Notif. Src. Characteristic

adabfb00-6e7d-4601-bda2-bffaa68956ba

Fitbit Ctrl. Service

adabfb01-6e7d-4601-bda2-bffaa68956ba

Fitbit Ctrl. Read Characteristic

adabfb02-6e7d-4601-bda2-bffaa68956ba

Fitbit Ctrl. Write Characteristic

adabfb04-6e7d-4601-bda2-bffaa68956ba Fitbit Ctrl. Characteristic
b4d766dea-60d5-4b53-a304-7710ced16689 -
c09%eel5a-elfb-434a-b7ba-7dad41441917c -
c98e7d81-7213-4dcb-afal0-fde52962f2ba -
ffff0000-ffff-ffff-ffff-ffffffffffff UUID mask
fffffde0-0000-1000-8000-00805f9034fb -

Table 5.3: UUIDs which were found in three executions of the Fitbit application although
they were categorized manually

of the application revealed that at a specific position in the advertising data the type
identifier of the device was to be expected. One way to advertise such an information
is using the Device information service. After finding the device ID mappings in the
application and starting a new advertisement this time with the Device information
service activated with the relevant value, the application recognizes the Raspberry Pi as
an actual Fitbit One and tries to connect to it.

The connection is successful and can be verified on the Raspberry Pi as well. The
application even shows a message “ We have found your device”, although as the application
advances to the next phase which is to display the connection code, to verify that the
correct device has been found the connection is suddenly terminated. Regrettably, the

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
blio
nowledge

(]
I
rk

5.2. Analysis Results

logs of the phone do not provide any indication why the connection broke, but in any
case it is initiated by the phone, like Figure 5.2 shows.

Figure 5.2: GATT-Server disconnection during Fitbit simulation

The reason for the disconnection was that the Fitbit Control Read Characteristic had no
Client Configuration Descriptor and this way the app could not subscribe for notifications.
After the reconfiguration we received 13 bytes from the phone on the Fitbit Control
Write Characteristic, see Figure 5.3. However, after around 10 seconds the connection
was interrupted again because of a timeout as we could see on the logs of the phone. If
we had send back the same 13 bytes through the Control Read Characteristic, the app
would have printed out an error message through the logs, that the received bytes could
not be decoded. Searching for the printed string we could locate the source code of the
response parsing utility, through which we can create a valid package that would have
been accepted by the application.

Figure 5.3: GATT-Server receives the first package from Fitbit

With the help of the decompiled application and the open source project galileo® we were
able to decode the package. First, the application sent a request to initialize the Fitbit
AirLink. As a response we sent back an AirLink established package which included
the tracker ID, which was the MAC-address of the device in little endian format and
the set of parameters. Next, the app sent a display code package, which would trigger
off showing the pairing PIN on a real device, but we just sent back an acknowledged
response. During the next step the app requested a minidump from our device which
was - depending on the device - either AES or XTEA encrypted. We tried to replay
a valid package found on the Internet which was accepted by the application, but this
information is sent to the Fitbit backend server for validation, which as we would suspect
failed. As we did not know the content of a valid minidump we could not possibly fake a
valid Fitbit device.

?https://bitbucket.org/benallard/galileo

47

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
blio
nowledge

(]
I
rk

5.

EvVALUATION

48

Last but not least, we paired a real Fitbit One with our test account, and started the
firmware update process. In the logs of our test phone we could confirm, that data is
downloaded from the Fitbit backend server, and thus got tainted with our custom tag. A
few seconds later a progress bar appeared on the screen of our test Fitbit One, see Figure
5.4, and soon we saw in the framework, that data sent out through the BLE interface
was dumped 20 bytes a time, as this was the maximum payload size for Bluetooth Low
Energy packages prior to Bluetooth 5.0.

2 e

Figure 5.4: Firmware update progress on a Fitbit One

After writing and dumping around 3000 bytes, the firmware update process got interrupted
due to a segmentation fault in the getTaintFile. We are going to look into this issue
in the future. Nevertheless we had the first few thousand bytes of the new firmware, the
remaining part was, however, not accessible for us as the firmware image was handled in
memory and was never written out to the file system.

Figure 5.5 showed the entropy graph of the first thousand of bytes of the dumped firmware
image. The high entropy indicates that the data is encrypted, which can be partially
confirmed, since the logs on the phone show that the data is transmitted as microdumps,
which are, as stated before, encrypted with AES or XTEA. The encryption key is not
stored on the phone as the traffic between the backend and the device is end-to-end
encrypted.

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
blio
nowledge

(]
I
rk

5.2. Analysis Results

Figure 5.5: Entropy of the Fitbit firmware image

5.2.3 Mio Go

For evaluation we used the most recent version (2.7.4.4) of Mio Go as of writing this
thesis.

At the startup of the application the user is greeted with a registration form, when some
UUIDs were picked up by the framework, but at this point of time neither consistency
could be found, nor did the framework identify any standardized UUIDs, which suggested
that these UUIDs were most likely not relevant to Bluetooth related analysis. Right after
completing the registration and filling out the basic user information, like name, height
and weight the application started a Bluetooth scan to find nearby devices. At this point
the framework was able to identify 16 of the 43 unique UUIDs and, although some of the
UUIDs were not identified automatically, they had already shown a pattern where only
the 16-bit part of the UUID differed and both the prefix and the postfix of the UUIDs
were the same, see Table 5.4. Even without the three independent executions, one can
argue that these UUIDs with most certainty were not generated randomly.

Like earlier we also executed the application three times and correlated the results. To
make sure that the UUIDs would not get reused like previously between the executions
both the framework and the application were restarted, and additionally, the application
was force stopped to make sure to kill even the background services which could potentially
preserve UUIDs and would spoil the results.

The test executions with searching for nearby devices yielded from the beginning of the
execution until the end of the scan procedure to 127 UUIDs for the first execution and
129 UUIDs for the second and the third one. Between the three executions 29 common
UUIDs were found which are presented in Table 5.5. As we had suspected, the UUIDs
with the postfix 381c08ec57ee were not randomly chosen, but most likely belonged to
real Mio devices, and were created to be used as search filters.

From the 29 common UUIDs the framework was able to identify 16 UUIDs. Conveniently,

49

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
blio
nowledge

(]
I
rk

5.

EvVALUATION

50

UUID Meaning

6c721530-5bf1-4£f64-9170-381c08ec57ee -
6c721531-5bf1-4£f64-9170-381c08ec57ee -
6c721532-5bf1-4£f64-9170-381c08ec57ee -
6c721550-5bf1-4f64-9170-381c08ec57ee -
6c721551-5bf1-4f64-9170-381c08ec57ee -
6c721552-5bf1-4f64-9170-381c08ec57ee -
6c721553-5bf1-4f64-9170-381c08ec57ee -
6c721838-5bf1-4f64-9170-381c08ec57ee -
6c722a80-5bf1-4£64-9170-381c08ecb7ee -
6c722a82-5bf1-4£f64-9170-381c08ec57ee -
6c722a83-5bf1-4f64-9170-381c08ech7ee -
6Cc722a84-5bf1-4£f64-9170-381c08ec57ee -

Table 5.4: Unknown UUIDs with high similarity found during the execution of Mio GO

the Mio GO application was not obfuscated and so the remaining UUIDs were easily
found and identified in the application. These UUIDs are marked with an asterisk in
Table 5.5. To yield a better performance during future analyses the identified UUIDs
were added to the framework’s identification database. Additionally to the UUIDs in
the previously mentioned table, three more service UUIDs were found which were not
detected, as they were stored as strings instead of as UUID objects, thus had never been
leaked. Interestingly enough, these IDs were seemingly never used in the application.
The additional 3 UUIDs are shown in Table 5.6.

Considering these results, 76% of the leaked UUIDs were not relevant for the analysis,
as they were generated mostly randomly. Although only around 50% of the correlated
results were automatically identifiable, the rest were easy to be identified manually with
plain text search, as we knew what we were looking for and luckily the application
was not obfuscated, which is really rare for professional applications. After the manual
identification it turns out that every correlated UUID is in use.

The next step was to set up the Raspberry Pi with the newly found service and char-
acteristic UUIDs. However, starting a GATT server with just the correct UUIDs was
not enough, as the application could not identify the Raspberry Pi as a Mio device. But
after analyzing the decompiled application it turns out, that the application only filters
by the name of the Bluetooth device, which is easy to set and fake. After setting the
Raspberry Pis Bluetooth name to “ALPHA2_OTA” the app identifies the Raspberry Pi
as a Mio device, as Figure 5.6 shows.

After pairing the phone and the faked Mio Alpha2 the application greets us with a new
activity, namely that there is an update for our device, see Figure 5.7. This is actually
due to the fact, that although we indeed set up a GATT server, we only returned empty
strings, and apparently the application only compared if the returned value was the same

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
blio
nowledge

(]
I
rk

5.2. Analysis Results

UUID

Meaning

00001533-1212-efde-1523-785feabcdl23

DFU Status report*

0000180a-0000-1000-8000-00805£9p34fb

Device Information

0000180d-0000-1000-8000-00805£9p34fb

Heart Rate

0000180£f-0000-1000-8000-00805£9p34fb

Battery Service

00001816-0000-1000-8000-00805£9034fb

Cycling Speed and Cadence

00002902-0000-1000-8000-00805£9b34fb

Client Characteristic Config.

00002a19-0000-1000-8000-00805£9034fb

Battery Level

00002a23-0000-1000-8000-00805£9034fb

System ID

00002a24-0000-1000-8000-00805£9034fb

Model Number String

00002a25-0000-1000-8000-00805£9034fb

Serial Number String

00002a26-0000-1000-8000-00805£9034fb

Firmware Revision String

00002a27-0000-1000-8000-00805£9p34fb

Hardware Revision String

00002a28-0000-1000-8000-00805£9p34fb

Software Revision String

00002a229-0000-1000-8000-00805£9034fb

Manufacturer Name String

00002a37-0000-1000-8000-00805£9034fb

Heart Rate Measurement

00002a5b-0000-1000-8000-00805£9034fb

CSC Measurement

0000000c-0000-1000-8000-00805£9034fb

HTTP

6c721530-5bf1-4£64-9170-381c08ecb7ee

DFU Service*

6c721531-5bf1-4£f64-9170-381c08ec57ee

DFU Control point*

6c721532-5bf1-4£f64-9170-381c08ec57ee

DFU Packet*

6c721550-5bf1-4£64-9170-381c08ecb7ee

Alpha2 DFU Service*

6c721551-5bf1-4£f64-9170-381c08ecb7ee

Alpha2 DFU ctrl point*

6c721552-5bf1-4£64-9170-381c08ec57ee

Alpha2 DFU send packet*

6c721553-5bf1-4£64-9170-381c08ecb7ee

Alpha2 DFU packet*

6c721838-5bf1-4£64-9170-381c08ecb7ee

Mio Sports Service*

6c722a80-5bf1-4£64-9170-381c08ec57ee

Mio Sport Message*

6c722a82-5bf1-4£64-9170-381c08ecb7ee

Mio Sport Message response™

6c722a83-5bf1-4£64-9170-381c08ec57ee

Mio Sensor*

6c722a84-5bf1-4f64-9170-381c08ec57ee

Mio record*

Table 5.5: Common UUIDs along three independent devices search in Mio GO (rows
with * were identified manually)

as the Mio’s backend server served.

Our extension to TaintDroid, as had been expected, tainted the downloaded ZIP archive
containing the firmware image to our faked device. As the file was downloaded and
written to the file system, TaintDroid propagated the taint information to the written
out archive. When we pulled this archive from our test phone and tried to unzip it,
we experienced, that it was password protected. Searching for the password in the
application is, of course, a valid method and in case of a not obfuscated application like

51

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
blio
nowledge

(]
I
rk

5. EVALUATION

UUID Meaning ‘
381CO08EC-57EE-0611-0601-02362E315055 | Mio Fuse DFU Service
381CO08EC-57EE-0611-0601-02312E315055 | Mio Link DFU Service
381CO08EC-57EE-0611-0601-02332E315055 | Mio Velo DFU Service

Table 5.6: Additional UUIDs which are never used in Mio GO

< Back Devices

No Heart
Rate Device

Known Devices

Pull to refresh list

No Kn Devices

Turn ony i connect

Discovered Devices

O MIO GLOBAL-ALPHA2 @
B8:27:EB23:FA9C

Figure 5.6: Faked Mio Alpha2 shows up in the original app

Mio Go it is most likely not that difficult, however, in other cases it might be very tedious.
But if we looked further in the logs of the application we could see that the application
had already unzipped the archive already, and written out its content to the file system.
And as the archive was tainted, this taint was propagated to the unzipped file as well.

As we started the firmware update process, the unzipped binary file was read byte by byte,
where these bytes got tainted as well, as they originated from a tainted file. From the
bytes read a checksum was computed. Next, the application enabled notifications for the
DFU Control point characteristic by writing to the Client Characteristic Configuration

52

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
blio
nowledge

(]
I
rk

5.2. Analysis Results

& % < @11:.00

<Back Firmware Update Edit

Device name: MIO GLOBAL-ALPHA2

Current Firmware:
Updating To: 01.05

ALPHA2 v1.05

An update is available for your device.

Please restart the update process if it does
not finish successfully.

If your device tracks daily activity, today's
totals will be reset.

Figure 5.7: Faked Mio Alpha2 firmware update activity in Mio GO

descriptor. This implied that the firmware upgrade was in some way event driven and
the server, in our case the Raspberry Pi, was expected to send some kind of a response
as soon as some work had been done. Right after the notification had been enabled, the
phone sent one byte (0x01) to the DFU Control Point, which corresponded with the
opcode for starting the firmware upgrade process. Additionally, four bytes (0x14 0xcO
0x01 0x00) were sent to the DFU Packet characteristic. These bytes represented the
size of the firmware update file in little endian format. As soon as the length had been
received by the Raspberry Pi, the application seemingly stopped doing anything. This
was a really good indication that our previous hypothesis was correct about the firmware
update being event driven. When we took a close look at the decompiled code of the
application, we could see that every change on the control point was parsed by the app,
and depending on the “opcode” sent by the peripheral, different actions got executed by
the application. In fact, had we written the following bytes 0x11 0x00 0x00 0x00
0x00 0x00 0x00 0x00, the application would have sent us the next 20 bytes of the
firmware update. 0x11 was the opcode to request new packages during firmware update,

53

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
blio
nowledge

(]
I
rk

5.

EvVALUATION

54

whereas the next four bytes indicated the number of received bytes, although seemingly
it had no importance other than showing the progress of the firmware update on the
GUI of the application. Even if receiving only forty bytes and sending back a number
higher than that it would not result in sending the next package from that offset, as it
was entirely handled by the application itself.

Unfortunately, apart from downloading and sending the firmware binary to the device,
the application did not do anything else. For the Mio Go application the implemented
framework helped to download and unpack the encrypted ZIP archive containing the
firmware binary and to set up a device which could be identified by the application as a
valid working device, which could support further analyses and reverse engineering the
protocol used by the application and real devices. This support was especially helpful
since this way both the device and the phone was controlled by the user, which in fact,
provide more freedom and opportunities for an analyst.

5.2.4 Polar

At the end of 2018 Polar discontinued the support for devices running Android KitKat
(4.4) and below, it means for our evaluation we used the last version (4.0.0) of Polar Flow
which was compatible with TaintDroid.

Right after the start of the application, even without logging in, some UUIDs were picked
up by the framework. Apart from some expected UUIDs the framework was able to
identify a service UUID which belonged to the Polar company, as they seemingly had
bought a license from the Bluetooth SIG. Moreover, some UUIDs had the same prefix
which strongly suggested that they were not randomly generated, which made them
significant for the analysis. The previously mentioned unidentified UUIDs can be seen in
Table 5.7.

UUID ‘

fb005¢c14-9815-d766-a528-32d54c£35530
fb005c16-02e7-£f387-1cad-8acd2d8df0c8
fb005¢c17-02e7-£387-1cad-8acd2d8df0c8
fb005¢c18-02e7-f387-1cad-8acd2d8df0c8
fb005¢c19-02e7-£f387-1cad-8acd2d8df0c8
fb005c51-02e7-£387-1cad-8acd2d8df0c8
fb005c52-02e7-£387-1cad-8acd2d8df0c8
fb005¢c53-02e7-£387-1cad-8acd2d8df0c8

Table 5.7: UUIDs with common prefix and in Polar Flow

In Table 5.7 apart from the first line every UUID only differs by one byte. This makes us
believe that the first row represents the service UUID of Polar devices and the remaining
UUIDs are characteristic UUIDs which belong to the previously mentioned service.

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
blio
nowledge

(]
I
rk

5.2. Analysis Results

Connecting a device to Polar Flow, however, worked differently as anybody would have
thought. According to the support page® of Polar, the new device should be registered
first through a Windows or a Mac PC, and then the connection can be initiated from the
device itself instead of from the phone. It means, that our framework will not be of any
help without an actual polar device, except for the already described findings.

There is, however, another Polar application, namely Polar Beat, as described in Section
5.1. Similarly to the Polar Flow, Polar Beat dropped support for Android KitKat and
below at the end of 2018. The last version, version 3.0.0, targeting older devices had a
bug which resulted in continuous crashes upon the start of the application. Due to this,
we had to revert to version 2.6.7 for this evaluation.

Through the three executions to search for a connectable device, without any faked
or real device near to the test phone, the framework was able to leak 75, 55 and 73
uniquely occurring UUIDs respectively. The reason for the lower number of UUIDs
for the second execution might have been that the application did not seem to have a
timeout for the device search, and we probably canceled the search earlier than for the
first and third executions. Correlating the UUIDs from the three executions resulted
in a list of 34 UUIDs, which occurred throughout all three executions. From the 34
common UUIDs 17 were found in the framework’s UUID-identification database. The
remaining 17 unidentified UUIDs had the fb005¢ prefix and the same postfix as most of
the previously mentioned UUIDs in the Polar Flow application. The remaining UUIDs,
except for one, showed similarity in their prefixes, but their postfixes differed completely,
which was atypical for UUIDs that belonged to a common service. The unidentified
UUIDs can be seen in Table 5.8.

Similarly to the hypothesis with the unidentified UUIDs in the Polar Flow application,
we suspected that the UUIDs with the prefix f6005¢ belonged together and they could
be grouped into two services, namely service fb005c¢20 and its characteristics fb005c21-
fb005c26 and service fb005c50 and its characteristics fb005¢51-fb005¢53. The UUID
[fffffde0 was found during independent evaluations with other applications as well, thus
we suspect this UUID was most likely picked up from the environment and thus was
irrelevant. As the framework also identified a UUID registered to the Polar company, it
was likely that instead of fb005¢50 the registered UUID was the service and it was also a
characteristic of that service. The same could apply for the UUIDs with 6217ff prefix.

Next we tried to set up the Raspberry Pi in a way that Polar Beat identified it as an
actual Polar H10 heart rate monitoring chest band. The first and obvious step was to
start the GATT server on the Raspberry Pi with only a heart rate monitoring device, and
it began advertising the heart rate monitoring service. As soon as the GATT server had
been started, Polar Beat found the device and could even be paired with it. After the
device had been paired, we could send out notifications on the heart rate measurement
characteristic (Figure 5.8a), which was then displayed in the app (Figure 5.8b).

Shttps://support.polar.com/en/support/M400/how_do_i_pair_my_polar m400_
with_the_polar_flow_app Accessed: 22.05.2019

55

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
blio
nowledge

(]
I
rk

5.

EvVALUATION

56

UUID

6217ff49-ac7b-547e-eecf-016a06970ba?d
6217ff4a-b07d-5deb-261e-2586752d942e
6217ff4b-fb31-1140-ad5a-a45545d7ecf3
6217ffd4c—-c8ec-blfb-1380-3ad986708e2d
6217ff4d-91bb-91d0-7e2a-7cd3bda8alf3
fb005¢c20-02e7-£387-1cad-8acd2d8df0c8
fb005c21-02e7-£387-1cad-8acd2d8df0c8
fb005c22-02e7-£387-1cad-8acd2d8df0c8
fb005¢c23-02e7-£387-1cad-8acd2d8df0c8
fb005¢c24-02e7-£387-1cad-8acd2d8df0c8
fb005¢c25-02e7-£387-1cad-8acd2d8df0c8
fb005¢c26-02e7-£387-1cad-8acd2d8df0c8
fb005¢c50-02e7-£f387-1cad-8acd2d8df0c8
fb005¢c51-02e7-£387-1cad-8acd2d8df0c8
fb005c52-02e7-£387-1cad-8acd2d8df0c8
fb005c53-02e7-£387-1cad-8acd2d8df0c8
ffff£fde0-0000-1000-8000-00805£f90b34fb

Table 5.8: Unidentified UUIDs in Polar Beat

Although it was good that we could connect a general heart rate monitoring device
to Polar Beat, but this was supported out of the box, and our goal was to trigger a
firmware update event, and so acquire the firmware files for the polar devices for further
analyses. To achieve this we used the previously found UUIDs and searched for them
in the disassembled APK to gather information about the grouping of the services and
the characteristics and possibly about the meaning of these UUIDs. Table 5.9 shows the
results of this search. As seemingly fffffde0 was the only false positive UUID, we had a
false discovery rate of less than 1%.

As soon as we had included the Polar device control service and its characteristics on the
Raspberry Pi, the application showed that it had found an actual Polar device, and the
Polar specific features are activated, see Figure 5.9a. In comparison the same features
were not present when the device in use was not a Polar device, see Figure 5.9b.

Although the Raspberry Pi was recognized as a Polar H10, neither could we find the
device on the profile page of our test account nor was every Polar specific features
activated, like a fitness test. Furthermore, the application did not send a firmware update
notification. Had we started the fitness test feature, the application would have showed a
notification, that in order to use this feature we were required to pair the device to the
phone. To do so we reconfigured the Raspberry Pi to be bondable and also not to require
a PIN or a physical action for bonding. After restarting Polar Beat and re-initiating
the pairing process, the Raspberry Pi received BLE traffic from the phone. As Figure

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
lio
nowledge

b

i
r

5.2. Analysis Results

% TJdHETN
P AR

06063

Running

Latest sessions

No events

(b) Displaying the heart rate measurements

Figure 5.8: Polar Beat shows the heart rate measurements sent out by the Raspberry Pi

5.10 shows the application sets some notification flags and then writes some bytes to
one of the Polar control characteristics. After the bytes had been written, the app went
dormant which suggested that it was waiting for some kind of an answer.

Unfortunately, at this point our analysis got stuck, as we were not able to construct a
valid response which would have been accepted by the application. Had one sent the
same request to an original Polar H10, it would send back around 140 bytes with various

o7

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
blio
nowledge

(]
I
rk

5.

EvVALUATION

58

UUID

Meaning

6217ff49-ac7b-547e-eecf-016a06970ba?

HT7 legacy settings

6217ff4a-b07d-5deb-261e-2586752d942e

HT7 legacy settings

6217f£f4b-fb31-1140-ad5a-a45545d7ecf3

PFC Service

6217ff4dc—cB8ec-blfb-1380-3ad986708e2d

PFC Characteristic

6217£f£4d-91bb-91d0-7e2a-7cd3bda8alf3

PFC Characteristic

fb005¢c20-02e7-£387-1cad-8acd2d8d£f0c8

PSD Service

fb005c21-02e7-£387-1cad-8acd2d8d£f0c8

PSD Characteristic

fb005c22-02e7-£387-1cad-8acd2d8d£f0c8

PSD Characteristic

fb005¢c23-02e7-£387-1cad-8acd2d8d£f0c8

PSD Characteristic

fb005c24-02e7-£387-1cad-8acd2d8df0c8

PSD Characteristic

fb005c25-02e7-£387-1cad-8acd2d8df0c8

PSD Characteristic

fb005c26-02e7-£387-1cad—-8acd2d8df0c8

PSD Characteristic

0000feee—-0000-1000-8000-00805£9034fDb

Polar device control

fb005c50-02e7-£387-1cad-8acd2d8df0c8

Device control char.

fb005c51-02e7-£387-1cad-8acd2d8d£f0c8

Device control char.

fb005c52-02e7-£387-1cad-8acd2d8d£f0c8

Device control char.

fb005¢c53-02e7-£387-1cad-8acd2d8df0c8

Device control char.

Table 5.9: Custom UUIDs in Polar Beat

device specific information, like the model number, the model color, or the bootloader
version. Among other things the device ID was also included, but even if we had been
able to adapt the information to our chosen device ID, the app would not have been
able to finish the pairing. According to the decompiled application, after receiving and
parsing the response, Polar Beat would have sent the device information along with the
user information to the backend server to presumably connect the device to the user, the
pairing process would have be done.

Lastly, instead of using our Raspberry Pi to act as a real Polar device, we were going to
start the evaluation with a real Polar H10 heart rate monitor.

Although we were able to pair the older version of Polar Beat to a newer device, namely
a Polar H10 heart rate monitor, see Figure 5.11a, we were not able to initiate a firmware
update, even though there was a newer firmware available which we had confirmed with
another phone running the most current version of Polar Beat, see Figure 5.11b.

One possible reason for this might be that the API, on the backend through which the
application could query if newer firmware is available, has been updated. And although
the older version of the API can still be reached, no new information is served, at least
not for devices which were announced after launching the new API.

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
blio
nowledge

(]
I
rk

5.2. Analysis Results

o

RUNNING MAP

Distance Calories

0.00km Okcal

Pace Heart rate

":"% Obpm

Duration

00:00™

(a) Polar specific feature is activated

=N T

RUNNING MAP

Distance Calories

0.00km Okcal

Pace Heart rate

":"% 1 7bpm

Duration

00:00'

Use a Polar heart rate sensor for
better training experience!

(b) Polar specific feature is inactivated

Figure 5.9: Polar specific features are activated only in the presence of a polar device

5.2.5 Misfit

For this evaluation we used the most up-to-date version of Misfit as of writing this thesis,

which was version 2.19.2.

After logging into our test account we were immediately greeted with a device selection
page, which claimed that it could automatically identify nearby Misfit devices. This
was an indication that the application listened to active advertisements, and most likely
looked for specific advertised UUIDs. To find out which were the most likely candidates,
we started our evaluation with three independent executions during which the leak
UUIDs were collected. During these three executions 7, 6 and 6 unique UUIDs were
found respectively, from which 2 were found in all three of them. These common UUIDs

are shown in Table 5.10.

! UUID

0b73b76a-cd65-4dc2-9585-aaa213320858

3dda0001-957£f-7d4a-34a6-74696673696d

Table 5.10: Common UUIDs throughout three analysis executions in Misfit

As these UUIDs were not issued by the Bluetooth SIG the Raspberry Pi, and as a matter of

59

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
blio
nowledge

(]
I
rk

5.

EvVALUATION

60

Figure 5.10: GATT Server receives traffic after Polar Beat bonds to the Raspberry Pi

fact every Bluetooth Low Energy device below Bluetooth 5.0, could only advertise one such
UUID at a time. The reason for this is that the size of the advertising package is limited
to 31 bytes, and such non-standard UUIDs, or more precisely UUIDs which do not share
the same postfix as the base UUID (00000000-0000-1000-8000-00805£90b34£Db)
defined by the Bluetooth SIG, cannot be shortened to their 16-bit format. It means the
whole 128-bit UUID must be advertised, which alone needs 18 bytes (16 bytes UUID, 1
byte field identifier and 1 byte size). Furthermore, we must set 3 more bytes (1 byte field
identifier, 1 byte size and 1 byte data) for the connection flags data type, which cannot
be omitted, as we explicitly set the BR/EDR Not Supported flag. The reason for this is
discussed later in Section 6.2.4.

To contradict our hypothesis, that the manufacturer data is not relevant during adver-
tisements, the Misfit application uses the manufacturer’s specific field. Tracing the usage
of this field makes it clear that the serial number of the device is stored in that field,
and it is expected to be at least ten bytes long. Adding the new manufacturer’s specific
field to the advertisement package requires 14 bytes (10 bytes data, 1 byte size, 1byte
field identifier and 2 additional bytes used as a company identifier code). This, however,
would not fit into the advertisement package. Fortunately, we can specify the content of
the scan response package which is only sent back to the client if the server were scanned
actively. It gives us 31 additional bytes to use.

To summarize, we set the advertisement to advertise the above mentioned UUID and the
BLE flags and we provide both the device’s name and the serial number through the
scan response package.

Starting the scanning process in the application lead to some SSL exceptions due to
probably unverifiable hosts. When we took a close look inside the application we could
see that it tried to upload some files to https://data.misfit.com. Tracing back

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
lio
nowledge

b

i
r

5.3. Result correlation

O 0 ¥4 W2%

(]
< HR sensor

Found sensors

Polar H10 Battery
ID:439FB525 Full

Update available
Update now?

Firmware version: 2.1.9
Visibility 0o o
GymLink 0

There's an update available for your Polar H10
(439FB525)

Updating may take few minutes.

What's new?

2 receiving BLE devices 0

REMOVE PAIRING

UPDATE

LATER

4 () |

(a) Polar H10 is paired to an older version (b) Polar H10 firmware update available
of Polar Beat on TaintDroid through newer version of Polar Beat

Figure 5.11: Availability of a firmware update depends on the version of the application

from which path the file had been read lead us to several Base64-encoded files, which
after decoding seemed to be encrypted. Although the encryption password is randomly
generated, it was stored in the shared preferences of the app which was an unencrypted
XML file. Decryption of the found files gave back the scan results in JSON-format. A
shortened version of one of these files can be seen in the appendix in Listing 8.1

After sending the same request to the previously found host with the unencrypted payload
from outside of the app, the server sent back a JSON with a session ID and a message
stating that the executed action had been successful. Due to time constraints at this
point, we discontinued our evaluation with the Misfit application, and we were going to
analyze what had caused the problem with the SSL handshake in detail.

5.3 Result correlation

Table 5.11 shows the summarized results of the tests we conducted on the applications of
the sample set.

61

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
blio
nowledge

(]
I
rk

5. EVALUATION
Application name Feature test
D D
2, . Yy, "%1?
g, %z, oty
1’@/ p @Ct QJI‘ Q[ve Q[«G
% 7, GVQJI Q‘{‘@ 1%4- fé& (1'03‘» (1.@
W, L. A 5% ey Uy
A 0[GSGQ Q]GV' QI@I/' 6’[,1. @L.].

78 s Co (e e Ce) Ce)
MIFit [] o [] [J © - -
Fitbit [([J [] [] © - [
MioGo [] o o [J o [) X
Polar [] o [] [J © - -
Misfit () [) - X X X

62

@=works completely; ©=partially works; -=doesn’t work; X=not applicable;

Table 5.11: Test results for each application in the sample set

As we can see in every application we were able to leak and identify the UUIDs which
were relevant for the applications to communicate with the specific devices. With the
help of these UUIDs we were able to configure a Bluetooth Low Energy server for each
application which was recognized as if it were a device which was manufactured by the
app manufacturer. Except for one application, the falsified device was connected and the
pairing process has been initiated. As we could verify it with the help of the Android
logs, the last application was not able to connect to its backend server, which caused the
problems during the connection.

Although connecting to a device was mostly not a problem, pairing the device to the user
account worked only partially for most of the applications in the sample set. The reasons
for this varied from requiring some sort of cryptographic challenge response for which we
did not have the key, or the application arrived in a state that it thought the pairing had
been successful, however, the pairing request either never arrived at the backend, or it
was declined. This resulted in a state where the application temporarily showed that the
pairing was successful, but after restarting or refreshing the application, it pulled the
data from the backend and reverted to a state where the pairing never happened.

Initiating a firmware update and dumping the packages worked only for the Mio Go
application, which was the only application in our sample set, where the pairing was
completely successful. For the remaining applications due to an error at the previous
steps, the device was not connected to the user account, and thus never queried if there
were new firmwares available.

For the last test we required working physical devices which we only had three (Fitbit,
MI Fit and Polar) out of the five sample applications, thus for the remaining two (Misfit
and Mio Go) this test was not applicable. Dumping the firmware with the help of a
real device worked only with Fitbit, from which only the first few thousand bytes were
dumped due to a memory corruption bug. For MI Fit this last test did not work, as

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

w 3ibliothek,
Your knowledge hu

5.3. Result correlation

opposed to our hypothesis - that is the firmware updates would be downloaded from the
Internet - the firmware updates were distributed as application assets, thus they were
not tainted and our firmware did not recognize them as relevant traffic. And lastly, Polar
most likely changed the backend API and although we verified it with a newer version
of Polar Beat, that an update existed for our device, the old version of the application
could not find this.

63

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

“}auioljqig usipn NL e ud ul s|ge[rene si sisayl SIUl JO UOISIaA feulBblio pasoidde ay < any a8pajmoun Jnoa
“regBnpian 3ayiolgig Usip NL Jap ue 1si liaglewoldiq Jasalp uoisiaAfeulBuO aponipab ausiqoidde aiq v_ﬂ_-_u.o__n__m

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
blio
nowledge

(]
I
rk

CHAPTER

Discussion and Results

In the following sections we compare our framework to similar existing solutions, then
we discuss the limitations and problems we encountered during the implementation, and
finally we discuss the results of the system evaluation.

6.1 Comparison to Existing Solutions

In this section we are going to compare the implemented framework to currently existing
solutions. Nowadays only two methods are comparable to our solution, namely IoTFuzzer
[40] implemented by Chen et. al. and manual reversing.

6.1.1 IoTFuzzer

IoTFuzzer is a framework for automated black box protocol-guided fuzzing of IoT device
firmwares. Similarly to our intuition Chen et. al. found that a big portion of modern
embedded devices are controlled by the user’s smartphone. As extracting a firmware and
running it in an emulator can be very cumbersome, they proposed that the information
could be gathered from the smartphone application and later this information could
be used to fuzz the firmware on the device without the need to extract it. One of the
main differences between our framework and IoTFuzzer is that our framework focuses on
Bluetooth Low Energy based protocols whereas IoTFuzzer focuses on devices which use
WiFi to connect to the phone.

IoTFuzzer first starts a Ul analysis in order to identify actions which would trigger
sending network packages. As our system is designed in a human-assisted manner, we do
not prepare such an analysis and let the user trigger the needed actions.

Similarly to our approach IoTFuzzer uses a modified version of TaintDroid. Unlike
our implementation, IoTFuzzer prevents the propagation of taints in some cases like

65

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
blio
nowledge

(]
I
rk

6.

Di1ScuUSSION AND RESULTS

66

encryption, as their goal is to mutate the output before the encryption happens, which
means they would not gather any more useful information if the encrypted messages got
tainted. But just like us, IoTFuzzer extended both the taint sources and the sinks to
serve their purpose.

After running the data-flow analysis the steps of the two frameworks differ extensively.
IoTFuzzer, being a fuzzer, begins to mutate the identified protocol fields during runtime,
and at the same time the response of the device is monitored, either with a heartbeat
mechanism (for UDP-based communication) or by identifying the communication inter-
ruption between phone and device (TCP-based communication). On the other hand, we
try to reach a point where the application thinks it should push the new firmware image
to the device, which point we intercept the communication, dump the firmware and also
try to simulate the presence of a real device to achieve the previous goal only without
the need of a real device.

6.1.2 Manual Reversing

Section 2.4 illustrates the general approach during manual reverse engineering. The key
difference between manual reversing and our presented solution is the automation of
reconnaissance, the accumulation and the presentation of information.

In detail, the framework collects and identifies the used Bluetooth UUIDs and sorts out
the randomly generated ones. Additionally, if data is downloaded from the Internet and
is sent to a Bluetooth device, this data will be dumped by the framework, whereas in
case of manual reversing this task would be relatively cumbersome if the file is never
written out to disk or if it is deleted after usage.

Furthermore, the framework includes components that try to emulate the presence of real
Bluetooth devices, which possibly enables the analysis of the used protocol and dumping
the firmware even if the real device is unavailable for the person conducting the analysis.

6.2 Limitations

This section outlines the problems which were encountered during the implementation
of the system, as well as their attempted solutions, and the limitations the unsolved
problems caused.

6.2.1 Tainting in Android

Two dynamic tainting frameworks for Android have been analyzed to build upon, Taint-
Droid and TaintART. As it was mentioned before the runtime system for Android has
been changed with Android 5.0 from Dalvik to ART. TaintART is written for this newer
environment and currently supports Android 5.0 and Android 6.0. On the other hand
TaintDroid aims at supporting the older environment. As of this writing TaintDroid
supports Android 2.1, 2.3, 4.1 and 4.3.

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
blio
nowledge

(]
I
rk

6.2. Limitations

Although TaintART supports the newest versions of Android, and thus more recent
applications can be analyzed, unfortunately, it lacks examples how one could interact
with the tainting system. However, the developers of TaintDroid published not only the
code for the tainting system, but also how they instrumented several parts of the system,
which was a good source of inspiration for extending it.

6.2.2 Build System Limitations

Generally the Android build system only supports building Android for a real device
or for the Android Emulator. As the aim of this project is to track Bluetooth traffic
leaving and arriving Android, the emulator is a nonviable option, as it lacks hardware
virtualization for several components, with Bluetooth among them. [77] Without the
virtualized hardware the complete Bluetooth functions turned off in the emulator.

The other option, building for a real device, has its own limitations as well. The person
who uses the system has to have the hardware, onto which the built ROM has to be
flashed, and the appropriate version of the device drivers needs to be found on the
Internet and compiled into the ROM as well.

6.2.3 Android in a VM

To overcome the limitations of Android build system, the authors planned to start
Android inside a virtual machine (VM). Although the build system has a target for
VirtualBox-images, the built images were not bootable. More precisely, the bootloader
was unable to start or could not load its later stages. Unfortunately, there was no way
to get more detailed output from the system, and it also seemed to be unresponsive to
inputs. Furthermore, according to forum posts this target seems to be unmaintained and
is advised not to be used.

There is, however, a project called Android-x86, its goal is to produce bootable Android
ISOs. As the project is built on the x86 architecture inside the VM, some changes were
imminent. It provides the ISOs and the sources to almost all released versions of Android.
Their implementation for JellyBean is based on Android 4.3.1, whereas TaintDroid uses
Android 4.3.0. Although one would think the difference is only a minor release, combining
the sources of TaintDroid and Android-x86 it resulted in several compiler errors. To
address this issue TaintDroid needed to be updated to the codebase of Android 4.3.1.

After updating to Android 4.3.1 TaintDroid was able to boot inside a VM, however, some
issues with Bluetooth have been found. Even though BR/EDR was working as expected,
the BLE subsystem was somehow not working. As it turned out it was a known issue
and was fixed in the Android-x86 with Android 4.4.4 as they changed their Bluetooth
driver to BlueZ. As a solution, TaintDroid needed to be updated again.

BlueZ Low Energy, among other options, features the possibility to use encryption during
transmission. To minimize the codebase and to reuse code, BlueZ neither implements the
cryptographic functions itself nor uses libraries built for this, but accesses the crypto API

67

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
blio
nowledge

(]
I
rk

6.

Di1ScuUSSION AND RESULTS

68

of the Linux kernel. The communication with the API and a process in the userspace
work with specialized sockets. For example: if one would like to encrypt something with
AES-CBC, s/he would create a socket with type skcipher and name cbc (aes). The
former would activate the symmetric crypto algorithms and the latter would activate
the specific algorithm if it is available. After binding to this socket and setting the key,
one could encrypt and decrypt data by using the sendmsg () and recv () system calls
known from network sockets.

Albeit the configuration of the kernel allowed accessing the crypto API from userspace,
and the used algorithms were correctly loaded as modules, the API was not reachable
for BlueZ therefore the BLE subsystem could not be initialized. Despite several kernel
and driver replacements the problem still existed, which was solved in Android-x86 with
Android 5.0.

Apart from having problems with Bluetooth, the Android VMs were unreliable, as they
crashed very often without having a real cause. The authors found no indication for
these crashes either in the logs of the VM itself or in the logs of Android.

As a conclusion, the authors decided to flash TaintDroid onto a real device instead of
using a VM despite all the aforementioned inconveniences.

6.2.4 Issues with the Generic GATT Server

During the implementations of the GATT server on the Raspberry Pi, the authors
encountered two main issues.

The first issue was that before Android 5.0 during the initial connection there was no
option to specify if BR/EDR or BLE should be used. This behavior of Android resulted
that the particular Broadcom Chip inside the test phone tried to connect in dual mode.
As the advertiser of the services (a Raspberry Pi) offered both BR/EDR and BLE, the
chip chose the one which could be initialized faster. Through this the situation arose in
which the test-application could not communicate through BLE reliably and the initial
tests failed. The solution was to turn off Bluetooth Classic on the advertiser.

The second issue was that although the services and characteristics were configured
correctly and the advertisement worked well right after the connection was established by
the applications, the connection was aborted by the client. Later we found, that although
the BLE objects were in place no handler method was bound to them and thus the server
could not send back the expected responses as the client tried to interact with it. This,
of course, resulted in an exception which was handled by aborting the connection. Its
solution was to implement some generic callback methods for the server, which sent back
the minimal required packages.

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
blio
nowledge

(]
I
rk

6.3. Discussion

6.3 Discussion

Nowadays a lot of small embedded devices, also called as the Internet of Things (IoT) are
brought to the market. A common feature of these devices, regardless of their application,
is that they are all equipped with some form of communication interface, like WiFi or
Bluetooth. Bluetooth Low Energy (BLE) is a very popular choice for these devices, since
the name suggests it requires minimal energy input, which results in a longer battery life.

The main issue with BLE is that devices cannot directly communicate with the backend
system where the data aggregation and evaluation is realized. To overcome this issue, a
popular choice of manufacturers is to use the user’s smartphone to act as a middle man
between the backend servers and the IoT device. It means the application on the phone
can be a rich source of information even if the goal at the end is to analyze the firmware
of the device.

One of our main goals was to make it possible to extract the firmware of the IoT-
device, if possible in its decrypted form, from the application with minimal investment of
cumbersome reverse engineering of obfuscated Android applications. Our other objective
was to try to create a generic re-configurable BLE device which could act as a real device
and can convince the application on the phone, that it is a real device, and this way
provide an opportunity to analyze the protocol without the need to possess the real
device.

To fake a Bluetooth Low Energy device a list of the required BLE service and characteristic
UUIDs were needed, since the app on the phone expected them to be present. Our
framework was able to extract this information from every application we selected to
test the framework with, without disabling the application itself. With the help of the
information provided by our framework we were able to create a device configuration for
four out of five applications which lead to at least a partial recognition of our general
purpose BLE device as an actual fitness tracker. By partial recognition we mean that
the application initiated a connection and sent data to the selected characteristics, and
reacted as if we had written to these selected characteristics. In case of one of the
test applications we were able to bring the application into a state where it started the
firmware update process and sent the firmware image to our “rouge” device.

The implication of these results is that one can harvest the configuration for a valid BLE
fitness tracker with only minimal manual labor without the need to possess an actual
tracker.

Out of the three real devices we had to run evaluations, we only managed to extract
parts of a firmware for just one device. For Fitbit we managed to dump the firmware
update traffic during transmission, however, due to a bug either in our extensions or
in TaintDroid the transmission got interrupted, but nonetheless we were able to show
that our system works. For the remaining two devices, the reason for not being able to
dump the firmware files were distinct. As we mentioned, MI Fit actually releases the
firmware update files as part of the application and thus they are written on the file

69

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

w Sibliothek,
Your knowledge hub

6.

Di1ScuUSSION AND RESULTS

70

system during the installation which means, that they are never tainted. However, the
question arises whether it would still be true if the app were installed through Google
Play instead of through the Android debug interface (adb), thus being downloaded from
the Internet and thus being tainted. This will be evaluated in the future. As for Polar
Beat, the application has never shown any available update despite the fact that there
was one as we confirmed it with a newer phone. We suspect however, that our method
would have worked if the backend had answered the query correctly.

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
blio
nowledge

(]
I
rk

CHAPTER

Summary and Future Work

This thesis presents a new analysis framework which can be used to extract Bluetooth
Low Energy related information from an Android application. This information is then
used in the second part of the framework which is a generic BLE server with an interface
which can be used to reconfigure the server in an uncomplicated manner. The generic
BLE server can be configured to include any number of services and characteristics, which
makes it possible to simulate the presence of a real BLE device to which the application
can connect on the smartphone. Through this both the application and the device are
under control of the analyst, which provides a straightforward way to analyze the protocol
used to communicate between phone and device. Furthermore the presented framework
writes out any data which was downloaded from the Internet and is sent out through
the Bluetooth interface providing a new method to extract the firmware of the device
without the need of complicated firmware extraction methods.

The implemented framework was tested with three real life fitness tracking applications.
With the extracted information for the BLE device, we were able to infer the needed
configuration and to configure the generic BLE server in a way the application recognized
it as its own device. Four of the applications were able to connect to the configured
device, and the pairing to the test account worked partially for these four applications as
well. In one case we were able to dump the firmware update with the use of the generic
BLE server.

The current system has still potential for improvements, as several tasks are left to be
executed manually by the user conducting the analysis. One such task would be to
automatically identify callback methods, which handle the asynchronous communication
between the phone and the device. Identifying these methods is crucial in the BLE
analysis, as these methods represent the communication logic of the application.

If one were more interested in analyzing the protocol spoken by the phone and the device,
the system should be extended by hooking into the methods which are responsible for

71

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
blio
nowledge

(]
|
rk

7. SUMMARY AND FUTURE WORK

72

reading and writing BLE characteristics. This would most likely mean that a new taint
source would have to be defined, incoming traffic through the Bluetooth interface, so the
analysis could reveal what happens with the answer provided by the device. Additional
warnings could be printed as well with trace logs, to further narrow the search space
inside the application in the hunt for finding the classes responsible for handling the BLE
communication.

In case of faking the device, it would make sense to extend a system in a way, that it
could autonomously try to guess valid responses expected by the client to arrive. This
extension would eliminate the need to reverse engineer the protocol used by the phone
and the real device, thus it would save time.

The most urgent task regarding future improvements would be to port the system to an
ART based tainting framework. Android 4.4 is less and less supported by newer versions
of applications, which both delivers potentially biased results as newer versions of the
application might use another protocol and potentially prevents analyzing new devices,
as they might not be supported by the older version of the application.

Although Enck et. al. conducted a through performance and memory overhead analysis
of TaintDroid [31], due to additional taint sources, sinks and tags we plan to rerun their
tests in order to verify, if our changes caused any difference in performance or memory
usage.

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
lio
nowledge

b

i
r

© 0 N O Ut ke W N

e e T e T
o I B e S L i e

19
20
21
22
23
24
25
26

CHAPTER

Appendix

"device_model": "LGE_AOSP on HammerHead",
"platform": "Android",
"end_at": 1557306854,
"events": |
{
"requestStarted": {
"value": {
"callback": "21be8548"
by
"timestamp": 1557306834.675
I
"event": "startScanning"
}l
{
"responseFinished": {
"value": {
"data": "02010611066D6973666974A6344A7D7F950100
DA3DODFFDF00423030525A303030303106085368696E
6500™,

"deviceName": "Shine",
"serialNumber": "BOORZOOOOL1",
"address": "B8:27:EB:23:FA:9C"

by
"timestamp": 1557306835.125,
"result": O

bo

"event": "scanResult"

73

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

8. APPENDIX

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
lio
nowledge

b

i
r

74

27 b,

28 {

29 "responseFinished": {

30 "value": {

31 "data": "1AFF4C00021550765CB7D9EA4E2199A4FA8796
13A49231076EA6CEO0000000000000000000000000000
00™,

32 "address": "B0:52:16:D3:4B:B6"

33 b

34 "timestamp": 1557306835.19,

35 "result": O

36 bo

37 "event": "scanResult"

38 br

39 {

40 "requestStarted": {

41 "value": {

42 "callback": "21beB8548"

43 bo

44 "timestamp": 1557306854.709

45 b

46 "event": "stopScanning"

47 }

48 1y

49 "sdk_version": "2.6.l-misfit-release",

50 "start_at": 1557306834,

51 "user_id": "Sccbe2dcel4b08512a245db43",

52 "system_version": "4.4.4"

53

Listing 8.1: Decrypted JSON used by Misfit

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
lio
nowledge

b

i
r

2.1
2.2
2.3
24
2.5
2.6

3.1
3.2
3.3
3.4

4.1

5.1
5.2
5.3
5.4
9.5
5.6
5.7
5.8
5.9

List of Figures

Bluetooth-stack [7]
Possible controller configurations[7] Lo L.
Worldwide mobile OS market share [12]
Android-stack [13]
Layers of the Hardware Abstraction Layer [16]
Output of apktool

TaintDroid propagation rules [31]
NDroid architecture [76] o
NDroid propagation rules [76] L.
TaintART propagation rules [31]

Architecture of the implemented system

First package after connection.
GATT-Server disconnection during Fitbit simulation
GATT-Server receives the first package from Fitbit
Firmware update progress on a Fitbit One
Entropy of the Fitbit firmware image
Faked Mio Alpha2 shows up in the originalapp
Faked Mio Alpha2 firmware update activity in Mio GO
Polar Beat shows the heart rate measurements sent out by the Raspberry Pi
Polar specific features are activated only in the presence of a polar device

5.10 GATT Server receives traffic after Polar Beat bonds to the Raspberry Pi
5.11 Availability of a firmware update depends on the version of the application

29
29
30
30

37

42
47
47
48
49
52
53
o7
59
60
61

75

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

“}auioljqig usipn NL e ud ul s|ge[rene si sisayl SIUl JO UOISIaA feulBblio pasoidde ay < any a8pajmoun Jnoa
“regBnpian 3ayiolgig Usip NL Jap ue 1si liaglewoldiq Jasalp uoisiaAfeulBuO aponipab ausiqoidde aiq v_ﬂ_-_u.o__n__m

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
lio
nowledge

b

i
r

5.1

5.2

5.3

5.4
5.5

5.6
5.7
5.8
5.9

List of Tables

Similar UUIDs throughout three analysis executions and their meaning (entries
with * were categorized manually)
Similar UUIDs throughout three analysis executions and their meaning for
the Fitbit application
UUIDs which were found in three executions of the Fitbit application although
they were categorized manually
Unknown UUIDs with high similarity found during the execution of Mio GO
Common UUIDs along three independent devices search in Mio GO (rows
with * were identified manually)
Additional UUIDs which are never used in Mio GO
UUIDs with common prefix and in Polar Flow
Unidentified UUIDs in Polar Beat
Custom UUIDs in Polar Beat

5.10 Common UUIDs throughout three analysis executions in Misfit
5.11 Test results for each application in the sampleset

42

45

46
50

51
52
54
56
o8
59
62

7

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

“}auioljqig usipn NL e ud ul s|ge[rene si sisayl SIUl JO UOISIaA feulBblio pasoidde ay < any a8pajmoun Jnoa
“regBnpian 3ayiolgig Usip NL Jap ue 1si liaglewoldiq Jasalp uoisiaAfeulBuO aponipab ausiqoidde aiq v_ﬂ_-_u.o__n__m

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

w 3ibliothek,
Your knowledge hu

21
4.1
4.2
4.3
5.1
8.1

List of Listings

Search for an application on the phone

UUID regex

Don’t taint traffic for specific domains
Leaking UUIDs as soon as they are created
Pattern to access a specific characteristic.

Decrypted JSON used by Misfit

18
31
33
34
42
73

79

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

“}auioljqig usipn NL e ud ul s|ge[rene si sisayl SIUl JO UOISIaA feulBblio pasoidde ay < any a8pajmoun Jnoa
“regBnpian 3ayiolgig Usip NL Jap ue 1si liaglewoldiq Jasalp uoisiaAfeulBuO aponipab ausiqoidde aiq v_ﬂ_-_u.o__n__m

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
lio
nowledge

b

i
r

[10]

Bibliography

Statista, “Internet of things (iot) connected devices installed base worldwide
from 2015 to 2025 (in billions),” https://www.statista.com/statistics/471264/
iot-number-of-connected-devices-worldwide/, online; Accessed: 04.03.2019.

C. W. Axelrod, “Enforcing security, safety and privacy for the internet of things,” in
Systems, Applications and Technology Conference (LISAT), 2015 IEEE Long Island.
IEEE, 2015, pp. 1-6.

Osterreichischer Nationalrat, “Medizinproduktegesetz,” 1996, version 25.01.2018.

U.S. Food & Drug Administration, “Firmware update to address cybersecurity
vulnerabilities identified in abbott’s (formerly st. jude medical’s) implantable cardiac
pacemakers: Fda safety communication,” https://www.fda.gov/MedicalDevices/
Safety /AlertsandNotices/ucm573669.htm, online; Accessed: 02.11.2017.

J. Sametinger, J. Rozenblit, R. Lysecky, and P. Ott, “Security challenges for medical
devices,” Commun. ACM, vol. 58, no. 4, pp. 74-82, Mar. 2015. [Online]. Available:
http://doi.acm.org/10.1145/2667218

Bluetooth SIG. (2018) Bluetooth market update 2018. Accessed: 2019-01-28.
[Online]. Available: https://www.bluetooth.com/markets/market-report

——, “Core specification v5.0,” 2018, accessed: 2019-01-18. [Online|. Available:
https://www.bluetooth.com /specifications/bluetooth-core-specification

Silicon labs, “Ugl03.14: Bluetooth le fundamentals,” accessed: 2019-01-
18. [Online]. Available: https://www.silabs.com/documents/login/user-guides/
ug103-14-fundamentals-ble.pdf

Bluetooth SIG Medical Working Group, “Health thermometer profile v10.0,” 2011,
accessed: 2019-01-18. [Online]. Available: https://www.bluetooth.org/docman/
handlers/downloaddoc.ashx?doc_ id=238687

Bluetooth SIG GPA Working Group, “Device information service v11.0,” 2011,
accessed: 2019-01-18. [Online]. Available: https://www.bluetooth.org/docman/
handlers/downloaddoc.ashx?doc_ id=244369

81

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
10
edge

b

now!

i
r

[11]

[24]

82

Bluetooth SIG Medical Working Group, “Health thermometer service v10.0,” 2011,
accessed: 2019-01-18. [Online]. Available: https://www.bluetooth.org/docman/
handlers/downloaddoc.ashx?doc_ id=238688

Statcounter, “Mobile operation system market share worldwide,” accessed:
2019-05-17. [Online|. Available: http://gs.statcounter.com/os-market-share/mobile/
worldwide

Google, “The android source code,” accessed: 2019-01-18. [Online]. Available:
https://source.android.com/images/android__framework__details.png

F. Maker and Y.-H. Chan, “A survey on android vs. linux,” University of California,
pp. 1-10, 2009.

Google, “Selinux concepts,” accessed: 2019-01-18. [Online|. Available: https:
/ /source.android.com /security /selinux /concepts

K. Yaghmour, Embedded Android: Porting, Extending, and Customizing. " O’Reilly
Media, Inc.", 2013.

W. Stallings, Operating systems: internals and design principles. Boston: Prentice
Hall,, 2012.

D. Bornstein, “Dalvik vim internals,” accessed: 2019-01-
18. [Online]. Available: http://fiona.dmes.pl/podyplomowe _smtm/smob3/
Presentation-Of-Dalvik- VM-Internals.pdf

Google, “Art and dalvik,” accessed: 2019-01-18. [Online|. Available: https:
//source.android.com/devices/tech/dalvik

——, “Application fundamentals,” accessed: 2019-05-24. [Online]. Available:
https://developer.android.com/guide /components/fundamentals

C. Cadar, D. Dunbar, D. R. Engler et al., “Klee: Unassisted and automatic generation
of high-coverage tests for complex systems programs.” in OSDI, vol. 8, 2008, pp.
209-224.

J. Clause, W. Li, and A. Orso, “Dytan: a generic dynamic taint analysis framework,”
in Proceedings of the 2007 international symposium on Software testing and analysis.
ACM, 2007, pp. 196-206.

E. J. Schwartz, T. Avgerinos, and D. Brumley, “All you ever wanted to know about
dynamic taint analysis and forward symbolic execution (but might have been afraid
to ask),” in Security and privacy (SP), 2010 IEEE symposium on. IEEE, 2010, pp.
317-331.

A. C. Myers and A. C. Myers, “Jflow: Practical mostly-static information flow con-
trol,” in Proceedings of the 26th ACM SIGPLAN-SIGACT symposium on Principles
of programming languages. ACM, 1999, pp. 228-241.

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
lio
nowledge

b

i
r

[25]

[26]

[27]

[32]

33]

[34]

[35]

E. Bodden, “Inter-procedural data-flow analysis with ifds/ide and soot,” in Proceed-
ings of the ACM SIGPLAN International Workshop on State of the Art in Java
Program analysis. ACM, 2012, pp. 3-8.

Z. Yang and M. Yang, “Leakminer: Detect information leakage on android with
static taint analysis,” in Software Engineering (WCSE), 2012 Third World Congress
on. IEEE, 2012, pp. 101-104.

S. Arzt, S. Rasthofer, C. Fritz, E. Bodden, A. Bartel, J. Klein, Y. Le Traon,
D. Octeau, and P. McDaniel, “Flowdroid: Precise context, flow, field, object-sensitive
and lifecycle-aware taint analysis for android apps,” Acm Sigplan Notices, vol. 49,
no. 6, pp. 259-269, 2014.

F. Pottier and V. Simonet, “Information flow inference for ml,” ACM Transactions
on Programming Languages and Systems (TOPLAS), vol. 25, no. 1, pp. 117-158,
2003.

W. Klieber, L. Flynn, A. Bhosale, L. Jia, and L. Bauer, “Android taint flow analysis
for app sets,” in Proceedings of the 3rd ACM SIGPLAN International Workshop on
the State of the Art in Java Program Analysis. ACM, 2014, pp. 1-6.

C. Fritz, S. Arzt, S. Rasthofer, E. Bodden, A. Bartel, J. Klein, Y. Le Traon,
D. Octeau, and P. McDaniel, “Highly precise taint analysis for android applications,”
2013.

W. Enck, P. Gilbert, S. Han, V. Tendulkar, B.-G. Chun, L. P. Cox, J. Jung,
P. McDaniel, and A. N. Sheth, “Taintdroid: an information-flow tracking system

for realtime privacy monitoring on smartphones,” ACM Transactions on Computer
Systems (TOCS), vol. 32, no. 2, p. 5, 2014.

M. Sun, T. Wei, and J. Lui, “Taintart: A practical multi-level information-flow
tracking system for android runtime,” in Proceedings of the 2016 ACM SIGSAC
Conference on Computer and Communications Security. ACM, 2016, pp. 331-342.

J. Zaddach, L. Bruno, A. Francillon, and D. Balzarotti, “Avatar: A framework to
support dynamic security analysis of embedded systems’ firmwares.” in NDSS, 2014.

Y. Shoshitaishvili, R. Wang, C. Hauser, C. Kruegel, and G. Vigna, “Firmalice-
automatic detection of authentication bypass vulnerabilities in binary firmware.” in
NDSS, 2015.

A. Costin, A. Zarras, and A. Francillon, “Automated dynamic firmware analysis at
scale: a case study on embedded web interfaces,” in Proceedings of the 11th ACM
on Asia Conference on Computer and Communications Security. ACM, 2016, pp.
437-448.

D. D. Chen, M. Woo, D. Brumley, and M. Egele, “Towards automated dynamic
analysis for linux-based embedded firmware.” in NDSS, 2016.

83

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
lio
nowledge

b

i
r

[37]

[38]

84

K. Koscher, T. Kohno, and D. Molnar, “Surrogates: Enabling near-real-time dynamic
analyses of embedded systems.” in WOOT, 2015.

D. Davidson, B. Moench, T. Ristenpart, and S. Jha, “Fie on firmware: Finding
vulnerabilities in embedded systems using symbolic execution.” in USENIX Security
Symposium, 2013, pp. 463—-478.

P. Subramanyan, S. Malik, H. Khattri, A. Maiti, and J. Fung, “Verifying information
flow properties of firmware using symbolic execution,” in Proceedings of the 2016
Conference on Design, Automation & Test in Europe. EDA Consortium, 2016, pp.
337-342.

J. Chen, W. Diao, Q. Zhao, C. Zuo, Z. Lin, X. Wang, W. C. Lau, M. Sun, R. Yang,
and K. Zhang, “lotfuzzer: Discovering memory corruptions in iot through app-based
fuzzing.”

N. Stephens, J. Grosen, C. Salls, A. Dutcher, R. Wang, J. Corbetta, Y. Shoshitaishvili,
C. Kruegel, and G. Vigna, “Driller: Augmenting fuzzing through selective symbolic
execution.” in NDSS, vol. 16, 2016, pp. 1-16.

H. Peng, Y. Shoshitaishvili, and M. Payer, “T-fuzz: fuzzing by program transforma-
tion.”

F. E. Allen, “Control flow analysis,” in ACM Sigplan Notices, vol. 5, no. 7. ACM,
1970, pp. 1-19.

D. Gao, M. K. Reiter, and D. Song, “Binhunt: Automatically finding semantic

Y

differences in binary programs,” in International Conference on Information and

Communications Security. Springer, 2008, pp. 238-255.

J. Ming, M. Pan, and D. Gao, “ibinhunt: Binary hunting with inter-procedural
control flow,” in International Conference on Information Security and Cryptology.
Springer, 2012, pp. 92-109.

A. Costin, J. Zaddach, A. Francillon, D. Balzarotti, and S. Antipolis, “A large-scale
analysis of the security of embedded firmwares.” in USENIX Security Symposium,
2014, pp. 95-110.

J. Pewny, F. Schuster, L. Bernhard, T. Holz, and C. Rossow, “Leveraging semantic
signatures for bug search in binary programs,” in Proceedings of the 30th Annual
Computer Security Applications Conference. ACM, 2014, pp. 406—415.

J. Pewny, B. Garmany, R. Gawlik, C. Rossow, and T. Holz, “Cross-architecture bug
search in binary executables,” in Security and Privacy (SP), 2015 IEEE Symposium
on. IEEE, 2015, pp. 709-724.

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
lio
nowledge

b

i
r

[49]

Q. Feng, R. Zhou, C. Xu, Y. Cheng, B. Testa, and H. Yin, “Scalable graph-based bug
search for firmware images,” in Proceedings of the 2016 ACM SIGSAC Conference
on Computer and Communications Security. ACM, 2016, pp. 480-491.

S. Eschweiler, K. Yakdan, and E. Gerhards-Padilla, “discovre: Efficient cross-
architecture identification of bugs in binary code.” in NDSS, 2016.

H. Flake, “Structural comparison of executable objects,” in Proc. of the International
GI Workshop on Detection of Intrusions and Malware € Vulnerability Assessment,
number P-46 in Lecture Notes in Informatics. Citeseer, 2004, pp. 161-174.

T. Dullien and R. Rolles, “Graph-based comparison of executable objects (english
version),” vol. 5, 01 2005.

S. L. Thomas, F. D. Garcia, and T. Chothia, “Humidify: a tool for hidden function-
ality detection in firmware,” in International Conference on Detection of Intrusions
and Malware, and Vulnerability Assessment. Springer, 2017, pp. 279-300.

M. M. Hossain, M. Fotouhi, and R. Hasan, “Towards an analysis of security issues,
challenges, and open problems in the internet of things,” in Services (SERVICES),
2015 IEEE World Congress on. 1EEE, 2015, pp. 21-28.

D. Halperin, T. S. Heydt-Benjamin, K. Fu, T. Kohno, and W. H. Maisel, “Security
and privacy for implantable medical devices,” IFEFE pervasive computing, vol. 7,
no. 1, 2008.

S. Hanna, R. Rolles, A. Molina-Markham, P. Poosankam, J. Blocki, K. Fu, and
D. Song, “Take two software updates and see me in the morning: The case for
software security evaluations of medical devices.” in HealthSec, 2011.

C. Folk, D. Hurley, W. K. Kaplow, and J. F. Payne, “The security implications of
the internet of things,” Fairfar: AFCEA International Cyber Committee, 2015.

Google, “apkanalyzer,” accessed: 2019-03-07. [Online]. Available: https:
//developer.android.com/studio/command-line/apkanalyzer

R. Wisniewski and C. Tumbleson, “Apktool,” accessed: 2019-03-07. [Online].
Available: https://ibotpeaches.github.io/Apktool/

B. Pan, “dex2jar,” accessed: 2019-03-07. [Online]. Available: https://github.com/
pxb1988 /dex2jar

D. Octeau, W. Enck, and P. McDaniel, “The ded decompiler,” Network and Security
Research Center, Department of Computer Science and Engineering, Pennsylvania
State University, University Park, PA, USA, Tech. Rep. NAS-TR-0140-2010, 2010.

E. Dupuy, “jd,” accessed: 2019-03-07. [Online]. Available: http://java-decompiler.
github.io/

85

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
lio
nowledge

b

i
r

[63]

[64]

[65]

[73]

[74]

86

Skylot, “jadx,” accessed: 2019-03-07. [Online]. Available: https://github.com/
skylot /jadx

A. Desnos and G. Gueguen, “Android: From reversing to decompilation,” Proc. of
Black Hat Abu Dhabi, pp. 77-101, 2011.

B. Bichsel, V. Raychev, P. Tsankov, and M. Vechev, “Statistical deobfuscation of
android applications,” in Proceedings of the 2016 ACM SIGSAC Conference on
Computer and Communications Security. ACM, 2016, pp. 343-355.

R. Baumann, M. Protsenko, and T. Miiller, “Anti-proguard: Towards automated
deobfuscation of android apps,” in Proceedings of the 4th Workshop on Security in
Highly Connected IT Systems. ACM, 2017, pp. 7-12.

A. P. Fuchs, A. Chaudhuri, and J. S. Foster, “Scandroid: Automated security
certification of android,” Tech. Rep., 2009.

C. Gibler, J. Crussell, J. Erickson, and H. Chen, “Androidleaks: automatically
detecting potential privacy leaks in android applications on a large scale,” in In-
ternational Conference on Trust and Trustworthy Computing. Springer, 2012, pp.
291-307.

L. Lu, Z. Li, Z. Wu, W. Lee, and G. Jiang, “Chex: statically vetting android apps
for component hijacking vulnerabilities,” in Proceedings of the 2012 ACM conference
on Computer and communications security. ACM, 2012, pp. 229-240.

)

IBM T.J. Watson Research Center, “T.j. watson libraries for analysis,” accessed:

2019-02-06. [Online|. Available: http://wala.sourceforge.net

T. Reps, S. Horwitz, and M. Sagiv, “Precise interprocedural dataflow analysis via
graph reachability,” in Proceedings of the 22nd ACM SIGPLAN-SIGACT symposium
on Principles of programming languages. ACM, 1995, pp. 49-61.

X. Cui, J. Wang, L. C. Hui, Z. Xie, T. Zeng, and S.-M. Yiu, “Wechecker: efficient
and precise detection of privilege escalation vulnerabilities in android apps,” in
Proceedings of the 8th ACM Conference on Security € Privacy in Wireless and
Mobile Networks. ACM, 2015, p. 25.

L. Li, A. Bartel, T. F. Bissyandé, J. Klein, Y. Le Traon, S. Arzt, S. Rasthofer,
E. Bodden, D. Octeau, and P. McDaniel, “Iccta: Detecting inter-component privacy
leaks in android apps,” in Proceedings of the 37th International Conference on
Software Engineering-Volume 1. IEEE Press, 2015, pp. 280—291.

F. Wei, S. Roy, X. Ou et al., “Amandroid: A precise and general inter-component
data flow analysis framework for security vetting of android apps,” ACM Transactions
on Privacy and Security (TOPS), vol. 21, no. 3, p. 14, 2018.

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
lio
nowledge

b

i
r

[75] M. I. Gordon, D. Kim, J. H. Perkins, L. Gilham, N. Nguyen, and M. C. Rinard,
“Information flow analysis of android applications in droidsafe.” in NDSS, vol. 15,
2015, p. 110.

[76] C. Qian, X. Luo, Y. Shao, and A. T. Chan, “On tracking information flows through jni
in android applications,” in 2014 44th Annual IEEE/IFIP International Conference
on Dependable Systems and Networks (DSN). IEEE, 2014, pp. 180-191.

[77] Google, “Android emulator limitations,” accessed: 2019-05-17. [Online]. Available:
https://developer.android.com/studio/run/emulator#limitations

87

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

	Kurzfassung
	Abstract
	Contents
	Introduction
	Motivation
	Problem Statement
	Aim of Work
	Methodological Approach
	Structure of Work

	Background
	Bluetooth
	Android
	Binary Analysis
	Manual Reverse Engineering of APKs

	State of the Art
	Firmware Analysis
	Security and Privacy in the Field of IoT
	Android Application Analysis

	Implementation
	Generic GATT Server
	Extending TaintDroid
	Aggregating Results
	Final Architecture

	Evaluation
	Sample Set
	Analysis Results
	Result correlation

	Discussion and Results
	Comparison to Existing Solutions
	Limitations
	Discussion

	Summary and Future Work
	Appendix
	List of Figures
	List of Tables
	List of Listings
	Bibliography

