B Informatics

Semantic approaches to detect
file system log events for
analyzing data exfiltration

DIPLOMARBEIT

zur Erlangung des akademischen Grades
Diplom-Ingenieurin
im Rahmen des Studiums
Software Engineering and Internet Computing
eingereicht von

Agnes Froschl, BSc
Matrikelnummer 1328403

an der Fakultat fir Informatik
der Technischen Universitat Wien

Betreuung: Priv.Doz. Mag. Dipl.-Ing. Dr. Edgar Weippl
Mitwirkung: Univ.Ass. Mag.rer.soc.oec. Dr. Elmar Kiesling
Dr. Andreas Ekelhart

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

Wien, 15. Oktober 2020

Agnes Froschl Edgar Weippl

@ Sibliothek,
Your knowledge hub

Technische Universitat Wien
A-1040 Wien = Karlsplatz 13 = Tel. +43-1-58801-0 = www.tuwien.at

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

“}auioljqig usipn NL e ud ul s|ge[rene si sisayl SIUl JO UOISIaA feulBblio pasoidde ay < any a8pajmoun Jnoa
“regBnpian 3ayiolgig Usip NL Jap ue 1si liaglewoldiq Jasalp uoisiaAfeulBuO aponipab ausiqoidde aiq v_ﬂ_-_u.o__n__m

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

B Informatics

Semantic approaches to detect
file system log events for
analyzing data exfiltration

DIPLOMA THESIS

submitted in partial fulfillment of the requirements for the degree of
Diplom-Ingenieurin
in
Software Engineering and Internet Computing
by

Agnes Froschl, BSc
Registration Number 1328403

to the Faculty of Informatics
at the TU Wien

Advisor: Priv.Doz. Mag. Dipl.-Ing. Dr. Edgar Weippl
Assistance: Univ.Ass. Mag.rer.soc.oec. Dr. Elmar Kiesling
Dr. Andreas Ekelhart

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

Vienna, 15" October, 2020

Agnes Froschl Edgar Weippl

@ Sibliothek,
Your knowledge hub

Technische Universitat Wien
A-1040 Wien = Karlsplatz 13 = Tel. +43-1-58801-0 = www.tuwien.at

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

“}auioljqig usipn NL e ud ul s|ge[rene si sisayl SIUl JO UOISIaA feulBblio pasoidde ay < any a8pajmoun Jnoa
“regBnpian 3ayiolgig Usip NL Jap ue 1si liaglewoldiq Jasalp uoisiaAfeulBuO aponipab ausiqoidde aiq v_ﬂ_-_u.o__n__m

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
lio
nowledge

b

i
r

Erklarung zur Verfassung der
Arbeit

Agnes Frdschl, BSc

Hiermit erklére ich, dass ich diese Arbeit selbstédndig verfasst habe, dass ich die verwen-
deten Quellen und Hilfsmittel vollstdndig angegeben habe und dass ich die Stellen der
Arbeit — einschliefSlich Tabellen, Karten und Abbildungen —, die anderen Werken oder
dem Internet im Wortlaut oder dem Sinn nach entnommen sind, auf jeden Fall unter
Angabe der Quelle als Entlehnung kenntlich gemacht habe.

Wien, 15. Oktober 2020

Agnes Froschl

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

“}auioljqig usipn NL e ud ul s|ge[rene si sisayl SIUl JO UOISIaA feulBblio pasoidde ay < any a8pajmoun Jnoa
“regBnpian 3ayiolgig Usip NL Jap ue 1si liaglewoldiq Jasalp uoisiaAfeulBuO aponipab ausiqoidde aiq v_ﬂ_-_u.o__n__m

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

M Sibliothek,
Your knowledge hub

Danksagung

An dieser Stelle mochte ich mich bei all denjenigen bedanken, die mich wéihrend der
Anfertigung dieser Masterarbeit unterstiitzt haben:

e Manfred und Max, die sich die Miihe gegeben haben diese Arbeit Korrektur zu
lesen.

e Herrn Elmar Kiesling und Herrn Andreas Ekelhart, die meine Arbeit laufend
begutachtet haben, mir hilfreichen Anregungen und konstruktive Kritik gegeben
haben.

e Herrn Edgar Weippl fiir die Betreuung der Arbeit.

e Meine Familie, die mich immer wieder ermutigt hat diese Arbeit fertig zu stellen.

vii

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

“}auioljqig usipn NL e ud ul s|ge[rene si sisayl SIUl JO UOISIaA feulBblio pasoidde ay < any a8pajmoun Jnoa
“regBnpian 3ayiolgig Usip NL Jap ue 1si liaglewoldiq Jasalp uoisiaAfeulBuO aponipab ausiqoidde aiq v_ﬂ_-_u.o__n__m

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
blio
nowledge

(]
I
rk

Kurzfassung

Daten sind heutzutage ein wichtiges Wirtschaftsgut fiir Unternehmen. Daher kénnen
data leaks zu schwerwiegenden Reputationsschéden fithren und sich negativ auf den
Umsatz des betroffenen Unternehmens, sowie dessen Kunden und Geschéftspartner aus-
wirken. Diese Arbeit beschéftigt sich mit der Integration semantischer Technologien,
um den Prozess der forensischen Analyse von Dateiaktivitdten zu unterstiitzen. Daher
werden Dateisystemlogdaten semantisch dargestellt und iiber ein (nahezu) Echtzeitsys-
tem analysiert. Das entwickelte Prototypensystem integriert Logstash und Triple Wave,
semantische Ontologien und C-SPARQL, um eine automatisierte Analyse der Dateizu-
griffsereignistypen bereitzustellen. Ein weiteres Ziel des Systems ist die Rekonstruktion
von Dateilebenszyklen, die darauf abzielt, frithere Dateiaktivitdten zu verkniipfen, um
verdachtige Muster wie Dateikopiervorgidnge an externe Speicherorte zu identifizieren.
Die Integration von Hintergrundwissen unterstiitzt einen Analysten beim Verstdndnis der
Dateiaktivitdten und ihres Kontexts. Um das System zu bewerten, fiihren wir zunéchst
Leistungstests fiir Ereignisse mit einzelnen und gemischten Dateioperationen durch. In
diesem Aufbau variieren wir auch die Parameter (z. B. die Zeit zwischen aufeinanderfolgen-
den Ereignissen), um Schwellenwerte und Einschrénkungen zu identifizieren. Schlieflich
zeigen wir die Moglichkeit der Erstellung von Dateilebenszyklen in einem realistische-
ren Szenario mit mehreren Clients. In diesem Szenario wird auch die Verwendung von
Hintergrundwissen (z. B. Benutzer- und Dateispeicherortkategorisierung) eingefiihrt, um
erweiterte Abfragen und Ergebnisse zu ermdéglichen. Wahrend der Evaluierung stieflen
wir, aufgrund von Leistungseinschrankungen von C-SPARQL, auf Einschrankungen bei
der Echtzeitanalyse von Dateisystemlogdaten. Reduktionen bei der Ereigniserkennung
héngen von der ausgefithrten Dateiaktivitdt und von der Rate der eingehenden Logein-
trdge ab. Dariiber hinaus bendtigen wir eine optimierte Fenstergrofie von C-SPARQL
Konstruktionsabfragen, um eine optimierte Balance zwischen der Haufigkeit erkannter
Ereignisse, den akzeptablen Overhead und die Verzogerung der Benachrichtigungszeit zu
erreichen. Dartiber hinaus vergleichen wir konzeptionell unsere Ansétze mit bestehenden
Open Source- und kommerziellen Losungen, die dhnliche Ziele verfolgen.

ix

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

“}auioljqig usipn NL e ud ul s|ge[rene si sisayl SIUl JO UOISIaA feulBblio pasoidde ay < any a8pajmoun Jnoa
“regBnpian 3ayiolgig Usip NL Jap ue 1si liaglewoldiq Jasalp uoisiaAfeulBuO aponipab ausiqoidde aiq v_ﬂ_-_u.o__n__m

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
blio
nowledge

(]
|
rk

Abstract

Data is an essential asset in today’s organizations, and hence, data leakage can lead
to severe reputation damage and negatively impact revenues of the affected companies,
customers, and business partners. This thesis introduces an approach to integrate
semantic technologies in order to assist the process of forensic analysis of file activities.
To this end, file system log data is represented semantically and analyzed via a (near)
real-time system. The developed prototype system integrates Logstash and Triple Wawve,
ontologies, and C-SPARQL in order to provide an automated analysis of file access
event types. A further goal of the system is the reconstruction of file life-cycles, which
aims to link past file activities in order to identify suspicious patterns, such as file copy
operations to external locations. The integration of background knowledge supports an
analyst in understanding file activities and their context. To evaluate the system, we
first conduct performance tests on single and mixed file events. In this setup, we also
vary the parameters (e.g., the time between successive events) to identify thresholds and
limitations. Finally, we demonstrate the possibility to construct file life-cycle graphs in
a more realistic scenario with multiple clients. This scenario also introduces the use of
background knowledge (e.g., users and file location categorization) to allow for enriched
queries and results. During the evaluation, we encountered restrictions on a near real-time
analysis of file system log data, due to performance limitations of C-SPARQL. Constraints
on the event detection depend on the type of file activity performed and on the rate of
incoming log entries. In addition, the window size of C-SPARQL construct queries has
to be well balanced, in order to compensate the frequency of detected events, acceptable
overhead, and delay in notification time. Furthermore, we compare our approaches with
existing open source and commercial solution which follow similar goals.

Xi

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

“}auioljqig usipn NL e ud ul s|ge[rene si sisayl SIUl JO UOISIaA feulBblio pasoidde ay < any a8pajmoun Jnoa
“regBnpian 3ayiolgig Usip NL Jap ue 1si liaglewoldiq Jasalp uoisiaAfeulBuO aponipab ausiqoidde aiq v_ﬂ_-_u.o__n__m

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
lio
nowledge

b

i
r

Kurzfassung

Abstract

1

Introduction

1.1 Motivationl
1.2 _Problem Statement
1.3 Aim of the Workl
1.4 _Structure of the Thesis/

Methodological Approach

2.1 Relevance Cycle - Application Domain/
2.2 Rigor Cycle - Foundations|
2.3 Design Cycle Iterations|

Background

3.1 Data exfiltrationl
3.2 Semantic Web Technologies
3.3 File System Events|
3.4 Semantic Complex Event Processing (SCEP) . . .

State of the Art

4.1 Data exfiltration
4.2 Provenance Systems
4.3 Forensic Analysis of a File System
4.4 Semantic Approaches in Forensic Analysis
4.5 Semantic Representation of Log Data]

Semantic Models for Log Data Representation

5.1 Concept Architecture.
5.2 Specification of Semantic Models
5.3 File System Events Data Model
5.4 File Access Events Data Model
5.5 Background Knowledge Data Model

........... 1

Contents

ix

U W =

NeRENaREN |

[an}

13

........... 13
........... 15
........... 16
........... 16

19

........... 19
........... 20
............ 21
........... 24
........... 26

29

........... 29
........... 30
............ 31
........... 33
........... 35

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
lio
nowledge

b

i
r

5.6 Relations between Semantic Models 36

5.7 File Life-Cycle Reconstruction|. 36
6 Implementation 39
6.1 Architecture e 39
6.2 Apache Jena TDB Component| 42
6.3 C-SPARQL as Complex Event Processing Language, 43
6.4 File System Event Extraction 000 45
6.5 External Tools 47
6.6 Event Detection and Semantic Data Analysis| 51
6.7 File History Graph| 56
6.8 Event Flow of User Interaction 58
7 Evaluation 63
7.1 _Automated Scenarios 63
7.2 Data Exfiltration Scenario 75
7.3 Comparison with existing approaches/. 83
8 Conclusions 87
8.1 Research Question Revisited|. 87
8.2 Open Issues and Limitations| 88
8.3 Future Work 90
List of Figures 91
List of Tables 93
Listings 95
Bibliography 97
Appendix 103
Appendix A Precondition Configuration Files 103
Appendix B Implementation of TripleWave 104

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
blio
nowledge

(]
I
rk

CHAPTER

Introduction

In today’ digital era, data has become one of the most important assets for organizations.
Consequently, customer data as well as business information is sensitive, and hence, a
company needs to protect these assets from unauthorized access, including e.g., criminals,
competitors, and hacktivists [Cheng et al., 2017, |Chismon et al., [2014].

Data leakage poses serious threats to organizations, potentially leading to severe rep-
utation damage, a negative impact on trustworthiness and revenues of the affected
companies, but also harms their customers and business partners. As the volume of data
is growing exponentially and data breaches are happening more frequently than ever
before, detecting and preventing data loss has become one of the most pressing security
concerns for enterprises [Kurniawan et al., 2019aljb, Ullah et al., |2017) [Torsteinbg, 2012].
Due to this situation, numerous countermeasures have been proposed |[Ullah et al., [2017].

Digital forensics is a key method in identifying and analyzing data breaches. This thesis
explores a semantic approach to assist digital forensic analysis processes. Ontologies help
to integrate data across platforms. In addition, we provide the enrichment of existing
knowledge and support graph-pattern based querying for forensic investigations.

In the following sections, we describe cases of past data breaches and highlight the
importance of data security for today’s enterprises. Furthermore, we include problems
and challenges in the field of digital forensics and data loss prevention systems. Finally,
we outline the aim of the work as well as our research questions.

1.1 Motivation

Data loss detection and prevention mechanisms become more and more important. |(Cheng
et al|[2017] stated that data breaches influence the success of an enterprise. The loss
of sensitive information can lead to significant reputation damage and financial losses
of an organization [Cheng et al., 2017]. Therefore, the protection of data is one of

1

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

M Sibliothek,
Your knowledge hub

1.

INTRODUCTION

the most pressing security concerns for enterprises [Cheng et al., [2017]. Consequently,
the organization’s digital resources have become one of the most critical and sensitive
components [Chismon et al. 2014]. These resources can be the intellectual properties of
a company, including e.g., research and development achievements or processes desired
by competitors [Chismon et al., |[2014]. In addition, sensitive data also includes employ-
ee/customer data in terms of financial information, e.g. credit card numbers or account
balances, and medical records |[Cheng et al., [2017].

Websites such as Techworld!| and Information is Beautiful® published articles of past
data breaches from 2009 until 2019. These reports describe cases in which data leaks
compromised sensitive data from big companies such as Google, Facebook, FIFA, Quora,
Bozx, Yahoo, Uber, Amazon, FedEx and many more. Leaked data included customer data,
email addresses, passwords, social security numbers and personal information.

Troy Hunt discovered the largest collection of leaked data at the beginning of 2019, which
involved 772 million email addresses and 21 million passwords , . Numerous
individual data breaches collected the data from thousands of different sources. Hunt
suspected that attackers intended to use the data for credential stuffing [Techworld, 2019].
Credential stuffing is a cyberattack in which a third party uses credentials obtained from
a service’s privacy breach to log in to another unrelated service.

Private user information was also compromised by vulnerabilities in the code of cloud
storage services and social media websites. This was the case by Boz’s sub-domain URL
service @ ,Facebook’s “View As” tool and the APIs of the consumer version
of Google+ 2018]. Vulnerabilities enabled attackers to steal documents from
personal Box’ accounts, profile information from Facebook and data from
the friends of users on Google+.

Invaders not only stole private information but also thieved credit card data in 2013,
affecting Target Corporation [Cheng et al., [2017]. The thieves stole in this data breach
40 million credit card accounts. The incident has been called one of the most devastating
data breaches in history [Shu et al., |2017].

The EU introduced the General Data Protection Regulation (GDPR) in 2018. Since
then companies require to better safeguard personal data from cybercriminals. The first
prominent case which violated these regulations was British Airways 2019]. In
this case, affected data includes login data, payment cards, and travel booking details, as
well as name and address information. The company got a penalty of about 183 million
pounds which exceeded the highest previously penalty by 367 times. This was due to the
fact that Europe’s GDPR allows fines of up to 4% of the annual turnover , .

Data breaches or data loss can have different reasons. Moreover, the release of information
can happen intentionally or accidentally. Intruders can perform data theft and inside
attackers can cause data loss by sabotage [Cheng et al.| 2017]. Due to the high utilization
of modern communication channels, data leak vectors of internal data theft are increasing.

Thttps://www.techworld.com/security /uks-most-infamous-data-breaches-3604586, accesses: 10-02-
2020

Zhttps: //www.informationisbeautiful.net /visualizations/worlds-biggest-data-breaches-hacks/, ac-
cesses: 10-02-2020

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

@ Sibliothek,
Your knowledge hub

1.2. Problem Statement

These vectors are cloud sharing, email, web-pages, instant messaging, social networks and
so on [Cheng et al.l[2017]. Thereby, employees can easily perform data exfiltration by using
legitimate sharing platforms or communication channels [Cotenescu and Eftimie, [2017].
In addition, insiders usually know how to achieve the greatest impact whilst leaving little
evidence 2010], which makes detecting internal data leakage incidents extremely
challenging [Cheng et al) 2017]. Also, outsourcing can lead to the fragmentation of
protection barriers and controls and increase the number of people treated as full-time
employees , . According to the CyberSecurity Watch Survey, conducted by
the U.S. Secret Service, damage caused by insider attacks was more severe than damage
from outsider attacks [Cotenescu and Eftimie| |2017].

In spite of access control regulations and investments made on security control measures
and other security-related products, actions from internal employees, like sharing data or
transmitting confidential data intentionally or accidentally, can cause serious risks and
can have major negative impacts [AlHogail, |2017] [Colwill, 2010].

1.2 Problem Statement

A major problem of data security in enterprises is the lack of visibility on who created
which data, where it resides, and who has access to it. In order to protect data and
prevent data exfiltration a variety of technologies exist. Countermeasures of data security
focus on preventing data leaks, mitigating threats, and analyzing log data of past cases.
Technologies include security policies, which are one of the most fundamental actions
for threat mitigation |[Awais Rashid et al., |2014] and are strongly used in so-called
Data Loss Prevention (DLP) systems [Torsteinbg, 2012]. In addition, companies often
use logging and monitoring systems to mitigate data security issues , . A
Security Information and Event Management (SIEM) system provides a solution for log
management, aggregation and event correlation [Kostrecova and Binoval [2015].

In case a prevention system becomes inefficient, the collection of log data helps for
later analysis [Torsteinbg| [2012]. In order to retrieve digital evidence from log data,
digital forensics acts as a supporting tool to identify and reconstruct events
Meshram), [2012]. Thereby, computer forensics plays an important role in the field of data
security and aims to collect and document cyber attacks |[Tripathi and Meshram)| 2012,
Torsteinbg) 2012].

Despite of technologies to prevent data leaks and tools to mitigate threats, enterprises
cannot protect themselves from data leaks completely. Likewise, the extensive forensic
analysis does not ensure successful detection of suspicious events.

Security policies can be inefficient due to technology and configuration weaknesses. This
can involve different interpretations of the specification, which invaders then exploit. Also,
weaknesses in policies can cause malicious traffic to bypass [Kotenko and Chechulin) 2012].
In addition, the analysis of log data collected by logging and monitoring applications
holds its challenges. Limitations of a SIEM system range from misconfigurations, high
costs involved, and time-consuming analysis due to the high volume of log data. Reports

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
blio
nowledge

(]
I
rk

1.

INTRODUCTION

of STEM systems contain a lot of noise and often collected data which is not relevant
for the analysis at hand. In order to find necessary information, enterprises often
require adaptations [Kotenko and Chechulin) [2012]. The amount of log data collected for
monitoring purposes can become overwhelming, which leads to challenges regarding good
filters and alerting rules [Carrier, [2005]. An insufficient amount of alerting rules puts an
enterprise at risk to miss potential threats. Otherwise, too many rules can possibly trigger
an overwhelming number of false positives, which requires time to review alerts and a
dedicated team. A challenge digital forensics faces is heterogeneous log formats which
needs to be overcome first [Sindhu and Meshram) 2012]. Also, challenges are the large
volumes of data and the time to acquire and analyze forensic media [Fahdi et al., |2013].
For the analysis process digital forensic usually uses a computer forensic laboratory, which
needs much equipment in order to process forensic data and to perform examinations.
Many analysts need to seize investigated media in order to prevent changes [Quintiliano
et al., 2013|. Furthermore, a forensic analysis requires tools supporting the detection of
suspicious events saved in log data. In regards to file system activities, a variety of open
source and commercial tools exist. However, challenges and problems of these tools are
restrictions to log data of only one operating system, and high complexity that requires
technical experienced employees for their use. We provide a survey of existing tools in
Chapter {4.

Generally, weaknesses of existing exfiltration detection tools are the high complexity of
the system itself and the company expenses needed. Configuring security policies and
logging management systems are very time consuming tasks. In addition, a forensic
analysis requires adequate equipment and a time consuming analysis. Thereby, additional
problems can arise which require a dedicated team of experts in the field of data security.
Torsteinbg| [2012] mentions that the amount of investment and costs associated can
motivate the management to consider a different approach to existing prevention systems.

1.3 Aim of the Work

In this work, we focus on an analysis of file system events via a semantic approach in
near real-time. Thereby we attempt to trace all file creations, accesses, and modifications
as well as any sharing of files between clients.

This thesis addresses the following questions:

1. How and to which extend can we use semantic approaches to help the analysis
process of files system log data?

2. Can we use information, gathered by a semantic representation of file system events
and by the construction of the file life-cycle, to detect potential file exfiltration?

We define the requirements for our system in Section 2.1. In Section 8.1 we revisit our
research questions.

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

1.4. Structure of the Thesis

1.4 Structure of the Thesis

We structure the thesis as follows:

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
blio
nowledge

(]
|
rk

In Chapter 2| we describe how we apply the principles of design science as our
methodological approach.

In Chapter |3 we provide an overview of the state of the art of current approaches
considering data exfiltration attack vectors, implications and existing countermea-
sures. In addition, we describe background knowledge concerning Semantic Web
technologies, file system events and existing languages used for semantic complex
event processing.

In Chapter 4 we describe existing approaches concerning the monitoring of the file
system and computer forensic techniques to analyze the file system. In addition,
we present existing solutions of semantic approaches in the field of forensic analysis
and give an overview of the current state of semantic representations of log data.

In Chapter |5 we describe the requirements for our architecture and models in
order to present file system events semantically. In addition, we also present a
vocabulary for background knowledge and describe the concept for reconstructing
file life-cycles.

In Chapter |6 we describe the implementation of our prototype system including
external tools, preconditions, adaptions and components.

In Chapter |7 we present test scenarios and evaluate their results concerning our
defined research questions.

In Chapter § we conclude this thesis. We describe open issues and limitations of
our implementation. Furthermore, the chapter outlines directions for future work.

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

“}auioljqig usipn NL e ud ul s|ge[rene si sisayl SIUl JO UOISIaA feulBblio pasoidde ay < any a8pajmoun Jnoa
“regBnpian 3ayiolgig Usip NL Jap ue 1si liaglewoldiq Jasalp uoisiaAfeulBuO aponipab ausiqoidde aiq v_ﬂ_-_u.o__n__m

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
blio
nowledge

(]
I
rk

CHAPTER

Methodological Approach

The following sections describe how this thesis uses the principles of design science as a
methodological approach. This concept acts as a guideline to create and evaluate new
artifacts in the field of Information Systems (IS). The principles of the methodology
incorporate the environment in which we develop our research results. When describing the
environment we define requirements and create the foundation for later testing of artifacts.
It gives instructions to define a knowledge base and incorporates existing solutions and
methods when setting up the design of artifacts. Furthermore, the continuous evaluation
during the design process of artifacts ensures that requirements are met.

Figure 2.1/ shows the three cycles in design science, which include the relevance cycle, the
design cycle, and the rigor cycle. According to [Hevner, 2007] the relevance cycle bridges
the contextual environment of the research project with the design science activities.
The central design cycle iterates between the core activities to construct and evaluate
artifacts. The third cycle, called rigor cycle, connects the design science activities with
the knowledge base of scientific foundations, experience, and expertise that informs the
research project.

Figure 2.2|illustrates our version of the three cycles. The application domain includes
forensic analysts and a network of clients that run on macOS. Defined problems are data
exfiltrations of sensitive files. Our opportunities consist of a near real-time approach
to detect suspicious file activities. Our knowledge base describes methods and existing
tools which assist the construction of artifacts. This includes Semantic Web technologies,
external tools, documentation, and solutions with similar approaches. We incorporate
external tools for collecting and processing log data, and transforming data into an RDF
data stream. The artifacts of the design cycle consist of defined ontologies, implemented
processes for handling log data, methods to link independent file events, and the re-
construction of the history of file activities. We run performance tests and simulate a
real-world scenario in order to evaluate our artifacts. [Section 2.3/ describes the evaluation
and the artifacts in more detail.

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
lio
nowledge

b

i
r

2. METHODOLOGICAL APPROACH

Environment Design Science Research Knowledge Base

Application Domain Foundations

Build Design ® Scientific Theories

® People
L ooee Artifacts & & Methods
SOr;gamzanonal Processes
ystems -)
. = Experience

* Technical Relevance Cycle Rigor Cycle Expertise
Systems ® Grounding

® Requirements

* Field Testing ® Additions to KB
® Problems

& Opportunities * Meta-Artifacts

(Design Products &
Design Processes)

Figure 2.1: Three cycles of design science research 2007]

Environment Design Science Research Knowledge Base

Ontologies
Methods to collect file system log
Methods to transform logs into RDF

Application Domain Foundations

« Semantic Web

« Forensic analysts data stream technologies

« Company-network of « Methods to link events + construct a « Existing ontologies for file
clients file life-cycle system logs

* OS: macOS

Rigor Cycle

Relevance Cycle
Design

. .
Cycle Grounding

® Additions to KB

® Requirements
® Field Testing

Data exfiltration of
sensitive files
Detection of sensitive file
activities (near real-time)

Evaluation with performance tests
(synthetic data)
Real world scenario of multiple clients

« External tools for: log
collection, log
transformation into RDF
data stream and storage

Figure 2.2: Our instances of all three cycles of design science

Before we can develop any artifacts, we require an iteration of the relevance cycle and
the rigor cycle. The output of both cycles acts as input and initialization of the design
cycle. The three cycles are heavily based on the conceptual framework for understanding,

executing, and evaluating Information System (IS) research, presented by
2004].

In the following sections, we first explain the importance of the relevance cycle and the
rigor cycle and how we apply their practices in this thesis. Furthermore, we give an
overview of the steps we implement in the design cycle.

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
blio
nowledge

(]
I
rk

2.1. Relevance Cycle - Application Domain

2.1 Relevance Cycle - Application Domain

The relevance cycle defines requirements and the application domain, consisting of the
people, organizational systems, and technical systems that interact to work toward a
goal. In addition, the first cycle also defines acceptance criteria for the evaluation of the
research results [Hevner} 2007].

Considering the scope of this thesis — monitoring file activity to detect/investigate data
exfiltration — the overall application context is an organizational environment that uses
the resulting artifacts of the research. Within an organizational network, we focus on file
activities, such as monitored directories within the operating system, USB directories,
and folders of cloud storage providers such as Dropboz.

The people and roles in (passive) contact with the developed artifacts (monitoring system)
include those users that work with the monitored data within the organizational bound-
aries. The users who directly interact with the resulting artifacts (analysis system) have
different roles within a cyber-security or information security team. Their responsibility
is to mitigate risks and to perform forensic analysis on logged data as a response to data
exfiltration threats or incidents.

We have outlined the problems and requirements of the artifacts in [Section 1.2, These
are the result of a literature study in which we identified security issues with an emphasis
on data exfiltration. Following the aim of this work, we intend to solve problems created
by challenges of forensic analysis activities as well as to avoid data leaks of sensitive
organizational data.

We describe our requirements in the following listings:

1. Log data (in particular file system logs) should be processed by a near real-time
streaming approach.

2. An ontology for file system log data should be developed.
3. Collected log data should be analyzed automatically.

4. All activities of a file should be traced in order to reconstruct a file’s life-cycle.

In summary, this thesis aims to create a solution for analyzing log data in order to
recognize patterns of potential data exfiltration to protect sensitive data within an
organization. Furthermore, we aim to investigate if the system can increase the time
needed for data analysis activities. Therefore, we aim to apply a near real-time streaming
approach.

2.2 Rigor Cycle - Foundations

The knowledge defined in the rigor cycle should act as support for building artifacts and
to build the scientific foundation of the design science research [Hevner) 2007].

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
blio
nowledge

(]
I
rk

2.

METHODOLOGICAL APPROACH

10

In this thesis, we leverage existing semantic methods, including ontologies, Semantic
Web technologies, and tools which help to extract file system log data and represent
its content semantically. Furthermore, we build on existing solutions for parsing log
data and querying semantic data. In addition, approaches and experiences in the field
of forensic analysis advise this thesis. This includes studying existing approaches for
analyzing file system activities, and semantic solutions in the field of forensic analysis.
Chapter 4/ describes the current state of the art in detail.

Prior to developing approaches, we thoroughly study existing solutions and directions.
We found literature that describes generally used technology. Chapter 3 describes the
backbone of our study.

2.3 Design Cycle Iterations

After defining the relevance and rigor cycle, we can initialize the design cycle, which
represents the heart of the research. We iterate between creating and evaluating each
artifact until the requirements are met, which we derive from the relevance cycle. These
iterations provide us with a continuous feedback in order to improve the design [Hevner,
2007].

Generally, our artifacts are ontologies, models, and methods (e.g. Semantic Web methods)
applied in the development of this thesis. These artifacts support gaining new knowledge
and the problem domain becomes easier to understand [Vaishnavi et al., |2004] [Hevner,
2007).

The following listing summarizes the artifacts we aim to achieve in sequence:

1. An ontology for representing file system log data.
2. Ontologies for describing background knowledge for file activities.

3. Determine methods and practices which help to collect, parse, and store log data
semantically.

4. Construct methods to analyze file activity (e.g., to recreate the life-cycle of specific
files).

We start our research by defining an ontology to represent file system log data semantically.
Therefore, we conduct several iterations of the design cycle in order to develop a vocabulary
that fits file system logs for different operating systems. The study of existing ontologies
in this domain helps us to build our representation. In each iteration, testing ensures if
the system covers all information by the currently used ontology. Thereby, we test our
vocabulary against test cases in order to verify that requirements are met. Chapter |7
describes our evaluated test scenarios. After we finish the required log format ontologies,
we continue to define a background knowledge vocabulary. Subsequently, we need to define

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
lio
nowledge

b

i
r

2.3. Design Cycle Iterations

an architecture for processing, saving, and analyzing log data automatically. Several

cycles refine the built prototype system until defined requirements are met accordingly.

We define our requirements in Section 2.1.

We perform several scenarios to evaluate if our research artifacts meet the requirements
and in order to answer the defined research questions from [Section 1.3. Section 7.1.3
explains the evaluation setup in more detail. Section 7.1.2 describes scenarios used for
the analysis. Used scenarios consist of test runs with synthetic log data and a real-world
scenario including several clients. Runs with synthetic log data represent performance
tests of our system. Thereby, we aim to provide different ranges of waiting times between
events and sequences of file activities. The aim of this iterations is to find the limitations
of our system.

The real-world scenario aims to evaluate the use of defined background knowledge in
order to detect file activity patterns leading to data exfiltration. We aim to retrace which
person performed specific operations and which data channels the user used in order to
transfer files. In addition, we use data from this scenario to evaluate the reconstruction of
the file life-cycle. Section 7.2 describes the results and statistics of the defined scenarios
in more detail.

In summary, this cycle consists of definitions, implementations, and evaluation activities
in order to create an ontology for file system log data, automated parsing of logs as well
as analyzing and correlating activities of parsed data.

11

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

“}auioljqig usipn NL e ud ul s|ge[rene si sisayl SIUl JO UOISIaA feulBblio pasoidde ay < any a8pajmoun Jnoa
“regBnpian 3ayiolgig Usip NL Jap ue 1si liaglewoldiq Jasalp uoisiaAfeulBuO aponipab ausiqoidde aiq v_ﬂ_-_u.o__n__m

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
blio
nowledge

(]
I
rk

CHAPTER

Background

The following sections contain background information on the underlying areas of this
thesis. We collected the information as part of the rigor cycle, which builds the foundation
of our research. We describe the research methodology in Chapter 2.

We start with a broad discussion on data exfiltration. Section 3.1| gives an overview
of possible attack vectors and motivations for data theft. Furthermore, it includes
implications caused by attacks and countermeasures used to prevent data exfiltration.
Section 3.2 gives an overview of used Semantic Web Technologies and defines important
terms in this area. Section 3.3 describes the information of file system events which we
represent as RDF data in this thesis for analysis. Section 3.4] discusses implementations
of Semantic Complex Event Processing engines which aim to handle and analyze complex
relations over RDF data.

3.1 Data exfiltration

Data exfiltration is the unauthorized transfer of data from a computer. The term is
also referred to as data extrusion, data exportation, data leakage, or data theft. Data
exfiltration of sensitive data is one of the main targets of cyber-attacks [Ullah et al.,
2017]. Insiders or outsiders of an organization can perform these attacks.

Customer data is leaked often, followed by confidential information, health records, and
lastly intellectual property. |Gordon| [2007] discusses in his work that 52% of data security
breaches stem from internal sources compared to the remaining 48% caused by external
hackers. He further breaks down the number of internal data leaks caused by malicious
intent (1%) and inadvertent data breaches (96%).

Cheng et al.| [2017] conducted a study that showed that internal employees account for
43% of corporate data leakage, and half of these leaks are accidental. Corporate espionage,
financial reward, or a grievance with their employer motivated attackers [Gordon, 2007,

13

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

M Sibliothek,
Your knowledge hub

3.

BACKGROUND

14

\Cheng et al., 2017].

Implications caused by data leakage of confidential data, such as customer data, can
cause legal consequences. Data leakage poses serious threats to organizations, including
significant reputational damage and financial losses [Cheng et al., 2017]. Data exfiltration
causes considerable costs, including fines from regulatory bodies and the cost of IP theft,
which may lead to significant economic losses. Furthermore, a decrease in a business’s
reputation and sales can be a result of stolen sensitive data [Awais Rashid et al., [2014].

Various attack vectors cause data leakage. In order to prevent data exfiltration, a large
number of countermeasures exist, which aim to detect, prevent, and investigate theft of
sensitive or private data. |Awais Rashid et al.| [2014] describes security policies as the most
fundamental measures for mitigating exfiltration threats. This method of controlling
the access to sensitive files is strongly used in so-called Data Loss Prevention (DLP)
systems |Torsteinbgl [2012]. A DLP system is a strategy in order to prevent end-users to
send sensitive or critical information outside the corporate network. Policies can range
from policies that grant and maintain access to files and storage of sensitive material
[Awais Rashid et all [2014]. Policies can also involve blocking the access of specific
web sites |Gordon, [2007] or encrypting data before it is sent to a cloud storage device
[Awais Rashid et al., 2014]. Other policies might aim to completely block any SSL traffic
in order to prevent any SSL Tunnelling tactics that users are utilizing to bypass security
measures such as permitter firewalls and antivirus software.

In addition to security policies, [Ullah et al. [2017] classifies data exfiltration attack
vectors used by external attackers and potential countermeasures. Examples of these
countermeasures are proactive activities to resist against data exfiltration attempts. The
endpoint devices (such as PCs, Laptops, and Servers) incorporate these countermeasures
to control access to the data resided on these devices or apply particular security tactics
(such as encryption, data classification, and cyber deception) to help secure data against
exfiltration attacks. Other countermeasures aim to detect exfiltration attempts. The
network-level or host-level deploys these to monitor the network traffic and host access
patterns to either look for transfer of sensitive information or observe abnormalities.
also presents countermeasures which investigate data exfiltration incidents
such as forensic analysis in order to fix security weaknesses and taking appropriate
actions after a breach. In addition, provides another mitigation tactic
against data theft, which is the implementation of a Secure Content Management Solution.
This solution includes techniques such as lexical analysis of traffic passing through a
specific device on the network and fingerprinting. Based on patterns and keywords in
passing messages, the system categorizes the traffic acts on it accordingly, which can
pass, quarantine, notify, or block the message. This tactic should mitigate the threat
of releasing confidential information through electronic channels, which includes email,
FTP, HTTP, Webmail, Instant Messaging, and removable storage devices.
defines the use of outbound FTP or HTTP/HTTPS connections as the most
common data exfiltration strategies as more than 50% of analyzed data breach incidents
favors these exfiltration modes. It blends in with normal network traffic and is hard to

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
blio
nowledge

(]
I
rk

3.2. Semantic Web Technologies

distinguish from legitimate activities of users.

3.2 Semantic Web Technologies

The term "Semantic Web" is closely related to the World Wide Web and was coined
by its inventor, Sir Tim Berners-Lee [Hitzler et al., 2010]. The Semantic Web aims
to build abstract models to describe the world, which enables an easier understanding
of a complex reality in order to allow machines to automatically come to reasonable
conclusions from encoded knowledge |Hitzler et al., [2010]. Furthermore, it is a tool to
exchange information that allows us to distribute, interlink, and reconcile knowledge on
a global scale [Hitzler et al., [2010].

In this section, we give an overview of Semantic Web technologies, which provide the
foundation for this thesis. The most important Semantic Web technologies, concepts,
and methods relevant to this thesis are OWL/RDFS, RDF, SPARQL, and C-SPARQL.
The following segments give a short overview and definition of these technologies.

OWL/RDFS The Web Ontology Language (OWL)! is a Semantic Web language
designed to represent rich and complex knowledge about things, groups of things,
and relations between things. OWL includes the Resource Description Framework
Schema (RDFS). Therefore, RDFS is less expressive than OWL. Both languages
are used to define ontologies.

Ontology In computer science, an ontology is a description of knowledge about a domain
of interest, the core of which is a machine-processable specification with a formally
defined meaning [Hitzler et al., [2010].

RDF The Resource Description Framework (RDF) is a formal language for describing
structured information. The goal of RDF is to enable applications to exchange
data on the Web while still preserving their original meaning [Hitzler et al., [2010].

SPARQL SPARQL? is an RDF query language for querying and manipulating RDF
graph content on the Web or in an RDF store.

C-SPARQL Continuous SPARQL (C-SPARQL)? is a language for continuous queries
over streams of RDF data. C-SPARQL queries consider windows that allow us to
observe the most recent triples of such streams, while data is continuously flowing.
C-SPARQL extends the semantic query language SPARQL and is an example of an
RDF Stream Processing (RSP) system, which combines the advantages of semantic
web technologies and traditional data flow management systems |Dia et al., 2017].

"https://www.w3.0rg/0WL/} accessed: 03-06-2019
Znttps://www.w3.0rg/TR/2013/REC- sparqlll-overview-20130321/, accessed: 23-04-2019
3http://streamreasoning.github.io/TripleWave/docs.html, accessed: 03-06-2019

15

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek
https://www.w3.org/OWL/
https://www.w3.org/TR/2013/REC-sparql11-overview-20130321/
http://streamreasoning.github.io/TripleWave/docs.html

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
blio
nowledge

(]
I
rk

3.

BACKGROUND

16

3.3 File System Events

Semantic Web technologies allow computers to combine and process collected data based
on the meaning that this content has to humans [Hitzler et al., 2010|. In this section,
we define file system events, which we aim to transform into RDF data. We use the
transformed data to analyze patterns of file activities.

File system logs contain information about past file activities. These logs build the
backbone for capturing File Access Fvents, which define information about performed
user interaction with the corresponding file. In order to detect the actual event, we start
at file operation types and split it into its low-level system calls. These low-level calls are
the underlying access calls of each file operation contained in file system log data. We
represent these file operation types as:

a) move b) create c¢) edit d) rename e) copy and f) delete file operations.

Depending on the File Access Events, we require to correlate several file system log
entries to construct the event. However, in some cases, only one log entry contains all
the information that we require in order to define its higher File Access Events.

As an example, the file operation rename triggers a single log entry that contains all
the information needed. However, a copy operation involves several user interactions.
First, actions include the access of a file to copy. In the next step, the operation copies
the file to the clipboard and lastly paste the file into a new location. Consequently, the
file-system produces several events. We require the identification of all involved events in
order to gain knowledge about a performed copy operation.

Information concerning file-system events is mainly required for defining our semantic
model which we describe in [Section 5.3.

3.4 Semantic Complex Event Processing (SCEP)

In the following sections, we provide definitions about important terms in the context of
SCEP and aim to describe existing languages that can be used in order to process RDF
data automatically.

3.4.1 Definition of terms

Complex Event Processing (CEP) is an important real-time computing paradigm for an-
alyzing continuous data streams [Zhou et al., 2016]. Semantic Complex Event Processing
integrates Semantic Web technologies into CEP. Each event is essentially a set of RDF
triples: resource, property, and value [Schaaf et al.].

The combination of Semantic Web technologies and CEP can be used to enrich event data
and metadata with the domain knowledge from ontologies |[Schaaf et al.]. Furthermore,

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

M Sibliothek,
Your knowledge hub

3.4. Semantic Complex Event Processing (SCEP)

static background information (static RDF datasets or ontologies) can be employed to
reason upon the context of detected events [Gillani et al.l [2017].

\Gillani et al.| [2017] discusses that most CEP systems consider a relational data model for
streams and their proposed languages and optimizations are also tightly coupled with the
model. The paper introduces a semantic approach to overcome issues of integrating and
analyzing data coming from different data stream sources, with varying formats. Existing
solutions offer the use of RDF as a unified data model for integrating diverse data sources
across heterogeneous domains. Also |[Zhou et al|[2016] mentions that existing work on
CEP is largely limited to relational query processing. According to the paper, a semantic
approach on CEP allow accessible analytics over data streams that have properties from
different disciplines and help to process this analysis in real-time over a high volume of
data.

3.4.2 SCEP Languages

At the current state, a standard query language for expressing continuous queries over
RDF graph streams does not exist. The RSP Group is still working on the definition of
a common model for querying RDF data streams [Keskisarkka), |2017]. Important query
language include C-SPARQL [Barbieri et all, [2010a], CQELS [Le-Phuoc et all, [2011]),
SPARQLstream |Calbimonte et al., [2010]), Sparkwave [Komazec et al.,[2012], EP-SPARQL
Anicic et al., 2011], INSTANS [Rinne and Nuutilaj, 2016], SPAseq [Gillani et al., 2017]
and C-Sprite [Bonte et all [2019]. These languages represent an RSP implementation
and aim to combine the principles of the Semantic Web with stream processing and CEP
[Keskisarkka, [2017].

C-SPARQL [Barbieri et al., 2010a] is a query language that extends SPARQL 1.1 to
support the processing of RDF triple streams. The language supports both time-based
and count-based windows over the most recent portions of a stream. C-SPARQL queries
can combine triples from more than one RDF stream.

CQELS (Continuous Query Evaluation over Linked Streams) [Le-Phuoc et all |2011] is
a native and adaptive query processor for unified query processing over Linked Stream
Data and Linked Data. In contrast to the existing systems, CQELS uses a “white
box” approach. CQELS provides a flexible query execution framework with the query
processor dynamically adapting to the changes in the input data. The user is able to
define multiple windows over the same stream within a single query, a feature no other
RSP implementation supports [Keskisarkké), [2017].

SPARQLstream [Calbimonte et al., 2010] is a language that is similar to C-SPARQL. The
main difference is that SPARQLgtream only supports time-based windows. An upper and
lower time bound defines those windows [Calbimonte et al., 2010]. Sparkwave
is an RSP implementation that supports continuous reasoning over RDF
data streams and time-based windows. However, Sparkwave has some known limitations
concerning the size of the supported background knowledge and the amount of reasoning
functionalities [Komazec et al., [2012].

17

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

@ Sibliothek,
Your knowledge hub

3.

BACKGROUND

18

EP-SPARQL [Anicic et al.,2011] is a SPARQL 1.0 extension designed for event processing,
and it explicitly supports temporal operators as part of the language. EP-SPARQL
supports RDF triple streams but assumes that a time interval representing a valid time
annotates all triples. The execution engine for EP-SPARQL translates queries into the
ETALIS Language for Events (ELE), which the ETALIS engine also executes. The
language provides functions to access start time, end time, and duration of a matched
graph pattern but does not support to define windows over streams [Keskisarkkél, 2017].

INSTANS (Incremental eNgine for STANding Sparql) [Rinne and Nuutila), [2016] is
a platform for executing continuous queries using standard SPARQL and SPARQL
Update. The focus of INSTANS is to support CEP and incremental processing of queries.
INSTANS does not support windows over streams. However, the same results can be
computed by indirect mechanism [Rinne and Nuutilal |2016].

SPAseq [Gillani et al. [2017] is an implementation of a SCEP query language. The
language extends SPARQL with new Semantic Complex Event Processing (SCEP) SCEP
operators that the user can evaluate over RDF graph-based events. SPAseq supports the
expression of temporal operators, conjunction, disjunction, and event selection strategies.
It also provides an option to use multiple heterogeneous streams. SPAseq uses a non-
deterministic automata (NFA) model for the evaluation of the SPAseq queries

et al] OT7).

C-Sprite [Bonte et all [2019] represents an optimized engine that should be at least twice
as fast as current approaches. The authors claim that the algorithm operates in constant
time and scales linearly in the number of continuous queries.

Even though numerous query languages for Semantic Complex Event Processing do exist,
none of the defined languages supports exactly the same features. [Keskisarkka), 2017]
discusses most of the languages above and represents a listing of all features with an
additional comparison of the implementations.

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
blio
nowledge

(]
I
rk

CHAPTER

State of the Art

This chapter describes the literature review of the underlying areas this thesis deals with.
In the first section, we discuss solutions that monitor the host system to detect data
exfiltration. Furthermore, we describe three provenance system, similar to our approach.
We explain important aspects of computer forensic file-system analysis. In addition, we
discuss commercial and open-source tools that assist in the process of forensic analysis.
We present semantic approaches in forensic analysis and describe existing solutions of
Semantic Web technologies in order to assist the computer forensic process. Furthermore,
we examine the current state of presenting log data semantically and describe existing
approaches in this manner.

4.1 Data exfiltration

Since we aim to monitor file-system access patterns, we are mainly interested in solutions
that analyze the host system and provide methods to investigate suspicious file access
patterns. Therefore, we will not discuss countermeasures such as security policies, which
aim at restricting access in this thesis.

In contrast to the previously described solutions in Section 3.1, Awais Rashid et al.| [2014]
describes a host-based access analysis which is an alternative to monitoring network
traffic. This approach monitors the storage system saving the data and detects unusual
patterns of access |[Awais Rashid et al. [2014]. Servers or employee machines use the
solution as part of a database management system for a central share, or even at the
file system or system call level. Simple logging and analysis of particular patterns of
access to the file system, database, or the OS’s system call library can trigger alerts for
exfiltration.

Similarly to the previous approach, Krishnan et al. [2012] suggests using a hypervisor,
for monitoring hosts, with a forensic audit log that records disk accesses, system calls to

19

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

M Sibliothek,
Your knowledge hub

4.

STATE OF THE ART

20

the host, and chains of access to memory across processes.

This approach is comparable to detection systems described by |Awais Rashid et al.|[2014].
These systems can include email filters, which refuse to forward suspicious attachments,
database management systems that refuse to respond to suspicious queries or gateways
that refuse to forward packets containing sensitive data.

Two articles by |Grier| [2011] and Patel and Singh|[2013] examine methods for detecting if a
user copies a file. Copy operations usually leave no trace within file systems. Consequently,
investigation tactics based on the file access timestamp do not distinguish copy operations
from other forms of file access operations.

presents a method to examine a file-system. The method determines if and
when a user copies a file from the file-system. The author developed this method by
stochastically modeling file-system behaviors. The method defines patterns based on the
Media Access Control (MAC) timestamp of the operations to identify file copy actions.
The detection of these patterns is difficult to distinguish from routine activities within
the file-system and is quite similar to other access operations. However, according to
the author this approach has not been tested in a real-world file system to determine its
accuracy. [Patel and Singh| [2013] aims to extend this approach and proposes a technique
using a fuzzy inference system in order to distinguish between legitimate and illegitimate
copy operations.

4.2 Provenance Systems

The interest in provenance systems has grown in the scientific field of the Semantic Web
in the last years [Pérez et al., [2018]. The term provenance is related to the word lineage
and defines the entire amount of information regarding a piece of data This includes the
source of the data, contextual information, dependencies, relations, and processing steps
which lead to the current state of the data. Techniques of provenance systems allow the
user to verify data products. Thereby, the user can determine its authorship and infer

its quality. It provides the means to interpret and understand it. Also, it enables users
to analyze the process of steps which lead to the result of the data product |[Pérez et al.

2018].

The provenance system can assist the detection of file system activities in regards to
who created a specific file, who modified it and when, and who moved or copied the file.
Bates and Butler| [2014] describe the system as a solution to gather and report metadata
that describes the history of each object being processed. Thereby, a user can track
and understand how a piece of data came to exist in its current state on the system.
Furthermore, Ma et al.| [2017] introduce provenance tracking as a critical component
for cyber-attack investigations. The work describes the need for provenance tracking
in order to understand the attack including its root cause and consequences. Existing
provenance systems include e.g., the Linux Audit System [Shortridgel [2020], ProTracer
[Ma et al., [2016] and the LPM enabled HiFi system [Bates and Butler} 2014].

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
blio
nowledge

(]
I
rk

4.3. Forensic Analysis of a File System

Linux Audit System is used to track system activities and is a native feature of the
Linux kernel [Shortridge, 2020]. The underlying daemon of the audit system is auditd !,
which logs system calls, file access activities, and pre-configured auditable events within
the kernel. We use an adapted version of the audit daemon for macOS which is called
OpenBSM in order to log any file activities. We define configuration steps and the usage
of the service in [Section 6.4.

ProTracer is an important approach in Advanced Persistent Threat (APT) attack
detection [Ma et al. 2016]. The system is a lightweight provenance tracing system that
alternates between two activities. Those activities include audit logging and provenance
propagation (or tainting). The goal of the system is to support what-provenance and
how-provenance queries on system objects, such as processes and files. A what-provenance
query would search for the source of a process (or file) z, or investigate which other files
were derived from z. An example query for how-provenance would search for activities
that led to the corruption of file x. The results of a how-provenance query can be built
as a causal graph. This approach can be compared to our solution of reconstructing a
file history graph illustrating past file activities. Our file history graph describes any file
operations leading to the current state of the monitored file. We describe our concept of
reconstructing a file history in Section 5.7. In addition we directly link to background

information such as the related user account and information to the exfiltration channel.
Furthermore, we are able to query for events together with defined background knowledge.

LPM enabled HiFi system was designed by Bates and Butler| [2014] and describes a
Linuxz Provenance Monitor framework (LPM). The framework aims for the development
of an automated, whole-system provenance collection system on the Linux operating
system. The system includes a re-implementation of the Hi-Fi system presented by
[Pohly et al., 2012]. Hi-Fi is a kernel-level provenance system that leverages the Linux
Security Modules framework to collect high-fidelity whole-system provenance and thereby

aims to collect malicious behavior within a compromised system [Pohly et al., 2012].

Bates and Butler| [2014] designed LPM in such a way to enable experimentation with new
provenance collection mechanisms and to support interoperability with other security
mechanisms.

4.3 Forensic Analysis of a File System

Computer forensics plays an important role in the field of data security and assist in the
analysis of cyber-attacks from various sources, which can affect computers, software, a
network, an industry, or the Internet itself [Sindhu and Meshram), 2012].

Digital forensics is the science of identifying, extracting, analyzing, and presenting the
digital evidence that has been stored in digital devices. Forensic tools and techniques are
an integral part of criminal investigations used for inspecting suspect systems, gathering

"https://man7.org/linux/man-pages/man8/auditd.8.html, accessed: 2020-09-12

21

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
lio
nowledge

b

i
r

4.

STATE OF THE ART

22

and preserving evidence, reconstructing events, and assessing the current state of an
event [Tripathi and Meshram, [2012]. An analysis of file-system events is mostly done in
the field of computer forensics. The aim of digital forensics is to find footprints left by a

digital device in order to find evidence for a wide range of inquiries 2005)|.

In the next two sections, we focus on sources used for analyzing file-system events
and prominent tools that assist in collecting digital evidence that we found during our
literature review.

4.3.1 Sources for digital evidence within a file-system

The operating system is often the main source for digital evidence of file-system log data,
in order to obtain information needed for a forensic analysis [Adelstein, [2006]. Lokhande,
and Meshram| [2015] calls this type of forensic investigation OS Forensic and classify it
as part of system forensics. OS Forensic collects information through Windows Registry,
Event Viewer Log, and does kernel forensics.

|Opsitnick et al| discusses various other information sources besides the operating
system. These sources include logs of USB activities, logs of cloud storage providers, and
information on if a user sends a file to a personal email account. A forensic analysis
uses the information for forensic analysis in case of data theft by internal employees.
Facts about USB activities and the usage on installed cloud storage providers, such as
Dropbox, Google Drive, or Microsoft One-Drive, reveal information on several key facts.
These facts include connections to a computer of the USB device and the timestamp of
the connections and information if a user opened or accessed a file on a cloud storage
provider [Opsitnick et al.].

4.3.2 Tools for File System Analysis

Various commercial and open-source forensic tools are already available which assist in
collecting digital evidence. However, considering the aim of this thesis, which follows the
approach on correlating file activities and analyzing the history of a file, the following
tools are following a similar approach to our work:

Open-source tools

e Plaso?
e Plaso command line tools®: Log2timeline, pinfo, preg, psort

e Timesketch?*

Commercial tools

2https://github.com/log2timeline/plaso, accessed: 2019-03-02
3https://plaso. readthedocs.io, accessed: 2019-06-03
“https://github.com/google/timesketchl accessed: 2019-03-02

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek
https://github.com/log2timeline/plaso
https://plaso.readthedocs.io
https://github.com/google/timesketch

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
blio
nowledge

(]
I
rk

4.3. Forensic Analysis of a File System

e "Next-Gen Data Loss Protection" by Code2?
e ADAudit Plus®

e 'Log&Event Manager" from SolarWinds'

Plaso aims to collect all timestamped events of interest on a computer system. The
tool provides a computer forensic analysis, and the possibility to aggregate all events.
Therefore, it helps to collect digital evidence from a storage media image or device,
and present timelines of file system events. The system is a Python-based back-end
engine and provides packages for macOS, Windows, and Linux. Moreover, Plaso already
supports different log formats and users can create extensions of the tool by creating
custom-defined parsers.

Log2timeline is a command-line tool designed to extract timestamps from various
files found on a typical computer system and aggregates found events. The user can
create Plaso files with the tool. Other tools such as pinfo, preg and psort analyze the
Plaso storage file and provide information on the content. Moreover, users can also use
the tools to analyze Windows Registry files and to post-process Plaso storage files.

Timesketch offers functionalities to present collected timelines by Plaso as graphs. The
tool offers features for collaborative forensic timeline analysis. It aims to support forensic
investigations by a full-text search, organize investigated events by adding labels and
comments as well as share findings using saved views. Timesketch visualizes relationships
between events as a graph [Berggren|, 2017] which the tool provides next to a tabular
view of investigated log data. Timesketch uses Neo4j as a graph database back-end and
the query language called Cypher.

”Next-Gen Data Loss Protection” by Code42 offers a commercial platform that
protects endpoint and cloud data from loss, leak, misuse, and theft. It offers visibility to
all files and maintains a comprehensive history of every version of every file. Furthermore,
the tool monitors file movements within cloud storage providers.

”?ADAudit Plus” by ManageEngine offers features to track a Windows file server.

The tool tracks file access, changes to documents in their files and folder structure, shares,
and permissions. ADAudit Plus advertises to offer forensics of all file changes, failed
attempts to file creations, deletions, modifications, and folder structures.

Shttps://www.code42.com/product/, accessed: 2019-03-02
6https://www.manageengine.com/products/ac‘cive-direc‘cory-audi‘c/

windows- file-server-auditing.html, accessed: 2019-03-02
‘https://www.solarwinds.com/log-event-manager-software, accessed: 2019-03-02

23

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek
https://www.code42.com/product/
https://www.manageengine.com/products/active-directory-audit/windows-file-server-auditing.html
https://www.manageengine.com/products/active-directory-audit/windows-file-server-auditing.html
https://www.solarwinds.com/log-event-manager-software

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
blio
nowledge

(]
I
rk

4.

STATE OF THE ART

24

The ”"Log&Event Manager” from SolarWinds offers file tracking features and
directory access monitoring of movements and shares. The tool acts as a file integrity
monitoring tool to detect and alert on changes to key files, folders, and registry settings.
The software correlates system, Active Directory, and file audit events to obtain informa-
tion on which user is responsible for accessing and changing a file. System administrators
can use this information to create an alert or run reports to review activities.

In summary, the open-source solutions Plaso combined with its command-line tools
and Timesketch present a comprehensive array of commands and tools for timeline
analysis. However, functionality and commands are often not documented, the tools are
not self-explanatory, and the documentation is lacking in information and examples.

Downsides to the presented commercials tools are the involved costs and the restriction to
only Windows file system events, which is the case for ADAudit Plus by ManageEngine.

We compare existing approaches to our solution in more detail in [Section 7.3.

4.4 Semantic Approaches in Forensic Analysis

The first step for forensic analysis is to collect forensic data. In case multiple different data
sources exist, the examiner collects data of different formats generated by applications or
operating systems. Even though several tools support forensic analysis, the heterogeneous
formats of collected data used for investigation can hold some challenges for further
analysis.

In this section, we focus on existing approaches to integrate Semantic Web technologies
in the process of forensic analysis and assist the investigator in analyzing digital evidence.

One solution we found is an ontology-based approach for a forensic analysis of data
collected from mobile devices presented by [Wolfl [2013] and |Alzaabi et al.| [2013]. The
overall goal of both works is to handle large amounts of data gathered from mobile
devices of different formats more easily by using an ontology and using the structured
presentation for forensic analysis. [Wolf| [2013] examines the forensic of various structures
of mobile devices. Therefore, the author introduces an ontology for forensic analysis.
He aims to automatically draw conclusions by the correlation of results. [Alzaabi et al.
[2013] develop a layered ontology-based framework, which builds a new forensic analysis
tool for content retrieved from Android smartphones. Inference engines and classification
mechanisms use that digital evidence process in order to identify new implicit information.
The framework consists of five main layers:

1. Evidence Space: This layer holds potential evidence objects, such as files, videos,
and images.

2. File Wrappers: The Wrapper is a simple program, which extracts descriptive
information from files in the evidence space, such as the MIME type.

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
blio
nowledge

(]
I
rk

4.4. Semantic Approaches in Forensic Analysis

3. File Description and RDF/OWL databases: The file wrapper uses the file
description database. The next layer uses the RDF/OWL database for concepts
and relationships.

4. Concept and Relationship Extraction: This layer extracts concepts from the
previous file description database. For example, data obtained from a mobile device
would be a contact that belongs to the ’Contact’ class, an image that belongs to
the Media’ class, and a Word document file that belongs to the 'Document’ class.
In addition, the layer maintains the relationships between concepts.

5. Domain and Application Ontologies: These two layers collaboratively form
an ontological model for a particular environment. This model consists of concepts
(or classes) and the relationships among them. For instance, in a smartphone
environment, the framework considers message, person, email, and an event as
individual domain ontologies.

Dosis et al.| [2013] also uses ontologies for representing and integrating digital evidence.
The goal is to provide partially or eventually fully automated analysis of the large volumes
of digital data by parsing evidence into their semantic representation automatically. One
example the paper describes is the forensic analysis of storage media, such as hard disks,
USB sticks, and SD cards.

The automation consists of the following steps:

1. Collecting of relevant data and transforming it into their semantic representation
and generating semantic assertions.

2. An OWL reasoning engine infers conclusions on semantic data based on created
assertions.

3. An investigator, who uses SPARQL, formulates and executes queries against the
integrated set of data.

As an example, the solution should analyze a forensic disk image. The first step asserts
an image file and declares it as a member of the class 'TmageFile’. In the second step, the
OWL reasoning engine infers that it is also a member of its superclass ‘MultimediaFile’.
The last step performs further queries concerning the image file.

Cuzzocrea and Pirro| [2016] also presents a framework that aims to integrate the ad-
vantages of Semantic Web technologies. The goal is to create a knowledge base that
an analyst can consult to gain insights from previous cases. Thereby, the authors aim
to lift digital investigations to the level of knowledge-driven digital investigations. By
coupling foundational ontologies with domain-specific ontologies, the framework achieves
abstractions in order to create a modular and knowledge-driven approach to digital
forensics.

Furthermore, the knowledge base should complement digital forensic tools. The growth

25

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
blio
nowledge

(]
I
rk

4.

STATE OF THE ART

26

of cyber-crimes and the increased usage of information and communication technologies
trigger that approach. The framework consists of four layers:

1. Knowledge: This layer collects foundational ontologies that model general con-
cepts.

2. Integration: The use of the Resource Description Framework (RDF) integrates
the collected data.

3. Reasoning: This layer accesses the previously integrated data.

4. Querying: In this layer, the user can query integrated and reasoned data.

For example, attack ontologies integrate firewall logs and the output of collected traffic
from Wireshark into semantic data. SPARQL can then query the data which the frame-
work represented semantically. The queries aims to identify malicious communication or
suspicious events logged by the firewall.

4.5 Semantic Representation of Log Data

In the following section, we present types of log data which were represented semantically
by ontologies. We also describe the purpose of data integration using semantic ontologies.

Wolf [2013] and Alzaabi et al|[2013] both describe an approach to represent logs from
mobile devices for analysis purposes. We described details of their solutions in [Section 4.4.
Their main goal is to overcome heterogeneous log formats for any forensic analysis.

There are several approaches for defining ontologies for other logged data such as logs of
network traffic, application logs, and logs of user activities. Several works, presented in
this section use these computer logs for security-related forensic analysis. The work of
de Souza Nascimento et al. [2011] discusses an approach of using Semantic Web and an
ontology to analyze security logs with the goal to identify possible security issues. The
defined ontology should improve the search for patterns and evidence of certain attacks.
The paper uses logs generated from Web Application Firewall for their ontology, which
are logs generated by the program ModSecurity®.

Nimbalkar et al. [2016] describes another approach which classifies log data semantically.
The author discusses a framework, which automatically parses log data in various formats
and generates a semantic description of their schema and content in RDF. Using regular
expressions, the parser separates the log entries into columns and rows for a dictionary-
based classification. In addition to Nimbalkar et al.| [2016], whose work describes parsing
any sort of data of any format, Holliday et al. [2017] focuses on using RDF for defining
an ontology describing a log format for grid environments in order to overcome different
formats of logged data. Furthermore, Clark et al. [2004] deals with the effective scalability

Shttps://modsecurity.org, accessed: 2019-06-04

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
lio
nowledge

b

i
r

4.5. Semantic Representation of Log Data

of the mass of data that accumulates during the investigation of event information. This
data should be made manageable by semantically strong representational models and
automated methods of correlating such event data.

To summarize, the main goal of described solutions is to present log data semantically in
order to gather a structured representation of the data. Therefore, heterogeneous log
formats should be overcome. Furthermore, Semantic Web technologies should make an
enormous amount of unstructured event log data scalable.

27

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

“}auioljqig usipn NL e ud ul s|ge[rene si sisayl SIUl JO UOISIaA feulBblio pasoidde ay < any a8pajmoun Jnoa
“regBnpian 3ayiolgig Usip NL Jap ue 1si liaglewoldiq Jasalp uoisiaAfeulBuO aponipab ausiqoidde aiq v_ﬂ_-_u.o__n__m

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
blio
nowledge

(]
I
rk

CHAPTER

Semantic Models for Log Data
Representation

In this chapter, we define the used data models to semantically represent file-system
activities. Furthermore, we define additional semantic models to represent File Access
Events and background knowledge. Moreover, we explain the relation between file-system
log entries and file access events and give insights on how we transform log entries into
access events. Lastly, we present our concept of how events are related to each other in
order to reconstruct a file life-cycle.

5.1 Concept Architecture

We aim to explore a new approach via a near real-time forensic analysis. Therefore, we
need technologies, techniques, and external tools that enable us to achieve the following
conceptual points. The concept aims to fulfill our requirements which we defined in
Section 2.1:

1. Read log data in near real-time: Log data is read via a near real-time system
in order to avoid handling huge amounts of collected data. This requires a service
on the analyzed hosts that provides live file system logs.

2. Overcome log formats of different file systems: We aim to jointly analyze
different log formats. This requires a unified semantic vocabulary for log data from
different file systems.

3. Analyze log data: As soon as required log data has been collected, we perform
the analysis. This requires an automatic parsing and filtering of relevant log data.

29

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
blio
nowledge

(]
I
rk

5.

SEMANTIC MODELS FOR LOG DATA REPRESENTATION

30

4. Trace file activities: For the tracking of file activities, we will only focus on file

system log data of macOS'. We aim to trace all operations of a file. Furthermore,
all operations of a single file are related to each other in order to achieve a file’s
life-cycle. This requires an algorithm that relates subsequent events to trace past
activities of the same file. In addition, we require a user interface that enables us
to display the files life-cycle as a graph.

In summary, in order to meet the defined requirements, we need an architecture that
connects: a logging service, a tool that parses and filters log data, a tool for transforming
log data into semantic data, and a service that saves the data, retraces past file activities,

and reconstructs a files life-cycle.

5.2 Specification of Semantic Models

Klas and Schrefl |[1995] describe Semantic Models as the following:

Semantic Models are a tool to capture the meaning of data by integrating
relational concepts with abstraction concepts. This approach aims to provide
high-level modeling primitives. The use of these high-level models helps to
facilitate the representation of real-world situations.

As we introduced in [Section 1.3 our goal is to semantically represent file system log data
in order to analyze the history of logged file activities. Furthermore, an analysis of the
collected data should be provided in regards to suspicious activities that might result in
data exfiltration. We specified the following sequence of actions which we need to achieve
in order to fulfill our goals:

1. Transform and Correlate: In this step, we transform file-system log entries into

the associated high-level file access event, e.g. a move operation of a file into a
different location is transformed into the access event Mowed.

. Correlate Events: We need to correlate identified file access events chronologically

in order to reconstruct the life-cycle of a file.

. Identify User: We have to resolve the user who performed recorded file activities

in order to know the responsible real-life person behind any suspicious activities.

. Identify Channel: In order to detect suspicious patterns, we have to identify the

target channel of file operations. For example, in case the target location of a move
operation is not an internal channel, we suppose that a user moved the file outside
the excepted borders and exfiltrated data.

macOS High Sierra version 10.13.6

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
blio
nowledge

(]
I
rk

5.3. File System Events Data Model

Consequently, we require a semantic model that allows us to represent the content of file
system log data and assist in the analysis process. Furthermore, the system has to link
background information with recorded log data in order to reason about who performed
logged activities and to detect suspicious actions such as copying a file to an exfiltration
channel.

We need several ontologies in order to create the required vocabulary which enables us to
create an RDF representation of file system logs, file access event, and needed background
knowledge. Therefore, we define the following semantic models:

1. File System Event Model: This model represents raw file-system event data
received from the operating system. We describe more details about the event data
in Section 3.3. [Section 5.3| explains the model itself.

2. File Access Event Model: This model illustrates the high-level event performed
to a file, which can be a copy operation or a rename of a file. Section 5.4 describes
the model.

3. User Account Model: This model represents a user whose actions are monitored
by examined file-system logs. The user account helps to reason about the real-life
person who performed file actions. The model is part of the defined background
knowledge. Section 5.5 explains the model.

4. Exfiltration Channel Model: This model comprises information on communi-
cation channels that a user can use to exfiltrate data. Exfiltration channels are
part of our background knowledge as well. Section 5.5 contains more details about
the model.

We describe each model in more detail in the following subsections and clarify relations
between those models.

5.3 File System Events Data Model

As we described in [Section 5.2) the first semantic model represents file-system events. We
collect those events in log data produced by auditing services of the underlying operating
system. Therefore, we require an RDF representation of file events including information
about the file accessed, the system call performed and who performed it at what time.

We described existing approaches to semantically represented log data in Section 4.5
Existing solutions mainly focus on various security logs, firewall logs, and logs produced
by mobile applications. However, we were not able to find any ontology for representing
file-system log data. Consequently, we create a new semantic ontology. Therefore, we
extend a more general class LogEntry introduced by Ekelhart et al. [2018] that represents
a single generic log entry, as well as the Host and Logtype classes, shown in Figure 5.1,

31

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

w Sibliothek,
Your knowledge hub

5. SEMANTIC MODELS FOR LOG DATA REPRESENTATION

ipAdaress ° psAddress
Core ip6Address hostName

Vocabulary " <A

originatesFrom -
B [Lterat |

S e logFilePath
.
Message
lou hasLogType LogType
[Literal] S
~
’ - -

hasResource
Subclass of N 7 Subclass of ~

N e mm

hasRmmSIze

° T~
; \ &
hasAgent hasHtipVersion \ S~o_ 7
\ SysLogEntry
Beshetoues hasldent hasProcessid
]
Aoach Syslog
ache
V(‘)) cabulary hasResponseType hasClient hasRequestVerb hasFaciity hasProgram hasSeverity Vocabulary

l
|
|
|
I
I
l
b ngram Sevemy
Responss‘ryps Requeswerb

dl-nﬂP
(h i &

StatusCode AN 4 7
-

External
Vocabulary

Figure 5.1: Log vocabulary presented by |Ekelhart et al.| ﬂ2018ﬂ

Windows and Unix file-system logs contain slight differences. In Unix, the property
accessCall in auditd file system logs contains the performed system call. However,
Windows Event Viewer logs presents this information by the properties eventID and
accessInfo. We identified the distinction by comparing log data produced by an auditing
service from OpenBSM?| for file operations on macOS and Windows logs from the internal
Event Viewer. [Kurniawan et al.| [2019b] also describes the semantic representation of
Windows Log Events.

Due to this differentiation, we extend the class FileSystemLogEntry further to subclasses
UnizFileSystemLogEntry for Unix specific file system logs and WinFileSystemLogEntry for
Windows specific log data. This thesis focuses on macOS?| file system log data, therefore
we use the type UnizFileSystemLogEntry for any further explanations and analysis.

Figure 5.2 shows the vocabulary which presents the subclass FileSystemLogEntry of
super-class LogEntry. A FileSystemLogEntry always relates to a File, containing the
pathname of the accessed file. Furthermore, the log entry has a User who performs file
activities. The field timestamp tells when the file operation happened. Lastly, the field
accessCall contains the performed system call.

*http://www.trustedbsd.org/openbsm.html, accessed: 24-03-2020
3macOS High Sierra version 10.13.6

32

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
blio
nowledge

(]
|
rk

5.4. File Access Events Data Model

accessCall

5 Subclass of
Unix
File
System
LogEntry

timestamp

Subclass of

File
System
LogEntry

Subclass of hasUser

accessinfo

Win
File y
System hasFile
LogEntry

username

eventlD

pathname

Figure 5.2: Vocabulary for File System Logs

fi

Literal

5.4 File Access Events Data Model

As we described in [Section 5.2, file access events are the high-level representation of
corresponding file-system logs. The events represent the actual access activity of a file.
Figure 5.3 displays the used ontology. A FileAccessEvent always relates to a source File
and a target File. The source file represents the original file, whereas the target file
represents the resulting file after a file activity. For example, in case of a rename file
operation the target file contains information on the new filename. The class User gives
information about the domain and username of the involved user account. In addition,
the source Host and target Host displays information of the client which performs the file
activity. The class Action represents the type of the file access event performs. Figure 5.4
displays the ontology of a FileAccessType. We distinguish six different types of events.
Table 5.1| presents the instances of these types. A FileAccessType consists of a label and
a comment, providing a more detailed description of the actual event.

As we can see in the table we do not distinguish between the types Create and Mod-
ified. The reason for this is that the corresponding system calls of both access events
intersect with each other. In addition, we model a delete file operation as access type
MoveToRecycleBin, which represents a move file activity into the directory /. Trash/.

33

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
lio
nowledge

b

i
r

5. SEMANTIC MODELS FOR LOG DATA REPRESENTATION
actionName
timestamp
hasAction
hasUser
hasSourceFile
username
hasTargetFile hasSourceHost
hasTargetHost
fileName ‘
‘ hostName
fileName i I
hostName
Figure 5.3: Vocabulary for File Access Events
label comment
‘ Literal ‘ ‘ Literal ‘
Figure 5.4: Vocabulary for File Access Type
Label Comment
Created Created a new file
Created/Modified Created a new file or modified an existing file
Created/Copied Created a new file or copy a file from the same or different
locations
Renamed Renamed a file
Moved Moved a file from one location to another
MovedToRecycleBin | Moved a file to Recycle Bin / Trash
Table 5.1: Instances of File Access Type
34

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
lio
nowledge

b

i
r

5.5. Background Knowledge Data Model

User

Account
username nost
~
‘/ Literal
Literal id email
) firstname lastname \
Literal .
'/ \ Literal

s Literal

Figure 5.5: Vocabulary for User Accounts

Exfiltration
Channel

name type path
Literal Literal Literal

Figure 5.6: Vocabulary for Exfiltration Channels

5.5 Background Knowledge Data Model

The background knowledge consists of information about the user account associated
with an event and the channel of the file activity.

Figure 5.5| presents fields of the class UserAccount, which are username, id, firstname,
lastname, email, and host. The model is helpful in case several monitored user accounts
are connected to the same person. This makes it possible to query for all operations
by a specific person, irrespective of the specific account used. [Figure 5.6 displays the

vocabulary of an ExfiltrationChannel. The ontology gives meaning to extracted file paths.

Thereby, the implemented service can distinguish copy or move operation performed to
an external channel. It also recognizes if users move or copy files internally to another
directory within its acceptable borders.

The property type defines if the specific channel is internal or external. An internal
channel is any path that is considered to be within the companie’s boundaries. The
service considers other paths, which are not internal channels, as external channels.

35

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
blio
nowledge

(]
I
rk

5.

SEMANTIC MODELS FOR LOG DATA REPRESENTATION

36

5.6 Relations between Semantic Models

A FileAccessEvent is the high-level representation of one or multiple instances of the
class FileSystemLogEntry. Therefore, we require a transformation process that converts
a specific pattern of log entries into a file access event.

In case a FileAccessEvent consists of only one FileSystemLogEntry, we can directly map
file, host, and timestamp information from the log data to the related event. However,
in case of a copy operation, a FileAccessEvent consists of multiple log entries. In this
case, we require information on the original file from one log entry, which will become
the source file of the access event. In addition, we require data about the new file from
another log entry, which will become the target file of the access event. We describe the
exact implementation of this process in Chapter 6.

5.7 File Life-Cycle Reconstruction

In this section, we present our approach to reconstruct the history of file activities. File
Access Events are, after their construction, single events that are independent of each
other. In order to relate subsequent events we introduce a process that constructs those
relationships. Thereby, we focus on linking successive events, and aim to retrace file
transformations into new files, e.g. in case a user copies a file a new file is created. After
a transformation, a new file life-cycle starts. We require to link the history of the original
file and the history after the file transformed.

We aim to achieve the reconstruction via a SPARQL Construct query. [Figure 5.7
illustrates our concept of the construct query. As shown in the figure, the query consists
of three optional patterns, containing four events. The patterns are optional on their
own, due to the fact that a life-cycle does not have to contains all patterns. Each pattern
illustrates a case which we require to consider. Figure 5.7 contains the overview of each
case. [Figure 5.8 shows examples of those patterns and events.

The cases are the following;:

1. Link successive equal events: In this case, the service has to link two successive
events with the same source and target pathnames. The first section of Figure 5.8
illustrated this case. Both events represent a Created_ Modified which happens
after each other.

2. Transformations: In case of a file transformation a new pathname will be created,
e.g. on Moved, Renamed, Created_ Copied and MovedToRecycleBin events. Thereby,
the service has to consider the different source and target pathnames. The second
section of Figure 5.8/ shows two types of transformations. In the left example
an Created_ Modified event is followed by an Moved event. The move operation
transforms the target pathname. The right example shows two transformation
events in sequence. In both examples, the target pathname of the first event is

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
lio
nowledge

b

i
r

5.7. File Life-Cycle Reconstruction

2. File transformation
Optional

Event 1
sourcel
targeti

target1 = source3
target1 # target3

Event 3
source3
target3

ource1 = source2

target1 = target2

3. Link of life-cycles after
N transformation

‘j"/ Event2 ‘
source2 | . _
\ target2 karget3 = source
A y
: Event 4
Clptiongl source4
1. Successive events target4
Optional

relatedTo

Figure 5.7: Conceptual draft to construct relatedTo property between events

equal to the source pathname of the second event. However, the target pathnames
of both events differ.

3. Link life-cycles after a transformation: After a transformation a new file
life-cycle starts. However, the previous life-cycle is also related to the new history,
containing activities of the transformed file. Therefore, we have to filter for a
pattern containing a fourth event which represents the first event of a new file
life-cycle. The third section in [Figure 5.8 shows the linkage of two life-cycles. The
previous cycle terminates by an Moved event. The newly created life-cycle starts
with event Created.

By performing the presented SPARQL Construct querying over all saved semantic data
we link all events. The query adds the property relatedTo between each event. This
enables us to query for relations of a certain pathname, which will then deliver all events
which belong to the files life-cycle. We describe further details about the implementation
in |Chapter 6.

37

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

w Sibliothek,
Your knowledge hub

5. SEMANTIC MODELS FOR LOG DATA REPRESENTATION

/@ Created_Modified

source1 = .../directory1/test.txt
target1 = .../directory1/test.txt
time1 = 2020-06-07T12:00:00

sourcel = source2

@\/

sourcel = .../directory1/test.txt
target1 = .../directory1/test.txt

relatedTo target1 = source2
l target1 # target2
Moved

source2 = .../directory1/test.txt
target2 = .../directory2/test.txt

e atod’o target1 = target2
time1 < time2
Created_Modified
source2 = .../directory1/test.txt
target2 = .../directory1/test.txt
time2 = 2020-07-06T12:02:00
Created_Modified Moved

source1 = .../directory1/test.txt
target1 = .../directory2/test.txt

relatedTo

Moved

source2 = .../directory2/test.txt
target2 = .../directory3/test.txt

J
\

target1 = source2
target1 # target2

Created_Modified

o 4

source1 = .../directory1/test.txt
target1 = .../directory1/test.txt
time1 = 2020-06-07T12:00:00

relatedTo

Created_Modified

source2 = .../directory1/test.txt
target2 = .../directory1/test.txt
time2 = 2020-07-06T12:02:00

relatedTo

Moved

source3 = .../directory1/test.txt
relatedTo target3 = .../directory2/test.txt
time3 = 2020-07-06T12:02:00

relatedTo

Created

source4 = .../directory2/test.txt
target4 = .../directory2/test.txt
time2 = 2020-07-06T12:02:00

source1 = source2
target1 = target2
time1 < time2

arget2 = source!
target2 # target3

target3
time3

ource4
ime4

=t

Figure 5.8: Example patterns considered by the construct of the relatedTo property between

events

38

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
blio
nowledge

(]
I
rk

CHAPTER

Implementation

In the previous chapter, we defined our architectural concept, the semantic model, and
the required vocabulary. In this chapter, we discuss details about our prototype to
implement the introduced approach. This includes an overview of the overall architecture,
details about involved components, performed configurations, and preconditions.

In addition, we describe used external tools and their adaptions to our needs, and com-
munication between those systems. We further discuss why we chose specific technologies
alongside their advantages and disadvantages.

6.1 Architecture

The prototype implementation in this work is a software solution that enables a near-real-
time analysis of collected semantically represented data. The result of the automated
semantic analysis is a file life-cycle presented as a history graph. We illustrate the
architecture of the software solution in [Figure 6.1.

During the development, we focused only on macOS file-system logs. Thereby, any
external tools selected required to support macOS. However, we considered providing a
solution that can easily be adapted to other Unix-based operating systems.

The prototype system includes a server component that receives file-system log data,
transforms received data into its semantic representation according to our defined ontology,
and relates access events. The architecture shows, from left to right, the process from
a log record, from its creation until analysis and storage. The process consists of the
following main steps:

1. Filter File-System Event
The first component is the client which produces log data of file-system events. The

39

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
lio
nowledge

b

i
r

6.

IMPLEMENTATION

40

File System Log Service

Posts RDF data
(JSON-LD) E
«RdfStream»

i O\
Triplewave 2 ”| streamProcessingService

«Service» {l

”1 csparqlStreamService

parsed logs E
(JSON) ()E «Service» <

HandleLogService

Client E
(audit deamon) O)_> Logstash ¢

Posts
file-system logs O . E
(XML) «Service»

TDBConnection FileHistoryService

tdb tdb
FileAccessEvent Background

Server

Figure 6.1: Architecture Diagram of prototype

client runs a Bash script which uses the auditing service of OpenBSM? for collecting
logs. We present more details about the extraction of log data in [Section 6.4. The
script sends the log data via an HTTP Post request as XML records to Logstash.
We describe Logstash in [Section 6.5.1. This tool parses the raw log data and filters
out irrelevant information. The component discards unneeded log records and filters
only for records which the later analysis requires. Thereby, the amount of log data
is scaled and easier manageable during the semantic analysis process. Logstash
forwards data in JSON format via a WebSocket to a Triple Wave instance, which
we introduce in Section 6.5.2.

. Transform into Semantic Data

We lift filtered log entries into RDF data by applying the defined FileSystemLogEntry
ontology. An instance of Triple Wave performs the transformation automatically. We
present the semantic model in [Section 5.3. After the tool represents the collected log
data semantically, Triple Wave forwards the RDF data as a stream via a WebSocket
to the implemented service "File System Log Service'.

. File Access Event Processing

In this step, C-SPARQL constructs File Access Fvents from an received RDF log
data stream. The provided service handles the incoming data stream of semantic

"http://www.trustedbsd.org/openbsm.html

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
blio
nowledge

(]
I
rk

6.1. Architecture

data by the components StreamProcessingService and CSparqlStreamService. The
service StreamProcessingService extends an RdfStream and receives incoming JSON-
LD data from the WebSocket. The service transforms the data into triples and
inserts them into an instance of an RDF stream. The service CSparqglStreamService
holds both the RDF stream and initializes an instance of a C-SPARQL engine.
Furthermore, it handles multiple instances of C-SPARQL result proxies. We require
a separate result proxy for each file access event type. Each proxy references
a SPARQL query that the engine executes over the RDF stream. Each query
searches for a different pattern of file-system events and constructs the associated
File Access Fvent. Section 6.6| explains the construction in more detail. In case a
query, registered in a proxy, produces an output within the current window, the
engine forwards the result to service HandleLogService, which handles all found
C-SPARQL results. The service takes over the triples of the File Access Event and
hands them over to the component T'DBConnection, which handles connections to
triple stores. We use Apache Jena’s TDB component to persist data. [Section 6.2
presents the component.

4. File History Reconstruction
Lastly, the server component relates the saved File Access Events. Moreover, the
system processes related events to a file life-cycle graph. [Section 6.7 describes the
process.

Based on the principles of design science as our research methodology, we required
several iterations of the design cycle in order to finalize the used technology stack and
implemented algorithms. We explained the applied methodology in |(Chapter 2. Due
to our requirements concerning the compatibility of the selected tools with each other
and by the support of the underlying operating system we required reiterations of the
design cycle. We needed to test the service for extracting log data by its outcome and
compatibility in order to meet requirements for the later software system. Thereby, the
service required to deliver certain information on performed file activities, which the
component needed to reconstruct a file live-cycle. Furthermore, we evaluated several
options available, which we describe in Section 6.4. Moreover, we developed multiple
versions of the service "File System Log Service" until requirements were met. This

includes adaptations on C-SPARQL construct queries, in order to filter for access events.

We describe the rationale behind defined construct queries as well as discovered difficulties

in [Section 6.6, Furthermore, we altered the build process of a file live-cycle repeatedly.

Section 6.7 describes the final implementation details about the reconstruction.

In the following section we explain the technology stack of our software solution as well
as the communication between implemented components and their relation between each
other.

41

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
lio
nowledge

b

i
r

6.

IMPLEMENTATION

W
o

6.1.1 Implementation Details

The technology stack of the implemented prototype consists of various external tools
coupled with a software developed in this thesis.

To build a Semantic Web application, we used the open source Java framework Apache
Jena® and included its standard and core libraries. Jena provides a programmatic
environment for RDF, RDFS and OWL, SPARQL and includes a rule-based inference
engine. Furthermore, we included the components ARG and TDB. AR(Q) provides a
SPARQL 1.1 query engine, and T DB offers libraries in order to create a native triple store.
We explain further details about the triple store and the used Apache Jena component
in [Section 6.2/ Apache Jena TDB Component.

Moreover, in order to process a continuous flow of RDF data, we incorporated an
implementation of a Continuous SPARQL engine called C-SPARQL?. Therefore, we
integrated dependencies for core components of the C-SPARQL engine and added the
component rsp-services-api’, which is a Java API to access a RSP service implementation
in combination with the C-SPARQL engine.

6

Furthermore, we used the framework Spring Boot® and Apache Maven® in order to

manage the application configuration and the build process.

The source code of the implemented prototype and other implementations can be found
on a public GitHub repository [Froschl, 2020].

6.2 Apache Jena TDB Component

In this section, we are going to explain the component used for handling the RDF storage
and the processor used for performing SPARQL queries on this storage.

The component TDBConnection provides access to triple stores of semantic data. It
uses version TDB1 of the Apache Jena component TDB'. The library provides an API
for creating RDF models and datasets. We create datasets by calling the static method
createDataset("<path to directory>") of class TDBFactory and provide the path to the
directory where we want to create the TDB for indexes and node tables. This method
call creates a TDB-backed dataset for which we can access its model®.

The TDB component offers the possibility to work with transactions that enabled us to
perform concurrent read and write operations in the same store. Moreover, it follows

Zhttps://jena.apache.org, accessed: 2019-05-06

3http://streamreasoning.github.io/TriplewWave/docs.html, accessed: 2019-05-16

“https://github.com/streamreasoning/rsp-services-api#rsp-services-apil, accessed: 2019-05-
06

Shttps://spring.io/projects/spring-bootl accessed: 2019-05-06

Shttps://maven.apache.org, accessed: 2019-05-06

7https://jena.apache.org/documentation/tdb/index.html, accessed: 2019-05-06

8https://jena.apache.org/documentation/tdb/java_api.html, accessed: 2019-05-06

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek
https://jena.apache.org
http://streamreasoning.github.io/TripleWave/docs.html
https://github.com/streamreasoning/rsp-services-api##rsp-services-api
https://spring.io/projects/spring-boot
https://maven.apache.org
https://jena.apache.org/documentation/tdb/index.html
https://jena.apache.org/documentation/tdb/java_api.html

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

M Sibliothek,
Your knowledge hub

6.3. C-SPARQL as Complex Event Processing Language

Continuous
SPARQL
Query

C-SPARQL Engine

Continuous SPARQL
Query Query
o «fodeged
ﬁgﬁﬁ“g DSMS qg“g SPARQL | e@ad=Tadel
«aeaded <3<} | Engine | 3355328
0@40@ o@ «g T IECIEE

Figure 6.2: C-SPARQL engine architecture

a Multiple Reader or Single Writer (MRSW) policy. This allows us to save new data
within its triple store and query for semantic data at the same time.

Furthermore, in order to query for semantic data using the query language SPARQL we
9

integrate the query engine ARQ, which is a Apache Jena SPARQL processor”.
We found that the open-source framework Apache Jena is an easy to use tool to handle
semantic data programmatically. Moreover, the framework is widely used, and therefore
a variety of examples on development forums and articles are available. Furthermore, the
website of Apache Jena also provides clear and structured documentation that simplifies
our implementation efforts.

6.3 C-SPARQL as Complex Event Processing Language

C-SPARQL allows us to introduce Semantic Complex Event Processing (SCEP) into our
prototype. We explain the component C-SPARQL which we use in order to query over a
continuous stream of incoming RDF data received from Triple Wave. The display the
data flow in the architecture in [Figure 6.1.

Generally, a C-SPARQL engine consists of two sub-components , as illustrated in Fig{

ure 6.2, The component DSMS is responsible for executing continuous queries over RDF
data streams. It produces temporal RDF snapshots, which will be the input for the
SPARQL Engine, which runs a standard SPARQL query against it. The binaries of the
C-SPARQL Engine use Esper and Apache Jena-ARQY.

%nttps://jena.apache.org/documentation/query/index.html, accessed: 2019-05-06

10https ://www.w3.0rg/community/rsp/wiki/RDF_Stream_Processors_Implementation, accessed:

2019-05-06

43

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek
https://jena.apache.org/documentation/query/index.html
https://www.w3.org/community/rsp/wiki/RDF_Stream_Processors_Implementation

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
blio
nowledge

(]
|
rk

6.

IMPLEMENTATION

44

abpajmouy|
punoiboeg

Continuous Flow of

]
| |:> Event Pattern
Simple Events
(Log Entry) @

Complex Event
(File Access Event)

Figure 6.3: Complex Event Processing: flow from Log Entry to Complexr Event

RDF Streams C-SPARQL Engine

File System Events i | feed stream @
; : ' CONSTRUCT Queries

Formatter HandleLogService

Figure 6.4: Process of C-SPARQL engine to handle RDF streams

describe Complex Event Processing as tool to break an event down into its
constituent events. The authors describe an event as complex if it is to be analyzed in a
more detailed granularity.

In our case, a File Access Event defines a complex event. Multiple Log Entries compose
a single File Access Event, combined by additional background knowledge. [Figure 6.3
shows the flow from Log Entries until we receive a Complex Fvent. The flow processes a
continuous flow of data, containing Log Entries and transforms each entry into a Simple
Event. In the next step, we filter for patterns within these events. Found patterns result
in Complex Fvents which we combine with additional Background Knowledge.

In the prototype implementation we use C-SPARQL construct queries in order to detect
File Access Fvents. When querying over the continuous flow of data we consider time
windows. We define an individual C-SPARQL construct query for each access type.
These queries include filters concerning access calls and other parameters contained in
log entries. [Figure 6.4 shows the process executed by our implementation. Incoming
RDF streams are fed to the C-SPARQL engine, which executes registered queries over

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
blio
nowledge

(]
I
rk

6.4. File System Event Extraction

incoming data. Service CSparqlStreamService holds an RDF stream for incoming file
system log data.

Furthermore, it holds an instance of a CsparglEngine, which registers queries for each
access type. For each query we defined a Formatter that catches results of the cosponsoring
query and forwards the result to the HandleLogService. |Section 6.6| provides further
details regarding the registered queries.

We chose C-SPARQL because of its ability to define windows over an RDF stream and
its support to register multiple queries over a single RDF stream. In addition, we were
able to use all features provided by SPARQL, since C-SPARQL is an extension of the
query language SPARQL [Barbieri et al.l 2010b|. Also, the number of implementation
examples and discussions available was in favor of using C-SPARQL.

6.4 File System Event Extraction

In this section, we focus on concepts concerning the extraction of file-system log data. We
examined several approaches to collect log data. Since we focus only on macOS file-system
logs, the following section contains alternatives to view file activities on macOS.

The operating system macOS offers several options to audit file events. Tools such as
the internal software Instruments or the command fs usage present similar outputs,

containing data about the used access call, program, timestamp, and file pathname.

However, knowledge about the related user is missing in the produced log output of both
tools.

Fs_usage !!|is a terminal command and represents a popular troubleshooting tool

that filters file operations based on the mode provided when running the command. The
use of tag -f defines the mode. For example, when filtering for only network-related file
events, we can use mode network. Mode pathname outputs only events related to the
given pathname.

Instruments '?|is an integration of Xcode's and offers powerful analysis tools with

a graphical user interface. The software offers a variety of different types of metrics
that support the gathering of information about file system reads, writes, and other
operations. The software is built upon the dynamic tracing framework DTrace |Gregg
and Mauro, 2011].

DTrace ' was created by Sun Microsystems and intended to troubleshoot kernel and
application problems. It offers powerful options to trace file activities. In order to interact

Yhttps://ss64.com/osx/fs_usage.html, accessed: 2019-05-06
12https://developer.apple.com/library/archive/documentation/Performance/Conceptual/

PerformanceOverview/PerformanceTools/PerformanceTools.html, accessed: 2019-05-06
Shttps://developer.apple.com/xcode/, accessed: 2020-01-16
http://dtrace.org/blogs/about/, accessed: 2019-04-30

45

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek
https://ss64.com/osx/fs_usage.html
https://developer.apple.com/library/archive/documentation/Performance/Conceptual/PerformanceOverview/PerformanceTools/PerformanceTools.html
https://developer.apple.com/library/archive/documentation/Performance/Conceptual/PerformanceOverview/PerformanceTools/PerformanceTools.html
https://developer.apple.com/xcode/

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
blio
nowledge

(]
I
rk

6.

IMPLEMENTATION

46

with DTrace, we can create scripts using the D programming language, similar to C, and
awk. However, it supports also a direct usage on the command line. According to [Gregg
and Mauro| [2011], DTrace is used to observe exactly how the file system responds to
applications, how effective file system tuning is, and the internal operations of file system
components.

Even though DTrace offers a powerful tool that met our requirements, we decided to use
the auditing service by OpenBSM to produce our log data. Reasons for this decision
were primarily the easy use of OpenBSM, compared to the rather complex DTrace syntax.
Also, the produced outputs contained all information needed.

OpenBSM '%/is an open source implementation of Sun’s Basic Security Module (BSM)
security audit API and file format. It can be used to maintain system audit streams'®.
The implementation enabled us to perform live auditing on macOS in order to detect file
system events such as opening or editing of a file. The audit daemon (auditd) offers a
wide arrange of system log data. Therefore, we have to configure the output in order to
filter only for records concerning file-system operations. The configuration file, located
in path /etc/security/audit__control, provides information on what auditd is currently
auditing. The file contains information on the configured audit classes and for which
the operating system produces user log data. Provided audit classes are found in a file
located at /etc/security/audit _class. We configured file related audit classes concerning
read, write, access, modify, create, and delete operations. Appendix A in [Section 8.3
shows our configuration files for setting up the audit daemon.

The tool saves logged content in the directory /var/audit. The files are binary, therefore
we use additional tools to read its content. The tool auditreduce provides filters for
records and tool praudit handles conversions of their content in a readable format, such
as XML by using the -z flag.

The macOS kernel reports system events in real time. A process with sufficient privilege
can access the resulting records by reading the named pipe /dev/auditpipe |Gehani and
Tariq, 2012]. By combining provided tools, we achieve to extract real-time file system log
data by the command in Listing 6.1.

$ sudo auditreduce —o file=’<directories to audit>’ /dev/auditpipe |
praudit —xn

Listing 6.1: Command to output real-time log data in XML format

In summary, the tool auditreduce provides real-time log data and offers the possibility to
filter for only events occurring within given paths defined by the -o flag and parameter
files. The tool praudit can presents its output in XML format by using an -z flag.

Bhttp://www.trustedbsd.org/openbsm.html, accessed: 2019-04-30
https://github.com/openbsm/openbsm, accessed: 2019-04-26

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek
http://www.trustedbsd.org/openbsm.html
https://github.com/openbsm/openbsm

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
blio
nowledge

(]
I
rk

6.5. External Tools

6.5 External Tools

In the upcoming sections, we introduce external tools used within our prototype system.
These tools include Logstash and Triple Wave to filter, parse and transform logged data
into RDF. Logstash receives and parses the extracted log data from client machines and
forwards the filtered data to Triple Wave. The tool transforms received data into its
semantic representation. The system architecture contains both components in Figure 6.1.

6.5.1 Logstash

The tool Logstash is a free and open-source component. It was originally developed
by Jordan Sissel and now maintained by the Elastic team. On the Elastic’s website!”
Logstash is described as an open-source, server-side data processing pipeline that ingests
data from a multitude of sources simultaneously, transforms it, and then sends the data
to your favorite stash. It provides a framework for log collection, centralization, parsing,
storage, and search |[Turnbull, |2016]. Furthermore, we can use the filter component in
order to manipulate and filter data. In addition, Logstash can then transmit data over
different output plug-ins to a subsequent system, which further handle parsed log data.

The configuration file auditpipe.conf of our file-system log pipeline consists of tree sections
[Turnbull, [2016]. Listing 6.2 illustrates those sections.

input{}
filter {}
output{}

Listing 6.2: Tree sections of a Logstash pipeline

The input section describes how the pipeline receives file system audit records. The
filter portion contains any transformation steps and the output portion contains the
configuration of how the tool transmits the data. Our implementation of file auditpipe.conf
can be found in our GitHub repository [Froschl, 2020]. However, the following segments
give a short overview of the operations performed on each log entry.

In the input portion of our auditpipe.conf we described how the pipeline receives data
for parsing and further transformation activities.

Logstash provides an input plug-in called Auditbeat® which delivers all user activities and
processes them without the need of using auditd. However, this plug-in is only available
for Linux and is not compatible to macOs’s version of auditd provided by OpenBSM.
According to an open feature request'” on the Elastic Github repository, the support
for Mac auditing is planned but currently not implemented. Therefore, we chose to use
OpenBSM instead in order to get log data directly from the auditing service.

t18

ww.elastic. co, accessed: 25-01-2020

Bhttps://www.elastic.co/de/beats/auditbeat, accessed: 2019-05-17
Yhttps://github.com/elastic/beats/issues/6061, accessed: 2019-05-17

47

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek
www.elastic.co
https://www.elastic.co/de/beats/auditbeat
https://github.com/elastic/beats/issues/6061

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
blio
nowledge

(]
I
rk

6.

IMPLEMENTATION

48

We received log data from clients via HI'TP. Therefore, we use the input plug-in http for
incoming data. The filter portion contains any data manipulations and transformations
of the received data. The auditing service of OpenBSM outputs more data than we
actually need to handle. Therefore, we filter log events for specific accessCalls, which are
related to file operations we want to find. By excluding log entries of specific accessCalls
we also aim to make the amount of logged events more manageable and we reduce the
amount of log data that a subsequent system needs to process. Moreover, we extract
information about the timestamp, file path, filename, hostname, IP address, and the
username from log entries. Furthermore, we associate each log entry with a UUID. The
plug-in date helps us to convert the timestamp into UTC. The plug-in aml extracts
information contained in XML-tags and the plug-in mutate helps us to rename fields or
remove unused data.

The output portion defines any plug-ins for sending transformed data to a particular
destination. We are using the plug-in websocket which runs a WebSocket server on default
port 3232 and publishes any messages in JSON format to all connected WebSocket clients.

6.5.2 TripleWave

Triple Wave?! is an open-source framework for creating RDF streams and publishing them
over the Web. The framework is able to process data streams into RDF and publishes it
again as an RDF stream, which then the RDF stream processing engine can consume.

Triple Wave was motivated due to the lack of standards concerning protocols and mecha-
nisms for RDF stream exchange, which limits the adoption and spread of RSP technologies
on the Web [Mauri et al.,[2016]. Communication supported by Triple Wave is a pull-based
consumption of stream data and push communication through WebSockets. Thereby the
tool can pull any data from Logstash and push it again via a WebSocket for our prototype
to consume. TripleWave transforms data from Logstash into its semantic representation
according to our defined semantic models introduced in [Section 5.3.

In order to illustrate how we involved Triple Wave, we added a simplified version of
its architecture in [Figure 6.5, which is based on the overall architecture presented by
Mauri et al|[2016]. As we can see in the figure, Triple Wave receives JSON data from
Logstash and converts the data into an RDF stream. Any data received is non-RDF and
Triple Wave transforms it to its RDF representation. We define the semantic model by an
R2RML?" mapping file.

Mauri et al. [2016] describes that the tool uses a generic transformation process. A
R2RML mappings specifies this process. Although these mappings were originally
conceived for relational database inputs, Triple Wave uses light extensions that support
other formats such as CSV or JSON. After the conversion, Triple Wave pushes data via a
WebSocket as JSON-LD??| and our client prototype consumes the data. We downloaded

20http://streamreasoning.github.io/TripleWave/docs.html, accessed: 2019-05-16
https://www.w3.0rg/TR/r2rml/, accessed: 2019-05-15
2Zhttps://json-1d.orgl accessed: 2019-05-05

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek
http://streamreasoning.github.io/TripleWave/docs.html
https://www.w3.org/TR/r2rml/
https://json-ld.org

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
blio
nowledge

(]
|
rk

11

6.5. External Tools

E— JSON . 5
—) i -
: ‘ {i} Conversion to e st 7]
logstash RDF Stream Live RDF Stream
Live Nori-ROF Steam nnmnr
R2RML
Mappings

Figure 6.5: The architecture of TripleWave

the Triple Wave project from Github?3|in December of 2018, therefore any of the following
issues described are concerning the implemented version at this time. We faced an
issue during the transformation of data to its RDF representation. When using the
original transformation process the first subject is set as the subject for all following
objects. Therefore the resulting RDF data is not accurate in case we have to transform
a more complex semantic model. In order to solve the transformation we changed the
implementation of function transform within two files which were r2rml-js/r2rml.js and
stream/enricher.js. Appendix B in Section 8.3 shows our implementation of both files.

After we added the required changes to the transformation implementation, we had to
create two additional components:

1. a web stream connector (shown in Listing 6.3)) and

2. a R2RML mapping file containing the semantic model (shown in |[Listing 6.4).

For their implementation we followed the documentation on the Triple Wave homepage?.

In our connector we implement a nodejs Transform Stream, which reads incoming data
of the Logstash WebSocket. The presented stream produces a stream of all file event log
data.

var stream = require(’stream’);
var util = require(’'util’);
var WebSocket = require(’'ws’)

var Transform = stream.Transform ||
require(’readable-stream’).Transform;

function LogstashStream(options) {
if (!(this instanceof LogstashStream)) {
return new LogstashStream(options);

}

Zhttps://github.com/streamreasoning/TripleWavel accessed: 2019-05-15
24http://streamreasoning.github.io/TripleWave/docs.html, accessed: 2019-05-16

49

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek
https://github.com/streamreasoning/TripleWave
http://streamreasoning.github.io/TripleWave/docs.html

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

@ Sibliothek,
Your knowledge hub

6. IMPLEMENTATION
13 this.socket = new WebSocket(’ws://0.0.0.0:3232/");
var _this = this;
15
this.socket.on("message", function incoming(data) {
17 console.log(JSON.parse(data));
if (!_this.close) {
19 _this.push(JSON.parse(data));
} else {
21 _this.push(null);
}
23 1)
// init Transform
25 Transform.call(this, options);
}
27
util.inherits(LogstashStream, Transform);
29 |LogstashStream.prototype._read = function(enc, cb) {};
LogstashStream.prototype.closeStream = function() {
31 this.close = true;
}i
33 |exports = module.exports = LogstashStream;
Listing 6.3: Nodejs Transform Stream
In order to transform the produced stream into its RDF representation, we needed the
R2RML mapping which we display in Listing 6.4.
1 |@prefix rr: <http://www.w3.0rg/ns/r2rml#>.
@prefix sr: <http://purl.oclc.org/rsp/srml#>.
3 |@prefix rml: <http://semweb.mmlab.be/ns/rml#>.
@prefix xsd: <http://www.w3.0rg/2001/XMLSchema#>.
5 |@prefix rdfs: <http://www.w3.0rg/2000/01/rdf-schema#>.
@prefix rdf: <http://www.w3.0rg/1999/02/22-rdf-syntax-ns#>.
7 |@prefix time: <http://www.w3.0rg/2006/time#>.
@prefix schema: <https://schema.org/>.
9 |@prefix fileSystem: <http://w3id.org/sepses/vocab/fileSystemLog#>.
@prefix : <http://epfl.ch/mapping/>.
11
13 | :LogEntryMap a rr:TriplesMap;
rml:logicalSource [
15 | rml:root true;
rml:source "jdbc coso"; 1;
17 |rr:subjectMap [rr:template "http://w3id.org/sepses/vocab
/fileSystemLog#LogEntry-{id}"];
19 | rr:predicateObjectMap [rr:predicate fileSystem:accessCall;
rr:objectMap [rr:template "{accessCall}" 11;
21 |rr:predicateObjectMap [rr:predicate fileSystem:timestamp;
rr:objectMap [rr:template "{timestampLog}" 11;
50

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
lio
nowledge

b

i
r

23

25

27

29

31

33

35

37

39

41

43

6.6. Event Detection and Semantic Data Analysis

rr:predicateObjectMap [rr:predicate fileSystem:logMessage;
rr:objectMap [rr:template "{logMessage}" 11;

rr:predicateObjectMap [rr:predicate fileSystem:hasFile;

rr:objectMap

[rr:template "http://sepses.ifs.tuwien.ac.at/
vocab/fileSystemLog#File-{id}";

rr:parentTriplesMap :FileMap 11;

:FileMap a rr:TriplesMap;

rml:logicalSource [

rml:root true;

rml:source "jdbc coso"; 1;

rr:subjectMap [rr:template "http://sepses.ifs.tuwien.ac.at/
vocab/fileSystemLog#File-{id}"];

rr:predicateObjectMap [rr:predicate fileSystem:fileType;

rr:objectMap [rr:constant "_:n3" 1];

rr:predicateObjectMap [rr:predicate fileSystem:pathname;

rr:objectMap [rr:template "{pathname}" 11].

Listing 6.4: R2RML mapping of file events

The R2RML file for audit records contains only an abstract from the entire configuration
file in order to illustrate how our project defines triples.

The first TripleMap (line 12 - 31) defines the class of a log entry with its properties. At
line 27 we define the LogEntryMap as parent map of a subsequent FileMap, that contains
file properties. The entire file can be found in our GitHub repository [Froschl, [2020].

6.6 Event Detection and Semantic Data Analysis

In the following section we describe our conceptual steps to detect and create File Access
Events. Therefore, we need to clarify which file operations we want to detect and which
system calls the file system carries out for each event. For this purpose, we collected and

analyzed real file event log data to identify the underlying access calls for each event, i.e.:

(i) Move, (ii) Copy, (iii) Create, (iv) Modify, (v) Rename and (vi) Delete.

(i) Move represents a move of a file into a different directory. The terminal command
mv will trigger the access call rename(2). Thereby, the operation changes the
pathname of the file. However, in the case of a move operation, only the directory
differs from the original pathname. The name of the file doesn’t change.

(ii) Copy is an operation that creates an identical file based on a copied file. When a
user copies a file, we discovered a sequence of two access calls. The first event is

51

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
blio
nowledge

(]
I
rk

6.

IMPLEMENTATION

52

(iii)

(vi)

the access of the original file and the second event represents the creation of the
new file. However, the performed access calls differ between a copy operation into
the original folder or into a different directory which we need to consider when
trying to detect those patterns. In addition, produced access calls can also differ by
the sequence of access calls executed, in case a user copies a file manually in the
Finder or by a Bash command cp. The Finder triggers the access call open(2) -
read, which opens the file to copy, followed by the call setattrlist(), which sets
the attributes of the copied file. The terminal command cp triggers the access call
fstatat(2), followed by the call open(2) - write,creat,trunc.

Create operations can trigger a collection of different access calls. The program
determines which call the operation triggers in order to access a resource. Therefore,
the access call depend on the particular program or process. Therefore, the same
File Access Fvent can result in multiple different access calls by the operating
system and for full coverage, we would have to consider all possible system calls
by any program a user has access to. This is based on the fact that system calls
are provided by the operating system via an application programming interface.
Programs access those interfaces in order to request needed resources from the
kernel [Silberschatz et al., [2018].

Modify is similar to a Create operation. Triggered access calls can be a collection
of system calls depending on the used program. The access calls produced by Modify
and Create also overlap. Therefore these activities are hard to differentiate and the
service combines them into one event called Created Modified.

Rename is an operation that changes the file name. This activity triggers the
same access call as Move. However, the directory remains the same, and only the
file name changes. Therefore, we need to consider the path of the source and target
file in order to distinguish between File Access Fvents.

Delete represents a Move operation in the directory /.Trash/ within macOS.
Therefore, in order to detect this activity, we need to find a log entry which shows
a Mowve operation into a specific directory. We do not consider a final deletion from
/.Trash/ in this thesis. However, this pattern would trigger another access call
which the C-SPARQL engine needs to consider.

We aim to detect the pattern of each file operation which consists of a single log entry or
a sequence of two log entries. Furthermore, each pattern results in the creation of a new
File Access Event. We construct the event by the attributes contained in the detected
log entry or entries.

Table 6.1 summarizes which file activities we monitor, which access calls the file activities
trigger and we needs to consider, and lastly, which File Access Event should be constructed.

The column File System Operation represents defined file system operations we aim
to identify. The next column shows any access calls contained in logged audit records.

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
blio
nowledge

(]
I
rk

6.6. Event Detection and Semantic Data Analysis

File System Op- | macOS Access Call Access Event
eration Type
Move rename(2) Moved
access of file to copy:
Copy fstatat(2)
(into different create new file: Created/Copied
directory) open(2) - write,creat,trunc
Copy access of file to copy:
(in same open(2) - read Created/Copied
directory) create ne.w file:
setattrlist()
Create open(2) - rea.d,creat, Created
open(2) - write,creat
openat(2) - read,
open(2) - read,write,
open(2) - write,creat,trunc,
Modify open(2) - read,write,creat,trunc, | Created/Modified
open(2) - write,creat,
open(2) - read,write,
open(2) - write
Rename rename(2) Renamed
rename(2) —>
Delete move to directory
/. Trash/ MovedToRecycleBin

Table 6.1: Mapping of macOS access calls to FileAccessEvent actions

Finally, the column Access Event Type displays the associated high level File Access
FEvent.

In the prototype system, we are using the complex event processing engine C-SPARQL.
The engine registers a SPARQL construct query for each pattern. Each query filters
for attributes which are for example the access call file pathname, directory, and the
timestamp. In the case of a copy operation, the query correlates subsequent log entries
according to the contained timestamp.

Figure 6.6/shows an overview of the filters used for constructing File Access Fvents such as:
(i) Created, (ii) Created__Modified, (iii) Renamed, (iv) Moved and (v) Moved-
ToRecycleBin. .

(i) We detect Created by a combination of two access calls. The operating system

creates those access calls solely when the user generates a new file.

53

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

M Sibliothek,
Your knowledge hub

6. IMPLEMENTATION
! accessCall = ‘ .CONSTRUCT
< '"open(2) - read,creat"/ » File Access Event
~_"open(2) - writecreat’ | "Created"
4 accessCall =
"openat(2) - read"/
"open(2) - read,write"/
LogiEntry "open(2) - write,creat,trunc'/ 'CONSTRUCT
e "open(2) - read,write,creat,trunc'/ A Aeeess =
_ "open(2) - write,creat"/ Created_Modified
"open(2) - read,write"/
"open(2) - write"
accessCall =
"rename(2)" CONSTRUCT
AND File Access Event
directory source = "Renamed"
directory target
Voo PR
"rename(2)" A CONSTRUCT
AND ————>| File Access Event
directory sourcez "Moved"
\\\directory target X
accessCall =
"rename(2)" CONSTRUCT
AND File Access Event
directory target = "MovedToRecycleBin"
"/.Trash/"
Figure 6.6: File Access Types constructed from a single log entry

(ii) The system detects Created__Modified by a collection of different access calls.
The access call performed depends on the program used for modifications. Filtered
system calls mostly contain information on operations such as write, read, creat,
and trunc. Therefore we are not able to distinguish between a Create or Modify
operation in most cases.

(iii) Renamed triggers access call rename(2). Moreover, we require to control the
directory of the source and target pathname, which have to be equal.

(iv) Moved also performs access call rename(2). It differentiates by Renamed by the
filter for the source and directory pathnames. The paths have to be different on a
move operation.

(v) MovedToRecycleBin is a special case of a Moved event. Thereby, the target
path has to be the directory /. Trash/.

In addition to the previously explained File Access Events we define two separate SPARQL

construct queries for the event Created_ Copied displayed in Figure 6.7/ and Figure 6.8.

The first query identifies copy activities within the same directory and the second query
searches for copy operations into another directory. The defined queries only find copy
54

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

w Sibliothek,
Your knowledge hub

6.6. Event Detection and Semantic Data Analysis

VN

N A
Log Entry 1: / \\
filename .o N
originalPathname1 —>»< "fstatat(2)")
directory1 \ //
timestamp1) \\ y
7 \\ filename1 #
filename2 g N
AND CONSTRUCT

timestamp1 =

timestamp2 originalPathname1 =

pathname2
AND

directory1 =

directory:

File Access Event
"Created_Copied"

Log Entry 2:
filename2 accessCall =
pathname2 "open(2) - write,
directory2 creat,
timestamp2 trunc"

Figure 6.7: Construct of File Access Event Created Copied in the same directory

//\\
yr-— X // \\\
Log Entry 1: 4
filename1 accessCall = b
ire 2 "fstatat(2)" y
directory1 . (2) 4
timestamp1 G p
R \ /,
) 4

filename1 =
filename2
AND
directory1 #
directory2

CONSTRUCT
File Access Event

"Created_Copied"
A8

timestamp1 =
timestamp?2

accessCall =

"open(2) -
write,

creat,trunc"

Log Entry 2:
filename2
directory2

timestamp2

Figure 6.8: Construct of File Access Event Created Copied to a different directory

operations produced by the Bash command cp. In case a user performs copy operations
manually in the Finder, or by any other process, we have to define additional queries
since the pattern differs from the pattern the Bash command cp triggers.

In Figure 6.7 the first log entry (Log Entryl) represents the access of the file, which
the user aims to copy. The second log entry (Log Entry2) shows the actual write or
create operation of the new file. Both events have to occur at exactly the same time. On
macOS, a copied file always will contain the original file name with an additional string
"copy" at the end of the name. Therefore, the new pathname is equal to the original
pathname of Log Entryl. However, the filename of the new file changes. Moreover, we
also check if the directory is the same in both events.

Figure 6.8 shows the pattern of log entries triggered for copy actions into a different
directory. This pattern differs from the previous sequence by the filename and the
directory. The filename of the new file stays the same as the original filename. However,
the directory differs between both events.

55

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
blio
nowledge

(]
I
rk

6.

IMPLEMENTATION

56

In summary, in order to transform audit log records to file access events, we have to
detect, interpret, and correlate the underlying system calls. In addition, the service
has to consider different log entry patterns based on the used process or program. In
case different patterns result in the same File Access Event, we have to define multiple
queries, one for each pattern, since the pattern of access calls depends on the program
used. Thereby, we are able to construct a copy event by different patterns, i.e. in case a
user performs a copy via a terminal command or manually in the Finder.

6.7 File History Graph

One of our main goals is to reconstruct a file life-cycle in order to retrace past operations.
We explained in [Section 5.7 how we aim to link related events. In summary, we aim
to link File Access Events, which belong to the same history by the property relatedTo.
Therefore, we perform a SPARQL contruct query which filters for the sequence of four
events (i.e. Eventl, Event2, Event3 and Event4), displayed in Figure 5.7. We explained
the concept behind the query and our rationale in Section 5.7. In case such a pattern
is found the query constructs the triples Eventl relatedTo Event2, Fventl relatedTo
Event3, Eventl relatedTo Fvent4, etc. and vice versa. Figure 5.8 illustrates an example
containing all four events, which we describe in Section 5.7.

Furthermore, we require to perform the construct query for every occurred pathname.
Consequently, we need to call the query recursively. Before each iteration, the service
has to adapt the initial pathname of Fvent 1 to the next occurred pathname. We solved
the recursive call of the construct query programmatically. Therefore, we implemented
the service FileHistoryService, which is also included in the architecture of our system in
Figure 6.1.

The service FileHistoryService collects all occurred pathnames and executes the construct
query for each. Since we are aiming to implement a near real-time auditing system we
perform the construction of property relatedTo by a scheduler that continuously performs
our queries. Figure 6.9 shows a flowchart of the tasks performed by the implemented
scheduler, since we experienced fast results on this interval. We choose a period of 60
seconds for the scheduler. We experimented with a period of 60 seconds for the scheduled
task. However, we would suggest making the period configurable in order to be able to
adapt the time for life-cycle reconstructions. The scheduled task constructs the property
relatedTo for all past File Access Events.

In order to query for a file life-cycle, we implemented a single-page Web App providing a
search box for file pathnames. We built the front-end via Vanilla JS?° in order to create
a Single Page Application. The front-end communicates with the back-end server via
AJAX. The service offers an HT'TP endpoint to receive any POST requests containing
the pathname for which the system needs to build the history graph.

25https ://www.sitepoint.com/single-page-app-without-framework/, accessed: 2019-06-03

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek
https://www.sitepoint.com/single-page-app-without-framework/

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

M Sibliothek,
Your knowledge hub

6.7. File History Graph

Scheduled task which is

G repeated every 60 seconds

Run construct SPARQL
query for finding copy

operations E
"""""""" Considers copy

+ operations in same directory

or to other folder

Construct "realtedTo"
property between related
events by construct SPARQL
query

Figure 6.9: Flow of scheduler task in service FileHistorySeruvice.

Start 0 B

SPARQL Select queries for given

source and target file connected
Get "relatedTo" events
which have given | ..
pathname as source or
target file pathname

by "relatedTo" property.

Recursive call to query for all

l relevant sourceftarget files.

Create JSON containing all
event nodes for the file
history graph.

Figure 6.10: Process of creating JSON Nodes of a file-history by service FileHistoryService.

We use the JS library vis.js*° in order to visualize a graph. Therefore, the server has
to transform the history data as JSON, which an endpoint then hands over to wis.js.
The JS creates all nodes and edges contained in the JSON. Nodes represent pathnames

and edges show performed actions. The service FileHistoryService constructs the JSON.

Figure 6.10 shows the process of creating the JSON files containing the history graph.

To provide more information on the operation, we added a click listener to each edge.
By clicking on any edge of the graph, more information on the selected action is shown.

The shown details include the timestamp when the user performed the action, the source,
and target pathname as well as the involved user. An example of the resulting graph is
shown in Figure 6.12,

2https://visjs.org, accessed: 2019-06-03

o7

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek
https://visjs.org

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

6. IMPLEMENTATION

logstash

semantic web
framework

Figure 6.11: Event flow overview of all components

6.8 Event Flow of User Interaction

In this section, we aim to provide an overview of the messages passing through the
components. We created a single move event resulting in an access event Moved. We
displayed each message created in the solution in Figure 6.1 The presented example
only shows a single log entry which results in one complex event.

1. An event flow starts with a user interaction. The user accessed a file and moved it
to another directory. |Listing 6.5 displays the resulting audit record XML. To make
the messages easier to present, we only presented one log entry.

<record version="11" event="rename(2)" modifier="0"

2 time="Sat Feb 8 14:09:53 2020" msec=" + 602 msec" >
<path>/Users/Agnes/Desktop/test/testfile.txt</path>

4 <path>/Users/Agnes/Desktop/test/testfile. txt</path>
<attribute mode="100644" uid="501" gid="20" fsid="16777220"

6 nodeid="55968680" device="0" />
<path>/Users/Agnes/Desktop/sample/testfile.txt</path>

8 <path>/Users/Agnes/Desktop/sample/testfile.txt</path>
<subject audit-uid="501" uid="501" gid="20" ruid="501"

10 rgid="20" pid="370" sid="100008" tid="50331650 0.0.0.0" />
<return errval="success" retval="0" />

12 | </record>

Listing 6.5: Step 1: Audit record of move operation

2. Logstash parses the created XML record. The tool performs defined filters in the
pipeline configuration file and outputs a JSON shown in [Listing 6.6.

thele

(]
blio
nowledge

(]
|
rk

58

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

6.8. Event Flow of User Interaction

10

12

14

16

3. In this step, Triple Wave transformed the received data into its RDF representation.

10

12

14

16

18

20

22

{ pid: '370’',
logMessage:
"<record version="11" event="rename(2)"...> ... </record>',
logTypeName: ’UnixAuditdFile’,
host: ’'128.130.233.117',
pathnameTarget: '/Users/Agnes/Desktop/sample/testfile.txt’,
hostName: 'e233-117.eduroam.tuwien.ac.at’,
ip: '128.130.233.117’,
dirSource: '/Users/Agnes/Desktop/test/’,
dirTarget: ’'/Users/Agnes/Desktop/sample/’,
accessCall: 'rename(2)’,
timestamplLog: '2020-02-08T14:09:53.000Z',
id: 'b6cOfb05-b510-4fad-bc79-37a6555835a2",
username: '501’,
pathnameSource: '/Users/Agnes/Desktop/test/testfile.txt’

Listing 6.6: Step 2: JSON output from Logstash

Listing 6.7| presents the resulting JSON-LD.

{ "egraph”: [
{ "egraph”: [
{

"@id": "http://w3id.org/sepses/vocab/fileSystemLog#

{

File-b6cOfb05-b510-4fad-bc79-37a6555835a2",
"http://w3id.org/sepses/vocab/fileSystemLog#dirSource":
"/Users/Agnes/Desktop/test/",
"http://w3id.org/sepses/vocab/fileSystemLog#dirTarget":
"/Users/Agnes/Desktop/sample/",
"http://w3id.org/sepses/vocab/fileSystemLog#pathnameSource":
"/Users/Agnes/Desktop/test/testfile.txt",
"http://w3id.org/sepses/vocab/fileSystemLog#pathnameTarget":
"/Users/Agnes/Desktop/sample/testfile. txt"

I

"@id": "http://w3id.org/sepses/vocab/fileSystemLog#

Host-b6cOfb05-b510-4fad-bc79-37a6555835a2",
"http://w3id.org/sepses/vocab/fileSystemLog#hostName":
"e233-117.eduroam. tuwien.ac.at",

}

w Sibliothek,
Your knowledge hub

Listing 6.7: Step 3: Excerpt of JSON-LD output from Triple Wave of move event

59

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
lio
nowledge

b

i
r

6. IMPLEMENTATION
{Users/Agnes/Desktop/test/testfile.txt @

Event - '\"Moved\"**http://www.w3.0rg/2001/XMLSchema#string'

Timestamp: \"2020-02-08T714:09:53.000Z\"

From: /Users/Agnes/Desktop/test/testfile.txt

To: /Users/Agnes/Desktop/sample/testfile.txt

User: 501

Source-Host: e233-117.eduroam.tuwien.ac.at

Target-Host: e233-117.eduroam.tuwien.ac.at
@esloesmopnes@ </Users/Agnes/Desktop/sample/testfile txt>

\"Moved\"**http://lwww:w3:0rg/2001/XMLSchema#string
Figure 6.12: Step 4: Graph presentation of pathname in Web UI

4. In this step, our prototype analysed the consumed RDF data and built a history
graph of all occurred filepaths. The user can then view the created graph by a Web
UI shown in |Figure 6.12.

5. In the last step, we link to defined Background Knowledge which enables us to
reason about the communication channel and the user who performed the audited
file activity. [Figure 6.13| and [Figure 6.14] show an instance of our Background
Knowledge regarding a User Account and an Exfiltration Channel with the retrieved
information from the log data.

The displayed example contains only one access event. When the user selects an edge of
the graph, the Ul displays information on the event.
60

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

Y 3ibliothek,
Your knowledge hu

6.8. Event Flow of User Interaction

I- “128.130.233.117"

N

“agnes.froeschi@test.com”

“Agnes” | | “Fréschl”

Figure 6.13: Step 5: Instance to Background Knowledge User Account

‘user-desktop-directory” || “intern” “~/Desktop”

Figure 6.14: Step 5: Instance to Background Knowledge Ezfiltration Channel

61

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

“}auioljqig usipn NL e ud ul s|ge[rene si sisayl SIUl JO UOISIaA feulBblio pasoidde ay < any a8pajmoun Jnoa
“regBnpian 3ayiolgig Usip NL Jap ue 1si liaglewoldiq Jasalp uoisiaAfeulBuO aponipab ausiqoidde aiq v_ﬂ_-_u.o__n__m

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
blio
nowledge

(]
I
rk

CHAPTER

Evaluation

In this chapter, we present several scenarios that aim to evaluate our implementation.
First, we describe automated scenarios to verify the detection capabilities on single
and mixed file operations. Then we present the performance results and discuss them.
Furthermore, we present a data exfiltration scenario with manual user interaction and
measure the performance in this realistic setup. Lastly, we conceptually compare our
approaches to existing forensic analysis tools, which we defined in |Chapter 4, and discuss
alternative approaches to C-SPARQL.

7.1 Automated Scenarios

The following sub-sections define the conducted evaluation of automated scenarios. This
includes a definition of how we measure test results, as well as details about the test
setup and how the evaluation simulates file operations.

Automated test runs aim to evaluate our first research question described in [Section 1.3.
This includes the question under which circumstances we can represent log data semanti-
cally by a near-real-time system. Therefore, we aim to evaluate the performance of our
prototype system.

7.1.1 Measurement Factors

In our evaluation, we aim to measure the performance and throughput regarding detected
events of the prototype system. We use the practices of information retrieval in order to
calculate the performance of detected events |[Goutte and Gaussier, 2005|. The indicators
are precision and recall which we calculate for each test run.

e Precision: This is the fraction of the relevant detected events among all detected
events.

63

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
blio
nowledge

(]
|
rk

7. EVALUATION

‘ Predicted class

detected not detected
detected True Positive (TP) | False Negative (FN)

not detected | False Positive (FP) | True Negative (TN)

Table 7.1: Confusion Matrix

Actual class

Metric | Formula

o . TP
Precision TP+FP)
TP
Recall TPTFN)

Table 7.2: Metrics with Formula

e Recall: This is the fraction of the total amount of produced events that we
detected.

Table 7.2 displays the formula of both calculations. Furthermore, our classification model,
which the formulas use, is shown in the confusion matrix in |[Table 7.1. The Predicted
class describes all file events that our solution detected. The Actual class, on the other
hand, represents the actual events that happened on the computer.

The following list contains all cases of our classification model in Table 7.1:

e True Positive (TP): A TP includes detected events which actually happened on
the computer.

e False Negative (FIN): A FN includes not detected events that actually happened
on the computer.

e False Positive (FP): A FP includes detected events that did not happen on
the computer. This includes additional events that do not fit in predicted event
patterns.

e True Negative (TN): A TN would be an event which we did not detect and that
did not happen on the computer. This metric does not make sense in our scenario,
and therefore we will not include it in our evaluation. Thereby, we are also not able
to calculate the accuracy.

In summary, in order to calculate the performance of detected events we classify detected
File Access Events by our confusion matrix (Table 7.1) and calculate precision and recall
using formulas (Table 7.2) for each test run. Thereby, we aim to examine scenarios by

64

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
blio
nowledge

(]
I
rk

7.1. Automated Scenarios

the success rate of detected events and find limitations concerning the recognition of
events. We explain the exact scenarios of our test runs in the following section.

7.1.2 Test Scenarios

In this section, we describe the scope of automatically performed test scenarios. The
aim of these scenarios is to evaluate the throughput of detected events of the developed
prototype system. Thereby, we also aim to identify the limitations of our system regarding
event detection.

We classify test scenarios into shorter tests, which should show the overall performance
regarding the detection of single event types, and longer test iterations which should
show if the testing period influences results regarding the detection. Hence, we defined
the following scenarios:

1. Separate performance tests: This scenario focuses on testing the detection of

each file operation separately. We only produce events of a single file operation on
each iteration. The first entry in Table 7.3 summarizes the setup. The test runs
last for 5 minutes and involve a single client.

In order to find the limits of our system, we decrease the waiting time between file
activities until the system is not able to detect produced events anymore. Therefore,
we start on a fixed interval of 60 seconds between events. We half the time in each
iteration until we reach the limit, where we cannot detect events anymore.

. Mixed performance tests: This scenario follows the same setup and focuses on

the same goals as the previous scenario. However, we include a mixture of all File
Access Fvent types in each test run. The second entry in [Table 7.3 displays the
exact setup.

. Load-Tests with fixed intervals: This scenario aims to test the performance

during a longer period. Hence, we are going to run the same test setup as the
previous iterations including all event types. However, one iteration lasts for one
hour. The third entry in Table 7.3 describes the setup. We use a fixed interval

between produced events which is within the limits we detected in the previous tests.

The main goal of this scenario is to identify if a longer testing period influences the
performance.

. Load-Tests with random intervals: In this scenario, we aim to evaluate the

performance of randomly varied intervals between file operations. The test runs

last for one hour and the used scripts chose the time between operations randomly.

Thereby, we aim to identify if the performance changes, compared to fixed intervals
between events. The fourth entry in Table 7.3 include the setup. In addition, we
also aim to include the logs from up to two clients.

65

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
blio
nowledge

(]
I
rk

7. EVALUATION

66

| Test-Type | Sequence Events | Client | Duration | Wait times
. . 60, 30, 15, 7.5, 3.75,
1 | Performance | Single file events 1 5 min. 1.88, 1, 0.94, 0.47, etc.
. . 60, 30, 15, 7.5, 3.75,
2 | Performance | Mixed file events 1 5 min. 1.88. 1, 0.94, 0.47, etc.
3 | Load testing | Mixed file events 1 1 hour fixed time: 15 sec.,
7.5 sec. and 1 sec.
. . random times in sec.:
4 | Load testing | Mixed file events 1-2 1 hour 60, 30, 15, 7.5, 3.75. 1.88, 1

Table 7.3: Test setup

In summary, automated test scenarios aim to calculate the performance of detected
events under different conditions, such as changing time interval between events, different
sequences of single or mixed event types, and different durations of test runs.

7.1.3 Experimental Setup

This section describes details about the setup and the scope of automated test runs. This
includes involved folders, file-types and used Bash commands in order to simulate file
operations. File resources of our test runs include files of type tzt, xml, zlsx and docz.
Programs involved are: TextEdit, Visual Studio Code, Microsoft Word and Microsoft
Excel.

In addition, we include up to 16 local folders, which contain up to 30 files with an equal
number of files of each file-type. This number of available files ensures sufficient available
files in case of test runs, which only contain access type MoveToRecycleBin.

By running a Bash script we execute the test iterations automatically. We created several
scripts for running each test scenario. The scripts can be found on our GitHub [Froschl,
2020| repository. The script picks the source and target file randomly from a list of
defined directories. In order to reproduce the order of chosen pathnames and operations,
we saved each iteration, in order to be able to repeat the exact same sequence of file
activities. We defined a window size by the range of [RANGE 10s STEP 3s] in each
C-SPARQL construct query. We discovered the best throughput of detected events on
this window size during our experiments.

In [Table 7.4 we list all Bash commands used for simulating each File Access FEvent. In
order to simulate mouse and keyboard events, we use the command-line tool Cliclick®.
This tool enables us to automatically edit a file. A modification always consists of opening
the file, copying the content from the clipboard into the file, saving it and closing the file
again. [Table 7.4| describes the exact commands in the entry of event Created Modified.
When editing a file we decided to only use ¢zt files and the program TextEdit in order to
avoid problems concerning a longer start period of Microsoft Word or Fxcel.

"https://www.bluem.net/en/projects/cliclick/, accessed: 30-03-2020

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
blio
nowledge

(]
I
rk

7.1. Automated Scenarios

File Access Event Bash Commands
Created touch <new-filename>
open <filename>>;
Created_Modified cliclick w:1000 kd:cmd t:v ku:cmd;
cliclick w:500 kd:cmd t:s ku:emd w:1000 kd:cmd t:q
Moved mv <original-file> <target-directory>
Renamed mv <original-file> <new-filename>
MovedToRecycleBin mv <original-file> <.Trash-directory>
Created_ Copied cp <original-file> <target-directory>

Table 7.4: List of used Bash commands and sequence to simulate file events.

In order to run created Bash scripts for a specific time, we installed the command-line
tool coreutils? and run the scripts with the command gtimeout.

7.1.4 Evaluation Results

We measure the results of performed scenarios by calculating the precision and recall
value for each test iteration. Table 7.3 lists the scenarios. The next two subsequent
sections discuss the results and limitations of iterations lasting for five minutes and one
hour.

Performance tests This section describes the results of the first two test scenarios
from Table 7.3. The goal of these test runs is to measure the performance of our prototype
system in a shorter period. Thereby, we aim to find the limitations regarding the detection
of all File Access Fvent types by a varying throughput of events.

Figure 7.1 and |Figure 7.2/ show results of performed test iterations of separated File
Access Event types. [Table 7.6/ includes the exact calculated numbers. As we can see in
both figures the result of precision is always 1. Thus, no event type caused unexpected
events patterns. In order to evaluate expected event patterns, we considered any sequence
of events produced by involved programs and file activities. The sequence of produced
file log entries of an event type is varying, based on the used program. [Section 7.1.3
describes the exact test setup and used programs.

In order to find the limit of each event type, we decreased the interval between events
for each event type until the system was not able to function properly anymore and C-
SPARQL query result become erroneous. Therefore, the amount of successfully detected
events decreased significantly.

Zhttp://macappstore.org/coreutils/, accessed:30-03-2020

67

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
lio
nowledge

b

i
r

7. EVALUATION

68

0.9
0.8
0.7
0.6
0.5
0.4
0.3

0.9
0.8
0.7
0.6
0.5
0.4
0.3
0.2
0.1

T

T

T

T

T

T

T

15 7.5 3.751.88 1 0.94 0.47 0.24

0.9

0.8

0.7

0.6

0.5

MovedToRecycleBin

Renamed

—e— Precision
—a— Recall

T

T

T

T

T

T

T

T

T

[[[[[[[N

15 7.5 3.75 1.88 1 0.94 0.47 0.24

interval between

0.9

0.8

0.7

15

7.5 3.75 1.88 1 0.94 0.47 0.24

Created

events

Figure 7.1: 5 minute tests results of single event types

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

w 3ibliothek,
Your knowledge hu

7.1. Automated Scenarios

0.9
0.8
0.7
0.6
0.5

0.9

0.8

0.7

0.6

Figure 7.2: 5 minute test results of single event types and a mixed sequence of events

Created Copied (same dir.)

Created Copied (diff. dir.)

T

T

T

T

- 1+

41 0.9

T

T

<1 0.8
4 0.7

T

1 0.6

T

T

4 0.5

| | | 04 | | |

Created Modified

3.75 1.88 1 60 30 15

—e— Precision
—=— Recall

3.75 1.88

Mixed Events

1

0.8

3.75 1.88 1 60 30 15

interval between events

3.75 1.88

1

69

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

7. EVALUATION

Time Moved MovedToRecycleBin Renamed Created
Logs | Precision | Recall || Logs | Precision | Recall || Logs | Precision | Recall || Logs | Precision | Recall
60 70 1 1 50 1 1 80 1 1 1 000 1 1
30 100 1 1 200 1 1 200 1 1 1 400 1 1
15 400 1 1 300 1 1 400 1 1 1 500 1 1
7.5 700 1 1 500 1 1 600 1 1 1 800 1 1
3.75 900 1 1 800 1 0.99 700 1 1 1 900 1 1
1.88 1 300 1 0.99 900 1 0.99 800 1 0.98 2 000 1 0.92
1 2 000 1 0.98 1 100 1 0.91 1 600 1 0.95 2 100 1 0.64
0.94 2 300 1 0.98 1 700 1 0.79 2 000 1 0.68 - - -
0.47 2 400 1 0.95 2 400 1 0.5 2 600 1 0.16 - - -
0.24 3 000 1 0.30 3 500 - - - - - - - -
Time Created__Modified Created__Copied(same dir.) || Created__Copied(diff. dir.) Mixed Events
Logs | Precision | Recall || Logs | Precision Recall Logs | Precision Recall Logs | Precision | Recall
60 2 000 1 1 600 1 1 800 1 1 1 700 1 1
30 3 500 1 1 700 1 1 900 1 1 2 000 1 1
15 5 000 1 1 1700 1 1 1 400 1 1 2 700 1 1
7.5 9 000 1 0.90 || 1900 1 1 1 700 1 1 3 000 1 0.94
3.75 || 18 600 1 0.88 || 2 000 1 0.96 2 100 1 0.96 10 000 1 0.92
1.88 || 19 000 1 0.57 || 2 500 1 0.84 3 000 1 0.60 11 500 1 0.91
1 20 300 1 0.57 || 3 000 1 0.64 5 000 1 0.45 11 600 1 0.67
0.94 _ _ _ _ _ ; } ; - - - -
0.47 - - - - - - - - - - - -
0.24 - - - - - - - - - - - -

Table 7.6: Results of five

“}auioljqig usipn N1 Te ud ul s|gereAe si sisayl Syl JO UoISIaA [eulflio paoidde ay L
“JeqBnyan 3auloljqig usipn N1 Jap ue isi iagrewoldiq Jasalp uoisiaAfeulBuO apjonipalb ausiqoidde aiqg

minute test iterations

)
~

qny a8pajmoud| INoA

S8ylolqie

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
blio
nowledge

(]
I
rk

7.1. Automated Scenarios

Clients | Intervals | Precision | Recall
1 random 1 0.98
2 60-1 sec. 1 0.41
2 60-15 sec. 1 0.97

Table 7.8: 1 hour test run results with random intervals

Figure 7.1/shows the decrease of the waiting time between events down to 0.4 7 for the types
Mowed, MovedToRecycleBin and Renamed. However, the types Created, Created_ Copied,
Created_Modified show limitations on a waiting time of 1 second. Event type Moved shows
the best results on the smallest interval, which is 0.47 seconds. Types MovedToRecycleBin
and Renamed produce similar results, whereas MovedToRecycleBin shows a higher
decrease on detected events as Renamed. The recall of event type Created starts decreasing
at an interval of 1.88 seconds. Copy operations detected by the type Created Copied
start to decrease at an interval of 8.75 seconds. However, we discover the worst results
on event Created Modified which already shows a lower recall value on an interval with
7.5 seconds and reaches its limits on an interval of 7.88 seconds. Reasons for that are
the large amount of access calls triggered by programs when editing a file. We observed
on past tests that a single modification activity results in multiple identical access calls
and log entries. The number of log entries can be at least three times as much on a
single modification, as on event type Mowved, which produces a single log entry for one

file movement. Thereby, the performance and the throughput of detected events suffers.

On a mixed sequence of events (see Figure 7.2), we discover a decrease in the recall value
on an interval of 7.5 seconds. However, we need to consider that a higher or lower amount
of events, which separately decrease or increase the throughput, can affect the overall
results on mixed events. A higher number of type Created Modified would decrease
the recall, whereas a higher number of type Moved can result in a higher recall. The
conducted test runs contained a balanced number of all file activities.

Load tests We executed test iterations of one hour with fixed intervals and randomly
chosen waiting times between events. The third and fourth entry in [Table 7.3 presents
the exact setup. The goal of defined load tests is to evaluate if a longer testing period
has an effect on the overall results of detected events.

In our first iterations, we used fixed intervals of 15, 7.5, 8.75 and I second. Figure 7.3
displays the results. As we can see, the precision is always 1 and therefore no unexpected
event patterns were found. However, the recall is on average lower compared to shorter
test iterations of five minutes. Also, the iterations with an interval of 3.75 seconds shows
a significant drop of the recall. The waiting time of I second resulted in an even lower
recall, compared to shorter iterations.

In addition, we performed an iteration using randomly chosen intervals in between file
activities. Thereby, we aim to find differences in recognized events if our system does not
produce events in a uniform throughput. The first entry in Table 7.8 presents the results

71

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
blio
nowledge

(]
|
rk

7. EVALUATION

72

T T T T
1 - |
09 |
0.8 - |
0.7 - |
0.6 - |
0.5 |
0.4 |
0.3 |
0.2 | | —*— precision |

—=— recall

0.1 ! ! ! ! |

15 7.5 3.75 1

interval between events (seconds)
15 7.5 3.75 1
Precision | Recall | Precision | Recall | Precision | Recall | Precision | Recall
1 0.94 1 0.87 1 0.16 1 0.14

Figure 7.3 & Table 7.7: Scenario 3: 1 hour tests results with fixed times

of this iteration. The results do not affect the precision. However, according to the recall
value, the server has not detected all events successfully. Compared to iterations using
fixed waiting times, we detected a higher ratio of events.

In our last scenario, we evaluate the recognition of events receiving from two clients. The
second and third entry in [Table 7.8 displays the results. The executed script chooses file
operations and waiting times randomly, as in the previous test run.

We performed two iterations. On the first test run we included waiting times between
events from 60 seconds down to I second. However, the increased number of clients also
raised the number of events that the system needs to process and recognize. Therefore,
we discovered a low recall value, which indicates a low number of detected file events.
On the second test run we only processed events from both clients with waiting time
between 60 seconds to 15 seconds. Thereby, the activities produced fewer events that
our system needs to process.

Conclusions on performed tests The following points summarize the gained knowl-
edge and encountered limitations during the evaluation.

1. Performance varies for different file activities: The continuous reduction of
the intervals between events resulted eventually in a clear reduction in successfully

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
10
edge

b

now!

(]
|
rk

7.1. Automated Scenarios

discovered events. However, the limit varied depending on the performed file
activity. This was due to the fact that each file activity produces a different
sequence and amount of log entries that need to be processed. The event type
Created__Modified produces the biggest amount of log events and therefore shows
the worst performance.

. Limitations caused by low performance of C-SPARQL: Limitations en-

countered during performed iterations are primarily caused by the inefficiency of
C-SPARQL to perform continuous queries over a large amount of incoming log
data. Previous works, which focused on measuring the performance of C-SPARQL,
discovered similar results. The following listing summarizes the main issues of the
engine:

e C-SPARQL engine crashed: |Gao et al. |[2018] reports the crashing of the
engine when running a query involving large static datasets and the engine
reports a ConcurrentModificationException. The exception is caused when the
process of loading data into the Jena database instance or clearing the data
takes longer than the execution time of performing a query. We discovered the
occurrence of the exception ConcurrentModificationFxception frequently on
test runs with lower intervals, which produced more log data than C-SPARQL
was able to handle. In addition, also the execution time and the memory used
increases when running C-SPARQL with an increased stream rate ,
. We also encountered Java VM OutOfMemoryFEzceptions on long test
runs with short intervals.

e High memory usage: In case we reach a threshold, the results provided by C-
SPARQL are erroneous, which [Ren et al.| [2016] discovered during experiments.
The growth of static data also causes high memory usage of the engine
. C-SPARQL queries are still executed in each window regardless
of currently present static data. This causes unnecessary processing overhead
[Rinne et al., 2016]. Ren et al.|[2016] and |Gao et al|[2018] report that the
reason behind those issues is that C-SPARQL does not have enough time to
process both current and incoming data.

o Leak in-between windows: |Gao et al|[2018] also mentions that data around
window borders will leak from the current window to the next window, and
windows close earlier as expected. This issue would cause a file event not
being detected.

3. Query window size has to be balanced: Choosing the correct window size

can be challenging. The following points specify what we need to consider when
choosing a window size:

e Frequency of query execution: In the case of a smaller window size, the engine
executed the query more frequently which causes frequent duplicates from the
same events and produces overhead |Rinne et al. 2016]. However, on longer

73

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
blio
nowledge

(]
I
rk

7. EVALUATION

74

window sizes the engine collects more events before the next execution and
the processing time of a query execution increases. The frequency of query
execution also affects the reporting time of detected events. The more time
passes until the next window closes the more time it takes to detect newly
incoming events and the recognition time slows down.

e Handling of duplicate event detection: In case we detect the same file activity
repeatedly, the engine constructs identical File Access FEvents. Therefore, we
require to handle duplicate events that we accomplish by filtering for the first
occurrence of a detected event. This can be achieved by ordering the results
by the dateTime field [Rinne et al., 2016].

o (Consider composite events: When defining the window size we have to consider
that composed events of multiple log records have to occur in the same window,
in order for us to detect the event. One example would be a copy operation,
which is a composite of two activities.

In summary, the window size affects the required resources, processing time, and
notification time until the engine can report the detection of an event. Therefore,
a balance of the frequency of detected events, acceptable overhead, and delay in
notification time has to be found.

4. Alternative software architecture: In the presented architecture we use one
C-SPARQL engine. Due to discovered performance issues of a single C-SPARQL
engine an alternative software architecture including multiple instances of the
engine could produce better results. However, exact implementation options and
measurements would need to be evaluated as future work. This would include an
examination if an engine for each client is feasible and if multiple engines for each
query might result in a higher success rate on shorter intervals between events.
Also, alternative languages over continuous queries over streams of RDF data, such
as CQFELS or INSTANS, could be more adequate |[Ren et al., [2016] [Rinne et al.,
2016].

To conclude the automated performance tests, the results show limitations in regards
to detection recall with a high number of static event data. The previous work from
Kurniawan et al.| [2019b] evaluated a similar approach on Windows file logs. The results
are comparable to our findings. In addition, we experienced that the number of events
produced is highly dependent on the file operations, which then influences the amount
of data necessary our system has to process. Furthermore, the window size influences
the execution frequency and the need to handle duplicate event detection. Also, we have
to consider the detection of composite events. An alternative approach regarding our
software architecture may improve occurred limitations. However, exact evaluations have
to be conducted as future work.

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

M Sibliothek,
Your knowledge hub

7.2. Data Exfiltration Scenario

/ —=
= Client 3
/ Client 1 local folders
. public shaN
local folders
—3F
—=
Client 2

local folders

Figure 7.4: Clients setup of Data Exfiltration Scenario

7.2 Data Exfiltration Scenario

In this scenario we present user scenarios, leading to data exfiltration. To this end, we
include multiple clients to produce a more realistic setup. The focus here is to include
mainly event types such as Moved and Created_ Copied, which exfiltrate files to an
external storage such as Dropboxr and a USB device.

The presented scenario should help to evaluate our second research question defined in
Section 1.3) i.e. if we are able to reconstruct a file life-cycle by semantically represented
log data. In addition, we ask if gathered information, by lifting file system events into
RDF data, assist the identification of potential data exfiltration.

7.2.1 Experimental Setup

Our scenario includes three clients, which can access an organization’s internal file share
to exchange files. [Figure 7.4] shows the setup of clients involved in our scenario. In
addition, two clients have access to their private Dropboz folder and one client can also
access a USB device. Thereby, we can represent a scenario in which clients are able to
copy and move files from the public share to their local directory, a Dropbox, and a USB
device.

Figure 7.5 presents the structure of the public share. The root folder contains a collection
of four files. In addition, two subfolders are available, which contain four additional files
each. File types included are zlsz, docx, tzt, and xml files.

75

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
lio
nowledge

b

i
r

7. EVALUATION

-
(=)

[] subfoidert | [| subfolder2
L
projectA_1.xIsx > — > —
h .)
> — projectB_1.xIsx projectC_1.xlsx
projectA_2.docx N _‘ N _‘
L
»| = projectB_2.docx projectC_2.docx
) L L
projectA_3.txt > — > —
— projectB_3.txt projectC_3.txt
L L
projectA_4.xml > — > —
projectB_4.xml projectC_4.xml

Figure 7.5: Folder structure in public share folder

In order to replicate file activities, we developed a script to perform file events. [Table 7.9
describes the exact sequence of performed operations. We perform the activities of each
client in sequence. In addition, we used longer intervals between events, which ensured
the detection of all performed activities.

7.2.2 Evaluation Results

We constructed the file life-cycle of some interactions to visualize the performed activities.
Thereby, we aim to show the ability of our prototype system regarding the reconstruction
of a file history. The next section presents and describes the constructed file life-cycles.
In addition, we evaluate the use of defined Background Knowledge and which conclusions
we can draw by integrating defined knowledge of User Accounts and Exfiltration Channels
to semantically represented log data. [Section 5.5 describes the used models.

Graphs of File Life-Cycles This section discusses constructed file life-cycle graphs.
We present one graph for each involved client, containing performed file activities.

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
lio
nowledge

b

i
r

7.2. Data Exfiltration Scenario

| Steps client 1

—_

Client 1 copies files projectA_ 3.txt and projectA_ 4.xml from folder Public to a
local folder /Desktop/scenario/.

2 | Client 1 renames copied files to projectA__ 3 copied.txt and projectA_ 4 copied.xml.

3 | Client 1 moves files projectA__ 8 copied.txt and projectA_ 4 copied.xml from local
folder back to folder Public.

4 | Client 1 deletes original files in Public projectA_ 3.txt and projectA_ 4.xml and
moves them to the recycle bin.

5 | Client 2 copies file projectA_4.xml from folder Public to private Dropboz.

| Steps client 2

1 | Client 2 moves two files from Dropbox to folder Public. The files are drop-
box_file client3 1.xlsz and dropbox_ file_ client3 2.xml.

2 | Client 2 copies the file /Public/subfolder1/projectB__3.txt to the USB device.

3 | Client 2 creates and edits a mnew local file /Desktop/scenario/lo-
cal_file_client3 1.txt.

4 | Client 2 moves the new local file local_file client3 1.txt to folder Public.

| Steps client 3

1 | Client 3 copies all four files from directory Public/subfolder2/ to the local di-
rectory /Desktop/scenario/. The files are: projectB__1.zlsz, projectB_1.xlsz,
projectB__3.txt and projectB__4.xzml.

2 | Client 3 copied all previously copied files (Step 1) to a private Dropbox folder.

3 | Client 3 copies file /Public/local_file_client3__1.txt directly to a private Dropbox
folder.

4 | Client 3 renames all four previously copied files in Dropbox (Step 1 & 2) to
projectB__1_renamed.zlsx, projectB__2_renamed.docx, projectB__ 3 _renamed.txt,

and projectB__4_ renamed.zml.

Table 7.9: Steps of each client in our scenario

Figure 7.6/ shows the life-cycle of file /Volumes/Public/projectA__4.zml, produced by
the first client. The first section in Table 7.9|includes the performed steps. Within the
life-cycle we can see, that the user replaces file /Volumes/Public/projectA__4.zml from the
file-share by a copied version, which was modified locally. The original file got deleted.

Figure 7.7, shows a file operation included in the second section in [Table 7.9 which the
second client produced. The history graph visualizes a copy operation of file projectB_ 3.txt
from directory subfolder in the file share to path /Volumes/USB/, which is the mount
path of a USB device. Thereby, we can identify that the user copied a file to a target
source that is outside of the companies’ boundaries. Consequently, the user exfiltrated
the file projectB__3.txt.

7

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

M 3ibliothek,
Your knowledge hu

7. EVALUATION

78

/Volumes/Public/projectA_4.xml

Event - 'Created_Copied'

Timestamp: \"2020-04-01T03:38:26.000Z\"
From: /Volumes/Public/projectA_4.xml

To: /L io/proj _4.xml|
User: 502

Source-Host: Bobs-MacBook-Pro.local
Target-Host: Bobs-MacBook-Pro.local

Created~Modified Created~\Modified
IUsers/bob/.Trash/projectA_4.xml 5ob/D: Pl IprojectA_4xni
@\‘ \ﬂj
\ Y/
Moy, T 2
2
2
%
o
/ 3/
e“ee>
Created\Modified

<IVolumes/Public/projectA_4_copied.xml>

Figure 7.6: File life-cycle produced by client 1

/Volumes/USB/projectB_3.txt

Event - 'Created_Copied'

Timestamp: \"2020-04-18710:16:23.000Z\"
From: /Volumes/Public/subfolder1/projectB_3.txt
To: /Volumes/USB/projectB_3.txt

User: 501

Source-Host: Client2-MacBook-Pro.local
Target-Host: Client2-MacBook-Pro.local

Createéd>\Modified

Volumes/USB/projectB_3.tx <IVolumes/Public/subfolder1/projectB_3.txt>

Created=Copied

Figure 7.7: File life-cycle produced by client 2

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

M Sibliothek,
Your knowledge hub

7.2. Data Exfiltration Scenario

/Users/Agnes/Dropbox/scenario2/projectB_4_renamed.xml

Event - 'Created_Copied'

Timestamp: \"2020-04-18T10:21:57.000Z\"
From: /Volumes/Public/subfolder1/projectB_4.xml|

To: /Users/Agnes/ io/projectB_4.xml
User: 501

Source-Host: Agness-MBP

Target-Host: Agness-MBP

Creatéd>Modified

Created~Modified
<IVolumes/Public/subfolder1/projectB_4.xmb>

N ¥
Aled-cy)
/ d‘copied

fnp‘ed

o
Q
34
S
8
Iy

enamed

ai
@
4
>
5
£
B
<
fz}
lm
|Jb R
x
v

9

Figure 7.8: File life-cycle produced by client 3

Figure 7.8 involves file operations from the third client, which we describe in the third
section in [Table 7.9. As we can see in the graph, the user copied the file projectB_4.xml
from the share to a local directory. Furthermore, the user copied the file again to a
Dropbox folder and renamed the file. Thereby, the user exfiltrated the file to a Dropboz
folder.

Figure 7.9 illustrates a history graph of file activities including two clients. The ac-
tivities include the operations & and 4 in the second section in [Table 7.9, performed
by client 2 with host-name Client2-MacBook-Pro.local, and operation & in the third
section in [Table 7.9, performed by client 3 with host name Agnes-MBP. The file lo-
cal_file_client3 1.txt, which the second client created and moved to the file share, was
later copied to Dropbox by the third client.

In general, our prototype system is able to create file life-cycle graphs. Also, we are able
to construct transformations and split paths. However, in order to draw conclusions
about file exfiltrations and identifying responsible users, we require to integrate further
knowledge into represented log data. Additional knowledge should help to reason if a
move or copy operation is actually performed to an exfiltration channel. Therefore, we
discuss the background knowledge in the subsequent section.

Integration of Background Knowledge Our defined Background Knowledge models
(see Section 5.5) add more information to represented data and thereby help to draw
conclusions detected activites.

In order to identify the person behind logged file activities, we integrate the User Account

79

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

w Sibliothek,
Your knowledge hub

7. EVALUATION

80

/Volumes/Public/local_file_client3_1.txt

Event - 'Moved'

Timestamp: \"2020-04-18T10:17:39.000Z\"

From: /Users/Agnes/Desktop/scenario/local_file_client3_1.txt
To: /Volumes/Public/local_file_client3_1.txt

User: 501

S Host: Client2 Pro.local

Target-Host: Client2-MacBook-Pro.local

CreatedxModified

Created~\Modified

|_file_client3_1.
<IVolumes/Public/local_file_client3_1.txt>
‘\Greated:(-)opied — - =
Ve 17
\l\oqed/K_/
CreatednModified
/Agnes/D P io/local_file_client3_1.]
Event - 'Created_Copied'
Timestamp: \"2020-04-18T10:23:57.000Z\"
From: /Volumes/Public/local_file_client3_1.txt
To: /Users/Agnes/Dropbox/scenario2/local_file_client3_1.txt
User: 501
Source-Host: Agness-MBP
Target-Host: Agness-MBP
Creatéd~Modified
Created~Modified
<{Users/Agnes/Dropbox/scenario2/local_file_client3_1.txt* =
Greated-G. (2\ <IVolumes/Public/local_file_client3_1.txt>
Created-Copi
= opled—‘\v ‘4

o
Created:eModified

|_file_client3_1.

Figure 7.9: File life-cycle produced by actions of client 2 and client 3

background knowledge. This model maps the user id and host name to a user account,
containing the username, name, and email address. In addition, we are able to identify
file paths as internal or external, with the help of the background knowledge model
Exfiltration Channel. Thereby, the model categorized each path and we are able to search
for copy or move operations from an internal source path to an external target path. In
our scenario, we consider file paths inside the file share and local directories of all clients
as internal paths. We categorize known paths to a Dropbox and USB device as external
file paths.

Listing 7.1] shows an example SPARQL query which uses both background knowledge
models. The query searches for copy operations (line 15-16) performed by the user with
username Agnes (line 7-8). In addition, we filter for all source paths contained in an
internal path and all target paths, which do not contain an internal (lines 11-12, 18-22).
Thereby, the query searches for any data exfiltrations of a specific user. [Table 7.10 shows
the result of the performed SPARQL query. The result contains six copy operations from
a user. We can see that the user exfiltrated data from two clients. On one copy operation
the client copied data to a USB device and on the remaining operations data was copied
to a Dropboz folder.

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
blio
nowledge

(]
I
rk

11

13

15

17

19

21

23

25

27

29

7.2. Data Exfiltration Scenario

PREFIX b: <http://w3id.org/sepses/vocab/background#>
PREFIX fae: <http://w3id.org/sepses/vocab/event/fileAccess#>
SELECT DISTINCT
?7usernameBk ?pathNameSource ?pathNameTarget ?targetHostName
WHERE {

?bkl b:uid ?uidBK.

?bkl b:userName ?usernameBk .

?bkl b:userName "Agnes"

?bkl b:host ?hostBk .

?bk3 b:type "intern"
?bk3 b:path ?pathIntern .

?event fae:timestamp ?timestamp .
?event fae:hasAction/fae:actionName ?actionName .

FILTER (?actionName = "Created_Copied")

?event fae:hasSourceFile/fae:pathName ?pathNameSource .
FILTER (CONTAINS(?pathNameSource, ?pathIntern))

?event fae:hasTargetFile/fae:pathName ?pathNameTarget .
FILTER (!CONTAINS(?pathNameTarget, ?pathIntern))

?event fae:hasUser/fae:userName ?username .
7event fae:hasTargetHost/fae:hostName ?targetHostName .

FILTER (?username = ?uidBKk)
FILTER (?targetHostName = ?hostBk)

} ORDER BY ASC(?timestamp)

Listing 7.1: SPARQL query to find copy operations to an external path of a user

Conclusions on performed scenario

1. Reconstruction of file life-cycle: The reconstruction of the file life cycle that

has occurred can be successfully created provided we have discovered all events.
Consequently, we require to detect all events that occurred on the respective file.

In case of an incomplete discovery of events, a complete reconstruction of the life
cycle is no longer possible.

2. Background knowledge: We integrate defined background knowledge models
(presented in Section 5.5) into SPARQL queries. As demonstrated, with defined
background knowledge we are able to filter e.g., for events performed by specific
users and for events regarding internal and external file paths. However, knowledge
about the file paths and the user id has to be manually defined in advance.

81

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

7. EVALUATION

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

Field Value

usernameBEk "Agnes"

pathNameSource | "/Volumes/Public/subfolderl/projectB_ 3.txt"
pathNameTarget | "/Volumes/USB/projectB_ 3.txt"

targetHostName | "Client2-MacBook-Pro.local"

usernameBEk "Agnes"

pathNameSource | "/Users/Agnes/Desktop/scenario/projectB_3.txt"
pathNameTarget | "/Users/Agnes/Dropbox/scenario2/projectB _ 3.txt"
targetHostName | "Agness-MBP'

usernameBEk "Agnes"

pathNameSource | "/Users/Agnes/Desktop/scenario/projectB_ 2.docx"
pathNameTarget | "/Users/Agnes/Dropbox/scenario2/projectB_2.docx"
targetHostName | "Agness-MBP'

usernameBEk "Agnes"

pathNameSource | "/Users/Agnes/Desktop/scenario/projectB_4.xml"
pathNameTarget | "/Users/Agnes/Dropbox/scenario2/projectB_4.xml"
targetHostName | "Agness-MBP'

usernameBEk "Agnes"

pathNameSource | "/Users/Agnes/Desktop/scenario/projectB 1.xIsx"
pathNameTarget | "/Users/Agnes/Dropbox/scenario2/projectB_ 1.xIsx"
targetHostName | "Agness-MBP'

usernameBEk "Agnes"

pathNameSource | "/Volumes/Public/local_file client3 1.txt"
pathNameTarget | "/Users/Agnes/Dropbox/scenario2/local file client3 1.txt"
targetHostName | "Agness-MBP'

Table 7.10: Result of the SPARQL query from Listing 7.1

The construction of a file history graph and the integration of modeled background
knowledge enables us to reason about represented log data. Vertices of the graph
represent the updated filename and edges visualize the performed file activity. Thereby,
we put the data into a more familiar context. Relationships between file activities and
exfiltration channels become easier to understand. A representation of the file history in a
tabular view is much harder to read. We can use a single SPARQL query to retrieve events
performed over an exfiltration channel or events produced by a specific user. This enables
us to potentially infer activities leading to data exfiltration. However, preconditions have
to be met in order to enable further analysis. This includes the successful detection
of all performed events, conducted on the analyzed file. Furthermore, involved user
ids, host-names, and file paths have to be defined and integrated into the background
knowledge.

thele

(]
blio
nowledge

(]
I
rk

82

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
blio
nowledge

(]
I
rk

7.3. Comparison with existing approaches

7.3 Comparison with existing approaches

In the following sub-sections, we compare existing forensic tools to our implementation
as well as identify differences and similarities to our approach. Furthermore, we discuss
an alternative approach for semantic complex event processing to C-SPARQL.

7.3.1 Forensic Analysis Tools

Comparable tools include open source and commercial tools. Open source tools are:
Plaso and Timesketch. Commercial tools are: Code42, ADAudit Plus and the LogédEvent
Manager. [Section 4.3| describes the discussed tools in more detail. Aspects we aim
to compare are tracing features of file history timelines in near-real time and graph
visualization concerning file events. We describe similarities and differences of those tools
to our approach in [Table 7.11.

In summary, Plaso and Timesketch provide similar approaches as our solution. However,

the user has to perform the analysis and search activities for suspicious activities manually.

Also, the tools focus on post evaluation of digital evidence. Our approach aims for an
automated examination and aggregation of collected data in near-real time. Our solution
is similar to these tools with regard to filter opportunities concerning logged event
attributes. Existing commercial tools are comparable to our implementation in terms of
an automated solution that aims to perform analysis of occurred file activities in near
real-time. However, the presented commercial tools are restricted to Windows file system
events.

7.3.2 Alternatives to C-SPARQL

Due to encountered performance issues caused by C-SPARQL on a large number of static
log date, we discuss different query languages as alternatives to semantic complex event
processing.

As mentioned in [Section 3.4 currently no standard query language for RDF streams exists.

We chose C-SPARQL in our implementation due to the fact that it presents an extension
of the popular query language SPARQL. Also, the amount of documentation and examples
available were sufficient to integrate a C-SPARQL engine into our implementation.

Previous works [Ren et al., 2016, [Rinne et al.; 2016, (Gao et al.| [2018] already measured
the performance of C-SPARQL compared to the languages CQELS and INSTANS. In the
following sections, we present identified advantages and disadvantages of those languages
compared to C-SPARQL. However, performance evaluations of those alternatives are
beyond the scope of this thesis and are left for future work.

CQELS Based on the works of Ren et al.|[2016] and |Gao et al. [2018] the language
CQELS offers features to increase the performance for querying over a large set of semantic
data. One main difference between CQFELS and C-SPARQL is how the languages execute
queries. CQELS provides its own query processing framework plan and follows an eager

83

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
blio
nowledge

(]
|
rk

7. EVALUATION

84

Tool(s) ‘ Similarities Differences
e The tool gathers
e The tool can collect only information usually after a
events from predefined files data exfiltration occurred.
Plaso by defining location of We focus on a near-real
monitored files. time approach.
e By the tool log2timeline a | ® It supports a much
filtering for attributes within | Proader range of log data
an event can be performed. for analysis and not only
file system logs
e The analysis has to be
performed manually.
It supports a graph integra- | The tool is used in conjunction
tion to explore relationships | with Plaso and is only used for
Timesketch between events, which is sim- | the data analysis. It doesn’t

ilar to our approach of recon-
structing a file life-cycle.

support the collection of log
data.

Commercial tools
(Code4 2,
ADAudit Plus,
and

LogéEvent
Manager)

e The tools monitor

file system events in order
to prevent unintended file
extractions outside a
company’s boundaries.

e The tools trace file
usages, shares and changes.

e They aim to find misuse
and theft, and create
reports of reviewed activities.

e Commercial tools focus on
data analysis in real-time
for log data examination.

Commercial tools only support
Windows Server log data and
file system logs of the Win-
dows operating system.

Table 7.11: Similarities and differences to other tools

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
blio
nowledge

(]
I
rk

7.3. Comparison with existing approaches

execution strategy. C-SPARQL uses an external system to manage windows and to
process the query and executes queries periodically [Gao et al., |2018|. Performance
optimizations supported by CQELS are adaptive generating query execution plans,
caching, and encoding the intermediate result. By encoding RDF nodes as integers, the
language aims to reduce the data size, and operations on integers are more efficient as on
strings. One advantage of CQFELS is that it is more efficient and robust than C-SPARQL
[Ren et al.l 2016]. CQELS supports a dictionary encoding technique and dynamic routing
policy. Thus, the language is efficient for simple queries and is scalable with static data
[Ren et al., 2016]. An increase in static data only influences CQFEL slightly, whereas the
performance of C-SPARQL is significantly influenced. However, CQFELS requires more
memory, due to its mentioned optimizations on query executions. Therefore, C-SPARQL
is more memory-efficient when processing the query. Also, C-SPARQL supports more
expressions of SPARQL 1.1 than QCELS, which supports fewer operations [Ren et al.,

2016]. Also, C-SPARQL shows more correctness on query results on multi-streams.

CQFELS suffers from a serious output mismatch in the multi-stream context. This is due
to the eager execution mechanism and asynchronous streams |[Ren et al., 2016].

INSTANS The language INSTANS is compared with C-SPARQL by [Rinne et al.
[2016]. INSTANS differentiates from C-SPARQL due to its incremental query matcher.

The language does not execute queries periodically. Instead, the language runs queries
immediately when new data arrives. Rinne et al. [2016] compares C-SPARQL and
INSTANS and mainly focues on the notification time between the languages. Also, the
work discusses the handling of delicately detected events. The advantages of INSTANS
are the ability to handle duplicate detection of events. When using C-SPARQL, the
periodic execution with sliding windows can result in more frequent detection of the
same event, whereas INSTANS does not face this issue. One of the main results was
that C-SPARQL shows a higher notification time than INSTANS, which is related to
the window-based execution. Compared to that, INSTANS executes queries as soon as

new data is available. Therefore, the notification time is much lower than C-SPARQL.

However, conducted tests only included 10000 static data entries. Therefore, tests
between these engines with a higher amount of static data would be required to identify
differences in the performance of query executions of both engines.

Alternative query languages have their advantages compared to C-SPARL. However, an
evaluation in the same context as this work would be necessary to draw clear conclusions
as to whether alternative languages can be used and whether we are able to retain all
functionalities.

85

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

“}auioljqig usipn NL e ud ul s|ge[rene si sisayl SIUl JO UOISIaA feulBblio pasoidde ay < any a8pajmoun Jnoa
“regBnpian 3ayiolgig Usip NL Jap ue 1si liaglewoldiq Jasalp uoisiaAfeulBuO aponipab ausiqoidde aiq v_ﬂ_-_u.o__n__m

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
blio
nowledge

(]
I
rk

CHAPTER

Conclusions

In this chapter, we answer our research questions, discuss open issues and limitations,
and motivate some future work.

8.1 Research Question Revisited

In Chapter 1.3 we defined our research questions. In this section, we give answers to
those questions.

1. Semantic representation and analysis of file system log data
In our first research question, we ask if semantic approaches can help the analysis
process of file system log data. In order to examine this question we integrated
several technologies, such as Logstash, Triplewave and C-SPARQL. Each technology
fulfills a specific aim and by their integration we are able to represent file system
log data as RDF data in near real-time. Logstash filters and parses raw log data.
Triplewave transforms filtered log data into an RDF data stream. C-SPARQL
queries for event patterns continuously over the RDF data stream and constructs
File Access Fvents. Constructed File Access Events represent high-level events of
file activities, which helps to reason about who edits, accesses, and shares a file. The
transformation of raw log data into RDF data can theoretically be achieved in near
real-time. However, during our evaluation, we encountered limitations with regards
to the performance of C-SPARQL which results in erroneous query results. Thereby,
based on intervals between events and the amount of raw log data produced within
a specific time period a 100% success rate of detected events was not possible to
accomplish. The C-SPARQL engine crashed frequently in case the data amount
reached a threshold. This threshold varies depending on the performed file activities.
We presented the detailed results of the performance tests in [Section 7.1.4. In
order to overcome the recognized restrictions, we require an alternative software

87

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
blio
nowledge

(]
I
rk

8.

CONCLUSIONS

88

architecture or our system has to reconstruct events subsequently not in real-time
in case we remove C-SPARQL. A potential alternative software architecture could
include multiple instances of C-SPARQL engines in order to overcome performance
limitations and produce better results due to parallel execution. However, we
require further investigations if multiple instances of the engine are feasible and if
thereby the success rate of detected events is improved. Also, alternative languages
have to be considered.

. Construction of a file life-cycle

In our second research question, we ask if the information gathered by a semantic
representation and the construction of a file life-cycle helps to detect potential
file exfiltration. We achieve a re-construction of a files life-cycle by a C-SPARQL
construct query which links File Access Fvents. However, if the detection of
performed events is incomplete, the history might have gaps due to missing events,
which makes tracing difficult and in some cases impossible. In addition, we link
background knowledge containing further information about involved user accounts
and exfiltration channels. An integration of defined background knowledge helps
to reason about detected events. It provides information about the person who
performed the file operation and by the definition of exfiltration channels, we reason
about internal and external channels. Thereby, we can filter for move or copy
activities performed to an external filepath. However, maintaining the background
knowledge is time-consuming. An automated solution would therefore be beneficial
here.

8.2 Open Issues and Limitations

In this section, we describe open issues we encountered during the implementation and
evaluation process concerning the used ontologies, technologies, language, and external
tools, which we categorize in the following sub-sections:

All source and target paths have to be audited:

In Section 6.4 we explained the use of OpenBSM in order to get a live auditing of
macOS files system logs. One parameter of auditpipe we need to add is a list of
directories that the service should audit. However, in order to receive all processed
events, we require to monitor the source and target paths. Therefore, we have to
add those paths to the parameter. In case a user moves a file to an unaudited
path, the system does not capture the operation and therefore we do not detect the
event. The Logstash input plugin Auditbeat might solve this issue. However, this
plug-in currently does not support macOS as described in [Section 6.5.1. If we use
Auditbeat we would not require extracting file system logs by hand or by a custom
Bash script. We described possibilities of file log data extractions in Section 6.4.

Limited to file system logs:

The developed prototype system only processes kernel file system logs which auditd

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
blio
nowledge

(]
I
rk

8.2. Open Issues and Limitations

produces. In case a user commits data exfiltration by uploading data to a Web-
interface, the corresponding log data is not included. Therefore, the implemented
system is restricted to one type of log source.

Event patterns depend on the used program or process:

Depending on the program, different numbers of access calls are made. This
means that we have to include all possible patterns. For example, the event
Created__Modified triggers a different sequence of access calls depending on the used
program for editing the file. In case the program Microsoft Excel is used for file
modifications, the following sequence of events is created:

1. The operation created a temporary file with ending .temp, representing the file
changes. Therefore, the system detects an event Created or Created Modified.

2. The program updates the .temp file on write activities. Therefore, the system
detects further Created Modified on the temporary file.

3. After the user saves the .zlsz file, the program renames the .temp file to the
original file name. Thereby, we identify an event of the type Renamed.

Even though one operation triggers several File Access Events we have to consider
those events patterns to prevent misleading event detection. In the context of a
modification of a .zlsz file we have to acknowledge additional Renamed and Cre-
ated__Modified events. Furthermore, as we described in [Section 6.6, copy operations
performed manually in the Finder or via the Bash command cp produce different
patterns of log data entries. Separate processes execute the activities, which trigger
a non-equal sequence of access calls. In this case, we require multiple C-SPARQL
construct queries, in order to detect both patterns.

Due to the fact that the system calls are highly dependent on the used program,
we require extensive knowledge about available access calls. Also, the access calls
for file creation and modifications are not explicit and we cannot distinguish them
in most cases, which hindered a clear analysis and a clear distinction between those
event types.

Limitations and performance issues of C-SPARQL :

Due to discovered performance issues of C-SPARQL, our system cannot process an
extensive stream of concurrent file system log events. We encountered this issue
especially when the user performs a lot of events on short intervals. In order to
solve the issue, further analysis of alternative software architectures and alternative
semantic query languages has to be conducted.

Limitations of the current TripleWave implementation:

We required to change the implementation of Triple Wave in order to process received
logs to RDF data correctly based on our ontology. Due to hard-coded values in

the original Triple Wave implementation, the tool produces erroneous RDF data.

Thereby, the parent class was set as subject for all following triples. In case of a

89

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

M Sibliothek,
Your knowledge hub

8.

CONCLUSIONS

90

sub-class the each triple was wrongly set with the same subject from the parent
class. Therefore, the current TripleWave implementation only produced correct
RDF data in case no sub-class is involved. We describes the required changes in
Section 6.5.2.

8.3 Future Work

For future work analysis and evaluation of alternative semantic query languages over
continuous semantic data is required. In addition, an alternative software architecture
containing multiple instances of C-SPARQL may solve performance issues. However,
whether an alternative architecture can be implemented in the given context, as well as
potential disadvantages must be analyzed.

In addition, further log sources have to be integrated into the implemented system in
order to increase the efficiency of conducted semantic analysis in order to detect possible
data exfiltration event patterns. Additionally, integrating further log sources would
add more knowledge for analysis. This could e.g., include logs containing metadata of
connected USB devices. Information extracted from other sources should increase the
completeness and accuracy to trace file life-cycles.

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
lio
nowledge

b

i
r

2.1
2.2

5.1
5.2
9.3
5.4
9.5
5.6
0.7
9.8

6.1
6.2
6.3
6.4
6.5
6.6
6.7
6.8
6.9
6.10
6.11
6.12
6.13
6.14

7.1
7.2
7.3
7.4
7.5
7.6

List of Figures

Three cycles of design science research [Hevner, 2007)
Our instances of all three cycles of design science|

Log vocabulary presented by [Ekelhart et al. [2018]
Vocabulary for File System Logs|
Vocabulary for File Access Events|
Vocabulary for File Access Typel L.
Vocabulary for User Accounts
Vocabulary for Exfiltration Channels
Conceptual draft to construct relatedTo property between events|
Example patterns considered by the construct of the relatedTo property
between events

Architecture Diagram of prototype,
C-SPARQL engine architecture
Complex Event Processing: flow from Log Entry to Complex Fvent
Process of C-SPARQL engine to handle RDF streams
The architecture of TripleWave
File Access Types constructed from a single log entry]
Construct of File Access Event Created Copied in the same directory
Construct of File Access Event Created Copied to a different directory
Flow of scheduler task in service FileHistoryService|
Process of creating JSON Nodes of a file-history by service FileHistoryService.
Event flow overview of all components
Step 4: Graph presentation of pathname in Web Ul
Step 5: Instance to Background Knowledge User Account
Step 5: Instance to Background Knowledge FExfiltration Channel

5 minute tests results of single event typeso
5 minute test results of single event types and a mixed sequence of events
Scenario 3: 1 hour tests results with fixed times
Clients setup of Data Exfiltration Scenario
Folder structure in public share folder
File life-cycle produced by client 1|o

32
33
34
34
35
35
37

38

40
43
44
44
49
o4
95
95
o7
o7
58
60
61
61

68
69
72
75
76
78

91

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

78

[7.7 File life-cycle produced by client 2|

79

[7.8 File life-cycle produced by client 3|

[7.9 File life-cycle produced by actions of client 2 and client 3|

80

“}auioljqig usipn NL e ud ul s|ge[rene si sisayl SIUl JO UOISIaA feulBblio pasoidde ay
“regBnpian 3ayiolgig Usip NL Jap ue 1si liaglewoldiq Jasalp uoisiaAfeulBuO aponipab ausiqoidde aiq

92

qny a8pajmoud| INoA

Saylolqie

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

M Sibliothek,
Your knowledge hub

List of Tables

5.1 Instances of File Access Type oL
6.1 Mapping of macOS access calls to FileAccessEvent actions

7.1 _Confusion Matrixl. e
7.2 Metrics with Formulal
7.3 Testsetup
7.4 List of used Bash commands and sequence to simulate file events.|.
7.5 Results of five minute test iterations
7.6__Results of five minute test iterations
7.8 1 hour test run results with random intervals
7.7 _Scenario 3: 1 hour with fixed times/
7.9 Steps of each client in our scenario
7.10 Result of the SPARQL query from Listing 7.1/.
7.11 Similarities and differences to other toolsl

34
93

64
64
66
67
70
70
71
72
77
82
84

93

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

“}auioljqig usipn NL e ud ul s|ge[rene si sisayl SIUl JO UOISIaA feulBblio pasoidde ay < any a8pajmoun Jnoa
“regBnpian 3ayiolgig Usip NL Jap ue 1si liaglewoldiq Jasalp uoisiaAfeulBuO aponipab ausiqoidde aiq v_ﬂ_-_u.o__n__m

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
lio
nowledge

b

i
r

6.1
6.2
6.3
6.4
6.5
6.6
6.7
7.1

=W N

Listings

Command to output real-time log data in XML format|. .
Tree sections of a Logstash pipeline
Nodejs Transform Stream|
R2RML mapping of file events|
Step 1: Audit record of move operation
Step 2: JSON output from Logstash/.

Step 3: Excerpt of JSON-LD output from Triple Wave of move event

SPARQL query to find copy operations to an external path
Audit configuration file/.
Audit classes of auditd
Implementation of function transform in r2rml-js/r2rml.js
Implementation of function transform in stream/enricher.js

of a user| .

46
47
49
50
o8
59
29
81
103
103
104
104

95

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

“}auioljqig usipn NL e ud ul s|ge[rene si sisayl SIUl JO UOISIaA feulBblio pasoidde ay < any a8pajmoun Jnoa
“regBnpian 3ayiolgig Usip NL Jap ue 1si liaglewoldiq Jasalp uoisiaAfeulBuO aponipab ausiqoidde aiq v_ﬂ_-_u.o__n__m

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
lio
nowledge

b

i
r

Bibliography

Long Cheng, Fang Liu, and Danfeng (Daphne) Yao. Enterprise data breach: causes,
challenges, prevention, and future directions. WIRFEs Data Mining and Knowledge
Discovery, 2017.

David Chismon, Martyn Ruks, Matteo Michelini, and Alec Waters. Detecting and
deterring data exfiltration, 02 2014.

Kabul Kurniawan, Andreas Ekelhart, Elmar Kiesling, and Fajar Ekaputra. Semantic
integration and monitoring of file system activity, 09 2019a.

Kabul Kurniawan, Andreas Ekelhart, Elmar Kiesling, and Fajar Ekaputra. Cross-platform
file system activity monitoring and forensics — a semantic approach, 2019b.

Faheem Ullah, Matthew Edwards, Rajiv Ramdhany, Ruzanna Chitchyan, M. Ali Babar,
and Awais Rashid. Data exfiltration: A review of external attack vectors and counter-
measures. Journal of Networking and Computer Applications, October 2017.

Tore Torsteinbg. Data loss prevention systems and their weaknesses. Master’s thesis,
University of Agder, 2012.

Troy Hunt. Blog article of troy hunt - data breach. |https://www.troyhunt.com/
the-773-million-record-collection-1-data-reach/, 01 2019. Accessed: 2019-04-
13.

Techworld. Techworld article - collection of data breach cases. https://www.techworld!
com/security/uks-most-infamous-data-breaches-3604586, 04 2019. Accessed:
2019-04-12.

Jon Herstein. Article box security issue. https://blog.box.com/blog/
using-box-shared-links-securely, 03 2019. Accessed: 2019-04-13.

David Thacker. Article about safety issues of google+ api. https://www.blog.google/
technology/safety-security/expediting-changes-google-plus/, 12 2018. Ac-
cessed: 2019-04-14.

97

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek
https://www.troyhunt.com/the-773-million-record-collection-1-data-reach/
https://www.troyhunt.com/the-773-million-record-collection-1-data-reach/
https://www.techworld.com/security/uks-most-infamous-data-breaches-3604586
https://www.techworld.com/security/uks-most-infamous-data-breaches-3604586
https://blog.box.com/blog/using-box-shared-links-securely
https://blog.box.com/blog/using-box-shared-links-securely
https://www.blog.google/technology/safety-security/expediting-changes-google-plus/
https://www.blog.google/technology/safety-security/expediting-changes-google-plus/

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
lio
nowledge

b

i
r

Julia Carrie. Article about facebook security is-

sue. https://www.theguardian.com/technology/2018/sep/28/
facebook-50-million-user-accounts-security-berach, 09 2018. Accessed:
2019-04-13.

Xiaokui Shu, Ke Tian, Andrew Ciambrone, and Danfeng Yao. Breaking the target: An
analysis of target data breach and lessons learned. ArXiv, abs/1701.04940, 2017.

BBC. British airways faces record £183m fine for data breach. https://www.bbc.com/
news/business-48905907, 06 2019. Accessed: 2020-02-19.

Vlad-Mihai Cotenescu and Sergiu Eftimie. Insider threat detection and mitigation
techniques. “Mircea cel Batran” Naval Academy Scientific Bulletin, 1, 2017.

Carl Colwill. Human factors in information security: The insider threat - who can you
trust these days? Information Security Technical Report, 14:186-196, 2010.

Areej AlHogail. Managing human factor to improve information security in organization,
5 2017.

Prof Awais Rashid, Rajiv Ramdhany, Matthew Edwards, Sarah Mukisa Kibirige, Muham-
mad Ali Babar, David Hutchison, and Ruzanna Chitchyan. Detecting and Preventing
Data Exfiltration. Lancaster University, 04 2014.

Brian Carrier. File System Forensic Analysis. Addison Wesley, 2005.

Eva Kostrecova and Helena Binova. Security information and event management. Indian
Journal of Research, 2015.

Sindhu and Meshram. Digital forensic investigation tools and procedures. 1. J. Computer
Network and Information Security, pages 39-48, 04 2012.

Shweta Tripathi and BB Meshram. Digital forensic investigation on file system and
database tampering. IOSR Journal of Engineering, 2:214-221, 02 2012.

Igor Kotenko and Andrey Chechulin. Attack modeling and security evaluation in siem
systems. International Transactions on Systems Science and Applications, 8, 12 2012.

M. Al Fahdi, N.L. Clarke, and S.M. Furnell. Challenges to digital forensics: A survey of
researchers practitioners attitudes and opinions. 2013 Information Security for South
Africa, pages 1-8, 2013.

Paulo Quintiliano, Jodo Costa, Flavio Deus, and Rafael de Sousa Junior. Computer
forensic laboratory: Aims, functionalities, hardware and software. pages 72-75, 08
2013. ISBN 9788565069090. doi: 10.5769/C2013010.

Alan R. Hevner. A three cycle view of design science research. Scandinavian Journal of
Information Systems, Vol. 19 : Iss. 2 , Article 4, 2007.

98

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek
https://www.theguardian.com/technology/2018/sep/28/facebook-50-million-user-accounts-security-berach
https://www.theguardian.com/technology/2018/sep/28/facebook-50-million-user-accounts-security-berach
https://www.bbc.com/news/business-48905907
https://www.bbc.com/news/business-48905907

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
lio
nowledge

b

i
r

Alan R. Hevner, Salvatore T. March, Jinsoo Park, and Sudha Ram. Desgin science in
information systems research. MIS Quarterly Vol. 28 No. 1, pages 75-105, 03 2004.

Vijay Vaishnavi, Bill Kuechler, Stacie Petter, and Gerard De Leoz. Design science
research in information systems. Management Information Systems Quarterly, 28, 01
2004.

Peter Gordon. Data leakage - threats and mitigation. SANS Institute Reading Room,
October 2007.

Pascal Hitzler, Markus Krotzsch, and Sebastian Rudolph. Foundations of Semantic Web
Technologies. Taylor and Francis Group, LLC, 2010.

Amadou Fall Dia, Zakia Kazi-Aoul, Aliou Boly, and Yousra Chabchoub. C-sparql
extension for sampling rdf graphs streams. Advances in Knowledge Discovery and
Management, 7, 12 2017.

Qunzhi Zhou, Yogesh Simmhan, and Viktor Prasanna. Knowledge-infused and con-
sistent complex event processing over real-time and persistent streams. FUTURE
GENERATION COMPUTER SYSTEMS, 10 2016.

Marc Schaaf, Stella Gatziu Grivas, Dennie Ackermann, Arne Diekmann, Arne Koschel,
and Irina Astrova. Recent Researches in Applied Information Science.

Syed Gillani, Antoine Zimmermann, Gauthier Picard, and Frédérique Laforest. A query
language for semantic complex event processing: Syntax, semantics and implementation.
Semantic Web 1, pages 1-40, 2017.

Robin Keskisarkka. Towards Semancally Enabled Complex Event Processing. PhD thesis,
Link6ping University, Linkoping, Sweden, 2017.

Davide Barbieri, Daniele Braga, Stefano Ceri, Emanuele Della Valle, and Michael Gross-
niklaus. Querying rdf streams with c-sparql. ACM SIGMOD Record, 39:20-26, 09
2010a.

Danh Le-Phuoc, Minh Dao-Tran, Josiane Xavier Parreira, and Manfred Hauswirth. A
Native and Adaptive Approach for Unified Processing of Linked Streams and Linked
Data. Springer Berlin Heidelberg, Berlin, Heidelberg, 2011.

Jean-Paul Calbimonte, Oscar Corcho, and Alasdair J. G. Gray. Enabling ontology-
based access to streaming data sources. pages 96-111, 11 2010. doi: 10.1007/
978-3-642-17746-0_ 7.

Srdjan Komazec, Davide Cerri, and Dieter Fensel. Sparkwave: Contin- uous schema-
enhanced pattern matching over rdf data streams. Proceedings of the 6th ACM
International Conference on Distributed FEvent-Based Systems, DEBS’12, 07 2012.

99

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
lio
nowledge

b

i
r

Darko Anicic, Paul Fodor, Sebastian Rudolph, and Nenad Stojanovic. Ep-sparql: A
unified language for event processing and stream reasoning. Proceedings of the 20th
International Conference on World Wide Web. WWW ’11, pages 635— 644, 2011.

Mikko Rinne and Esko Nuutila. Constructing event processing sys- tems of layered and
heterogeneous events with sparql. Journal on Data Semantics 6.2, pages 5769, 06
2016.

Pieter Bonte, Riccardo Tommasini, Filip De Turck, Femke Ongenae, and Emanuele Della
Valle. C-sprite: Efficienthierarchical reasoning for rapid rdf stream processing. 15th
ACM InternationalConference on DEBS, page 103—114, 2019.

Srinivas Krishnan, Kevin Z. Snow, and Fabian Monrose. Trail of bytes: New techniques
for supporting data provenance and limiting privacy breaches. nformation Forensics
and Security, IEEE Transactions on, 7:1876-1889, 12 2012.

Jonathan Grier. Detecting data theft using stochastic forensics. Digital Investigation, 08
2011.

P.C. Patel and U. Singh. Detection of data theft using fuzzy inference system. pages
702-707, 02 2013. ISBN 978-1-4673-4527-9. doi: 10.1109/IAdCC.2013.6514312.

Beatriz Pérez, Julio Rubio, and Carlos Sdenz-Adén. A systematic review of provenance sys-
tems. Knowledge and Information Systems, 02 2018. doi: 10.1007/s10115-018-1164-3.

Adam R. Bates and K. Butler. Linux provenance modules : Secure provenance collection
for the linux kernel. 2014.

Shiging Ma, Juan Zhai, Fei Wang, Kyu Hyung Lee, Xiangyu Zhang, and Dongyan
Xu. MPI: Multiple perspective attack investigation with semantic aware execu-
tion partitioning. In 26th USENIX Security Symposium (USENIX Security 17),
pages 1111-1128, Vancouver, BC, August 2017. USENIX Association. ISBN
978-1-931971-40-9. URL |https://www.usenix.org/conference/usenixsecurityl7/
technical-sessions/presentation/mal

Kelly Shortridge. What is the linux auditing system (aka auditd)? |https://capsule8.
com/blog/auditd-what-is-the-linux-auditing-system/, 2020. Accessed: 2020-09-
12.

Shiging Ma, X. Zhang, and D. Xu. Protracer: Towards practical provenance tracing by
alternating between logging and tainting. In NDSS, 2016.

Devin J. Pohly, Stephen Mclaughlin, Patrick Mcdaniel, and Kevin Butler. Hi-fi: Collecting
high-fidelity whole-system provenance. In In Proceedings of the 2012 Annual Computer
Security Applications Conference, ACSAC ’12, 2012.

Frank Adelstein. Live forensics: Diagnosing your system without killing it first. Commu-
nications of the ACM, 49:63-66, 02 2006.

100

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek
https://www.usenix.org/conference/usenixsecurity17/technical-sessions/presentation/ma
https://www.usenix.org/conference/usenixsecurity17/technical-sessions/presentation/ma
https://capsule8.com/blog/auditd-what-is-the-linux-auditing-system/
https://capsule8.com/blog/auditd-what-is-the-linux-auditing-system/

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
lio
nowledge

b

i
r

P.S. Lokhande and B.B. Meshram. Digital forensics analysis for data theft. The Interna-
tional Journal of FORENSIC COMPUTER SCIENCE, pages 29-51, 01 2015.

Timothy M. Opsitnick, Joseph M. Anguilano, and Trevor B. Tucker. Using computer
forensics to investigate employee data theft. Cybersecurity Law Strategy.

Johan Berggren. Thinking in graphs: Exploring with timesketch. https://medium.com/
timesketch/thinking-in-graphs-exploring-with-timesketch-84b79aecd8a6, 12
2017. Accessed: 2019-03-02.

Jan Peter Wolf. An Ontology for Digital Forensics in IT Security Incidents. PhD thesis,
Univeryity Augsburg, 05 2013.

Mohammed Alzaabi, Andy Jones, and Thomas A. Martin. An ontology-based forensic
analysis tool. Annual ADFSL Conference on Digital Forensics, Security and Law, 06
2013.

Spyridon Dosis, Irvin Homem, and Oliver Popov. Semantic representation and integration
of digital evidence. Procedia Computer Science, 22:1266 — 1275, 2013.

Alfredo Cuzzocrea and Giuseppe Pirro. A semantic-web-technology-based framework for
supporting knowledge-driven digital forensics. pages 58-66, 11 2016. ISBN 978-1-4503-
4267-4. doi: 10.1145/3012071.3012099.

Clévis Eduardo de Souza Nascimento, Felipe Ferraz, Rodrigo Elia Assad, Danilo Leite,
and Victor Hazin. Ontolog: Using web semantic and ontology for security log analysis.
In ICSEA 2011, 2011.

Piyush Nimbalkar, Varish Mulwad, Nikhil Puranik, Anupam Joshi, and Timothy W.
Finin. Semantic interpretation of structured log files. In IRI 2016, 2016.

Mark Holliday, Mark A Baker, and Rich Boakes. Grids, logs, and the resource description
framework. 09 2017.

Andrew John Clark, George Mohay, and Bradley L Schatz. Rich event representation for
computer forensics. 2004.

Wolfgang Klas and Michael Schrefl. Metaclasses and Their Application, volume 943 of
Lecture Notes in Computer Science, pages 71-81. Springer, Berlin, Heidelberg, 06 1995.

Andreas Ekelhart, Elmar Kiesling, and Kabul Kurniawan. Taming the logs — vocabularies
for semantic security analysis. ScienceDirect, 2018.

Agnes Froschl. file-system-log-stream-service. https://github.com/agnesfroeschl/
file-system-log-stream-service, 2020. Accessed: 2020-08-30.

David Francesco Barbieri, Daniele Braga, Stefano Ceri, Emanuele Della Valle, and
Michael Grossniklaus. C-sparql: A continuous query language for rdf data streams.
International Journal of Semantic Computing, 04:3-25, 2010b.

101

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek
https://medium.com/timesketch/thinking-in-graphs-exploring-with-timesketch-84b79aecd8a6
https://medium.com/timesketch/thinking-in-graphs-exploring-with-timesketch-84b79aecd8a6
https://github.com/agnesfroeschl/file-system-log-stream-service
https://github.com/agnesfroeschl/file-system-log-stream-service

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
lio
nowledge

b

i
r

Branden Gregg and Jim Mauro. D7Trace. Dynamic tracing in Oracle Solaris, Mac OSX
and FreeBSD. Oracle, 2011.

Ashish Gehani and Dawood Tariq. Spade: Support for provenance auditing in distributed
environments. IFIP International Federation for Information Processing, pages 101-120,
2012.

James Turnbull. The Logstash Book. Turnbull Press, 11 2016.

Andrea Mauri, Daniele Dell’Aglio, Jean-Paul Calbimonte, and Marco Balduini. Triple-
wave: Spreading rdf streams on the web. Lecture Notes in Computer Science, 2016.

Abraham Silberschatz, Greg Gagne, and Peter B. Galvin. Operating System Concepts.
Wiley, 2018.

Cyril Goutte and Eric Gaussier. Advances in Information Retrieval, volume 3408 of
Lecture Notes in Computer Science, chapter A Probabilistic Interpretation of Precision,
Recall and F-Score, with Implication for Evaluation, pages 345-359. Springer, 2005.

Libo Gao, Lukasz Golab, M. Tamer Ozsu, and Giines Aluc. Stream watdiv: A streaming
rdf benchmark. In Proceedings of the International Workshop on Semantic Big Data,
SBD’18, New York, NY, USA, 2018. Association for Computing Machinery. ISBN
9781450357791. doi: 10.1145/3208352.3208355. URL https://doi.org/10.1145/
3208352.3208355.

Xiangnan Ren, Houda Khrouf, Zakia Kazi-Aoul, Yousra Chabchoub, and Olivier Curé.
On measuring performances of c-sparql and cqels. ArXiv, abs/1611.08269, 2016.

Mikko Rinne, Haris Abdullah, Seppo Térmé, and Esko Nuutila. Instans comparison
with c-sparql on close friends. Technical report, Department of Computer Science and
Engineering, Aalto University, School of Science Konemiehentie 2, Espoo, Finland,
2016.

102

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek
https://doi.org/10.1145/3208352.3208355
https://doi.org/10.1145/3208352.3208355

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
blio
nowledge

(]
I
rk

10

12

14

11

13

15

17

19

Appendix A Precondition Configuration Files

The following listing displays the configuration file of the audit deamon provided by
OpenBSM.

$ sudo cat /etc/security/audit_control

#

$P4: //depot/projects/trustedbsd/openbsm/etc/audit_control#8 $
#

dir:/var/audit

flags:fr, fw,fa,fm,fc, fd

minfree:5

naflags:lo,aa

policy:cnt,argv,seq,path

filesz:6M

expire-after:60M
superuser-set-sflags-mask:has_authenticated,has_console_access
superuser-clear-sflags-mask:has_authenticated,has_console_access
member-set-sflags-mask:
member-clear-sflags-mask:has_authenticated

Listing 1: Audit configuration file

The following configuration file shows all audit classes available for auditd.

$ cat /etc/security/audit_class

#

$P4: //depot/projects/trustedbsd/openbsm/etc/audit_class#6 $
#

0x00000000:no0:invalid class

0x00000001:fr:file read

0x00000002: fw: file write

0x00000004:fa:file attribute access
0x00000008: fm:file attribute modify
0x00000010:fc:file create

0x00000020: fd:file delete

0x00000040:cl:file close

0x00000080:pc:process

0x00000100:nt:network

0x00000200:1ip:ipc

0x00000400:na:non attributable
0x00000800:ad:administrative
0x00001000:10:login_logout
0x00002000:aa:authentication and authorization
0x00004000:ap:application

103

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
blio
nowledge

(]
I
rk

21

23

10

12

14

16

18

ot

11

13

15

17

0x20000000:i0:ioctl
0x40000000:ex:exec
0x80000000:0t:miscellaneous
Oxffffffff:all:all flags set

Listing 2: Audit classes of auditd

Appendix B Implementation of Triple Wave

R2rml.prototype.transform = function(data) {
var triples = []
for (i = 0; i < this.tripleMaps.length; i++) {
var tmap = this.tripleMaps[il
var subject = transformMap(tmap.sMap, data)
tmap.poMaps.forEach(function(poMap) {
var predicate = poMap.predicate.uri
var object = transformPOMap(poMap, data)
var key = predicate;
var tripleObj = {};
tripleObj["@id"] = subject;
tripleObj[key] = object;
triples.push(
tripleObj
)
3
}

return triples

Listing 3: Implementation of function transform in r2rmli-js/r2rml.js

\begin{lstlisting}[language=JavaScript, basicstyle=\ttfamily\smalll]
EnrichStream.prototype._transform = function(chunk, enc, cb) {
var change = chunk;
change = this.enrich(change);
var _this = this;
var result=[];
var itemsProcessed = 0;
change. forEach(function (arrayItem) {
jsonld.expand(arrayItem, function(err, expanded) {
result.push(expanded[0]);
itemsProcessed++;
if(itemsProcessed === change.length) {
itemsProcessed = 0;
var element = {};
var date = new Date();
var dateString = dateFormat(date,
"yyyy-mm-dd’'T’'HH:MM:ss.1’Z2"");

104

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

M 3ibliothek,
Your knowledge hu

19

21

23

25

27

29

}

1)

element["http://www.w3.0rg/ns/"+
"prov#generatedAtTime"] = date;
element["@id"] = "http://Triplewave-stream-"+
"transformation/" + dateString;
element["@graph"] = result;

_this.push(element);
cb();

1)

Listing 4: Implementation of function transform in stream/enricher.js

105

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

	Kurzfassung
	Abstract
	Introduction
	Motivation
	Problem Statement
	Aim of the Work
	Structure of the Thesis

	Methodological Approach
	Relevance Cycle - Application Domain
	Rigor Cycle - Foundations
	Design Cycle Iterations

	Background
	Data exfiltration
	Semantic Web Technologies
	File System Events
	Semantic Complex Event Processing (SCEP)

	State of the Art
	Data exfiltration
	Provenance Systems
	Forensic Analysis of a File System
	Semantic Approaches in Forensic Analysis
	Semantic Representation of Log Data

	Semantic Models for Log Data Representation
	Concept Architecture
	Specification of Semantic Models
	File System Events Data Model
	File Access Events Data Model
	Background Knowledge Data Model
	Relations between Semantic Models
	File Life-Cycle Reconstruction

	Implementation
	Architecture
	Apache Jena TDB Component
	C-SPARQL as Complex Event Processing Language
	File System Event Extraction
	External Tools
	Event Detection and Semantic Data Analysis
	File History Graph
	Event Flow of User Interaction

	Evaluation
	Automated Scenarios
	Data Exfiltration Scenario
	Comparison with existing approaches

	Conclusions
	Research Question Revisited
	Open Issues and Limitations
	Future Work

	List of Figures
	List of Tables
	Listings
	Bibliography
	Appendix
	Appendix A Precondition Configuration Files
	Appendix B Implementation of TripleWave

