B Informatics

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
blio
nowledge

(]
I
rk

Cruel Intentions

Enhancing Androids Intent Firewall

DIPLOMARBEIT

zur Erlangung des akademischen Grades
Diplom-Ingenieur
im Rahmen des Studiums
Medizinische Informatik
eingereicht von

Thomas Michael Klepp, Bsc
Matrikelnummer 0626890

an der Fakultat far Informatik
der Technischen Universitat Wien

Betreuung: Privatdoz. Dipl.-Ing. Mag.rer.soc.oec. Dr.techn. Edgar Weippl
Mitwirkung: Univ.Lektor Dipl.-Ing. Dr. techn. Georg Merzdovnik

Wien, 15. Oktober 2020

Thomas Michael Klepp Edgar Weippl

Technische Universitat Wien
A-1040 Wien = Karlsplatz 13 = Tel. +43-1-58801-0 = www.tuwien.at

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

“}auioljqig usipn NL e ud ul s|ge[rene si sisayl SIUl JO UOISIaA feulBblio pasoidde ay < any a8pajmoun Jnoa
“regBnpian 3ayiolgig Usip NL Jap ue 1si liaglewoldiq Jasalp uoisiaAfeulBuO aponipab ausiqoidde aiq v_ﬂ_-_u.o__n__m

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

B Informatics

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
blio
nowledge

(]
I
rk

Cruel Intentions

Enhancing Androids Intent Firewall

DIPLOMA THESIS

submitted in partial fulfillment of the requirements for the degree of
Diplom-Ingenieur
in
Medical Informatics
by

Thomas Michael Klepp, Bsc
Registration Number 0626890

to the Faculty of Informatics

at the TU Wien

Advisor: Privatdoz. Dipl.-Ing. Mag.rer.soc.oec. Dr.techn. Edgar Weippl
Assistance: Univ.Lektor Dipl.-Ing. Dr. techn. Georg Merzdovnik

Vienna, 15" October, 2020

Thomas Michael Klepp Edgar Weippl

Technische Universitat Wien
A-1040 Wien = Karlsplatz 13 = Tel. +43-1-58801-0 = www.tuwien.at

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

“}auioljqig usipn NL e ud ul s|ge[rene si sisayl SIUl JO UOISIaA feulBblio pasoidde ay < any a8pajmoun Jnoa
“regBnpian 3ayiolgig Usip NL Jap ue 1si liaglewoldiq Jasalp uoisiaAfeulBuO aponipab ausiqoidde aiq v_ﬂ_-_u.o__n__m

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
lio
nowledge

b

i
r

Erklarung zur Verfassung der
Arbeit

Thomas Michael Klepp, Bsc

Hiermit erklére ich, dass ich diese Arbeit selbstédndig verfasst habe, dass ich die verwen-
deten Quellen und Hilfsmittel vollstdndig angegeben habe und dass ich die Stellen der
Arbeit — einschliefSlich Tabellen, Karten und Abbildungen —, die anderen Werken oder
dem Internet im Wortlaut oder dem Sinn nach entnommen sind, auf jeden Fall unter
Angabe der Quelle als Entlehnung kenntlich gemacht habe.

Wien, 15. Oktober 2020

Thomas Michael Klepp

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

“}auioljqig usipn NL e ud ul s|ge[rene si sisayl SIUl JO UOISIaA feulBblio pasoidde ay < any a8pajmoun Jnoa
“regBnpian 3ayiolgig Usip NL Jap ue 1si liaglewoldiq Jasalp uoisiaAfeulBuO aponipab ausiqoidde aiq v_ﬂ_-_u.o__n__m

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
blio
nowledge

(]
|
rk

ABSTRACT ENGLISH

The inter process communication (IPC) functionality of the Android platform has gained
the attention of security researchers since the operating system’s initial release. Because
the IPC mechanism employs a publish-subscribe pattern by which applications choose
the type of intent messages that they are prepared to receive, the system is vulnerable to
malicious applications. Unsecured messages sent system wide may leak sensitive data when
intercepted by unintended recipients, and unguarded exposed application components
may be maliciously targeted to inject data to trigger unwanted behavior. To mitigate
these dangers, the operating system received a mandatory access control system named
Intent Firewall (IFW) in version 4.4, which allows monitoring and blocking IPC traffic
based on user-defined rules. Because this system has limited efficiency due to its coarse
filter granularity, difficult usability and lack of automatic threat detection, an upgraded
version was needed. After reviewing static and dynamic research approaches as well as
policy-based security tools to identify and regulate malicious intent traffic, the Enhanced
intent firewall (EFW) was created to remedy shortcomings in the design of the original
IFW implementation. Using this system, a set of both malicious and benign applications
was analyzed to characterize dangerous intent traffic and subsequently counteract it
through user-created policies. Furthermore, a detection module is presented to show the
system’s capability to analyze and monitor /PC' communication in real time to detect and
automatically block malicious behavior. Finally, the effects of the tool on the operating
system’s runtime performance are measured to demonstrate this approach’s feasibility.

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
blio
nowledge

(]
|
rk

ABSTRACT DEUTSCH

Das Interprozess-Kommunikationssystem welches vom Android Betriebssystem zur Kom-
munikation zwischen verschiedenen Prozessen genutzt wird, hat seit der ersten Veroffent-
lichung der Plattform das Interesse der Sicherheitsforschung erregt. Durch den Einsatz
des publish-subscribe Prinzips kénnen Applikationen selbst definieren welche Nachrichten
sie empfangen konnen. Allerdings ist dieses Konzept anféllig fiir Angriffe in welchen
bosartige Applikationen ungesicherte Nachrichten abhéren und Daten in ungeschiitzte
Komponenten injizieren kénnen um ungewiinschtes Verhalten auszulésen. Um derartiges
Verhalten zu unterbinden wurde dem Betriebssystem in Version 4.4 die Intent Firewall
(IFW) hinzugefiigt welche es Benutzern erlaubt die Interprozess-Kommunikation tiber
Filterregeln zu regulieren. Dieses System zeigt allerdings mehrere Schwachstellen welche
die Einsatzfdhigkeit stark einschréankt. Sowohl die Bedienung der Firewall selbst als auch
die Filtermoglichkeiten sind begrenzt, weiters fehlt dem System die Fahigkeit autonom
Angriffe zu erkennen und zu blockieren. Nach der Analyse von statischen und dynamischen
Forschungsansétzen sowie von regelbasierten Filtersystemen, préasentiert diese Arbeit
mit der Enhanced intent firewall (EFW), eine erweiterte Version der Firewall welche die
Schwachstellen der urspriinglichen auszugleichen sucht. Nach dem sowohl die erweiterten
Filtermdglichkeiten und die automatische Angriffserkennung des erweiterten System
diskutiert wurden, werden die Auswirkungen auf die Performance des Betriebssystems
beleuchtet um die praktische Einsatzfahigkeit des Ansatzes zu demonstrieren.

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
lio
nowledge

b

i
r

Contents

Contents

1 Introduction

2 State of the art

2.1 Staticanalysis L oL
2.2 Dynamic analysis L
2.3 Hybrid analysiso
2.4 Policy-based security tools oL

3 Background

3.1 Android operating systemo oo
3.2 Intent e e
3.3 Intent filter
3.4 Activity
3.5 Serviceo e
3.6 Broadcast
3.7 Pending intent oo o
3.8 Resolving intents L L
3.9 Android intent firewall
3.10 Intent-based attacks

4 Enhanced intent firewall

4.1 Enhanced intent firewall
4.2 Intent collectoro
4.3 Data collection pipeline L.

5 Evaluation

5.1 Results of data collection
5.2 Evaluation of activity intents 0oL,
5.3 Evaluation of broadcast intents
5.4 Evaluation of service intents
5.5 Countering attacks
5.6 Screenlock attack detection module

ix

w

13
15

19
19
20
21
22
25
27
30
31
32
35

44
44
50
52

61
65
69
78
80
82
86

ix

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

87

5.7 Firewall evaluation

99

6 Conclusion

100

List of Figures

103

Bibliography

“}auioljqig usipn NL e ud ul s|ge[rene si sisayl SIUl JO UOISIaA feulBblio pasoidde ay
“JeqBnyan 3auloljqig usipn N1 Jap ue isi iagrewoldiq Jasalp uoisiaAfeulBuO apjonipalb ausiqoidde aiqg

qny a8pajmoud| INoA

Saylolqie

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
blio
nowledge

(]
I
rk

CHAPTER

Introduction

Due to its ubiquitous usage, the Android operating system is targeted by increasingly
sophisticated malware, with one attack vector being the system’s inter process communi-
cation (IPC) functionality. Although it was designed to constitute the sole communication
channel between isolated processes in order to prevent their interference with each other’s
resources, the IPC system can be abused to attack unsecured applications. The in-
tent messages used for IPC, both to launch application components and to transport
data, employs publish-subscribe by which each component defines the type of intents
it is prepared to receive. As discussed in Section 3.10, this mechanic allows malicious
applications to perform attacks, such as intercepting unsecured messages to eavesdrop
on sensitive data or injecting intents into unsecured application components to trigger
unwanted behavior. The operating system’s mandatory access control functionality called
Intent Firewall (IFW) addresses this problem by allowing manually configuring filters to
prevent matching intent messages from being sent or received by the defined application.
Analyzing this system, however, revealed shortcomings restricting its efficiency. Although
configuring the firewall rules does not facilitate all necessary filter combinations, their
deployment and access to the monitoring data created when firewall rules are triggered
proved inconvenient for regular use. Furthermore, the system offers no functionality of
actively scanning and reacting to threats by creating rules on its own. To remedy these
shortcomings, this work presents an upgraded version of the intent firewall, which was
designed after evaluating the IPC traffic of benign applications from the Google Playstore
and samples from a set of known malware. Based on the findings, the Enhanced intent
firewall (EFW) allows creating finer-grained rules for filtering while offering a convenient
user interface, furthermore, its extendable architecture allows adding detection modules
to scan for irregularities in the IPC' traffic which are not covered by active firewall rules.
Such a module is used to address an attack performed by several previously analyzed
malware samples. To demonstrate this approach’s feasibility, this study measures the
impact on the operating system’s performance via firewall rule evaluation as well as

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

w Sibliothek,
Your knowledge hub

1.

INTRODUCTION

the scanning and subsequent rule adaptation of the detection module. After reviewing
different research approaches to intent-related attacks in Chapter 2, Chapter 8 discusses
the structure of the operating system’s IPC functionality and received attacks. Chapter
4 covers the implementation details of the FF'W application and the data collection
process of the sample’s intent traffic. Chapter 5 presents the data analysis and shows
how irregular IPC traffic can be addressed by firewall rules and an autonomous detection
extension. In addition, the implementation’s efficiency is demonstrated by calculating the
effect of the approach on the system’s performance. Finally, Chapter 6 outlines possible
future enhancements of the system.

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
blio
nowledge

(]
I
rk

CHAPTER

State of the art

Intent-based vulnerabilities and their exploitation have been researched from several
perspectives. The foremost employed technique regards static and dynamic program
analysis of both single and groups of Android applications. Following the evaluation of [1],
who assessed intent-related security research over a period of six years, static analysis has
received the most attention and was being used in 73% of the reviewed works, followed by
a dynamic approach (17%) and hybrid methods employing static and dynamic analysis
techniques (10%). The research covers vulnerability detection, which aims to identify
benign applications which are susceptible to attacks, and malicious behavior analysis
to detect malignant applications. The former represents the objective in 12% of the
research, the latter regards 82% the remaining 6% cover both research questions. Lastly,
mandatory access control tools are discussed, which monitor and regulate Android IPC
traffic in real time.

2.1 Static analysis

Static program analysis evaluates an application based on artifacts such as source or byte
code as well as meta information such as the program’s configuration files. The difference
from dynamic analysis is that the respective application is not executed but rather
solely evaluated using the forementioned resources. In the case of intent-related security
research, static analysis regards two widespread approaches: Firstly, taint tracking
requires an application’s source or byte code. This approach follows the invocation of
program statements between points of interest in the programs code, where the origin
of a flow is called the source and the destination labeled sink. Notable sources and
sinks include sensitive system API methods and resources as well as entry points of
Android components, because the goal in security scoped taint tracking is to determine
if a certain sensitive point within a component’s scope is reachable from outside. The
research discussed below employs graph-based data structures to formulate these data

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
blio
nowledge

(]
I
rk

2.

STATE OF THE ART

flows, where functions are represented by nodes while the edges connecting them represent
the invocation of this function. Although static taint analysis provides a comprehensive
picture of an application’s behavior, the approach poses several challenges such as
regarding precision. Because Android concerns an event and component-driven system,
data flows must be tracked, through every branch of the application’s code and through
system calls, the component life-cycle as well as through code from employed third-party
libraries. The calculation of all possible data flows and values thus demands unfeasible
time and processing power, while reducing the tracking accuracy also reduces analytical
precision. Analysis is also hindered by obfuscation via the encryption of class, function
and variable names as well as data values such as URLs and commands to meaningless
strings. The code dynamically loaded during execution and native payload such as C++
code are not covered by static taint analysis. To circumnavigate these issues, the second
category of approaches using static analysis employs more heuristic actions which depend
on the meta data of applications such as the manifest file to assess the application’s
behavior. Techniques such as machine learning or the adaptation of the IPC system are
used to identify intent-related security issues. Similar to the taint tracking approach,
dynamic loaded code can not be analyzed using static means.

2.1.1 Vulnerability analysis

Vulnerability analysis aims to identify applications which are vulnerable to intent-based
attacks. A vulnerability can be caused by the insecure implementation of a single compo-
nent which has been unintentionally exported or which uses unchecked input data. This
vulnerability can stem from the interaction of multiple components.

Using static taint analysis to identify intent-based vulnerabilities in real-world applica-
tions, ComDroid [2] disassembles apk package files to analyze the resulting bytecode
files. The analysis tracks the state of intents, intent filters and application components to
identify whether a component can be reached by a certain intent causing insecure ICC
communication patterns. ComDroid then issues warnings when, for example, implicit
intents are sent with weak or no permissions or components are automatically exported
through intent filters without being secured with permissions.

Evaluating the tool using 100 applications identified 1,414 exposed attack surfaces, which
would allow spoofing, privilege escalation and data leakage attacks. Although the findings
may include false negatives since the analysis does not distinguish between different
paths in conditional statements, intents are treated as implicit when made implicit in one
branch and explicit in another. Actual attacks on found vulnerabilities are not verified
by this approach, and changes to Android’s ICC system are suggested to close some
attack surfaces.

Chez [3] aims to detect highjackable data flows in applications by utilizing app splitting,
whereby an application’s code is divided into several parts, each accessible via a single
entry point. Predefined policies are used to analyze the data flows from all splits to
identify exploitable weaknesses in the respective component. Evaluating 5,486 sample

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
blio
nowledge

(]
I
rk

2.1. Static analysis

applications uncovered 254 potential vulnerabilities, and due to its deeper analysis ap-
proach, Chez is less susceptible to falsely labeling exported components as exploitable.
Although this method has limited efficiency due to missing knowledge regarding the order
in which the application’s components are invoked and the extent to which vulnerable
data flows are sanitized by complex logic.

Using a similar approach as ComDroid [2]|, Epicc [4] interprets inter-component communi-
cation as an inter-procedural distributive environment dataflow analysis problem, which
can be solved efficiently [5]. After creating a call graph to model the communication
between components, Epicc solves the IDE problem using their analysis tool based on
Soot [6], a framework intended to optimize java bytecode. Evaluating 1,200 applications
showed a 32% reduction of false positives compared to ComDroid due to its capability
of differentiating between multiple branches of code statements. In addition, Epicc can
check the feasibility of attacks for found vulnerabilities in applications while ComDroid
merely seeks potential vulnerabilities.

By comprehensively inferring the intent values and the correlations between them, I1C3 [7]
targets a more precise analysis of ICC dataflow than previous approaches such as Ap-
poscopy [8] or Epicc [4]. String-based values are calculated more precisely as IC3 shows
an 84% malicious data flow detection accuracy for inferring intent values, compared to
68% with Epiccs. The approach is inspired by FlowDroid [9] and builds a similar call
graph, which is then fed to a Soot-based [6] data flow solver to track IPC data flows.
Compared to FlowDroid, IC3 finds 78% fewer possible targets for ICC data flows.
Addressing a rarely discussed attack vector, PIAnalyzer [10] aims to detect component
vulnerabilities produced by the unsafe usage of pending intents. This approach examines
pending intents and respective used base intents by modeling all component’s usages of
such intents into a call graph, which is then manually assessed to decide whether the
vulnerable code is executed. Evaluating the approach on 1,000 samples showed 1,358
unsafe usages of pending intents such as the use of implicit intent to create the pending
one. In 70 cases, an unprivileged malicious application could perform critical operations
when obtaining an unsafe pending intent. Limitations of this approach include behavior
which depends on dynamic input, and if the tool can not decide whether an intent would
be explicit an runtime, the intent is treated as implicit, which leads to false positives.

To identify which inter-application communication could be replaced by intra-application
communication, IntraComDroid [11] proposes changes to the heuristics which the An-
droid system applies to determine the destination components of intents. These changes
allow automatically detecting and patching vulnerabilities such as unintentional exposed
components and intents sent unnecessarily global. ComDroid [2] was used to analyze 969
applications, to measure which security vulnerabilities were fixed by the approach. The
evaluation shows that the new heuristics would fix 45% of unintentional exposed compo-
nents and 18.5% of exposed intents, although the approach is limited to vulnerabilities
which are detectable by ComDroid as well as to the kind of applications tested.

[12] changes the behavior of the Android ICC system, as suggested by [2]. The function-
ality which parses the manifest of an application during installation has been adapted

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
blio
nowledge

(]
I
rk

2.

STATE OF THE ART

so that components automatically exported by an intent filter remain inaccessible from
outside the application. In addition, implicit intents would be primarily delivered within
the application before considering system-wide receivers to avoid information leakage.
Evaluating these changes on 497 applications showed that 69% contained automatically
exported components. Examining 20 of them manually suggested that 71% could be set to
private and that 96% of implicit intents would be prevented from leaving the application’s
context. Although the evaluation also showed that these security restrictions would
disrupt some intended app functionality, this could be partially remedied by including
permission and namespace awareness into the security enhancements.

To reduce the false positives of previous works, ApSet [13] facilitates information from
the Android class documentation to automatically generate test cases from a given apk,
which describes the application’s components and behavior regarding the use of implicit
or explicit single intents. Creating test cases for 70 sample applications and matching
them with predefined intent-related vulnerability patterns showed that 62 contained at
least one vulnerable component. This approach improves the work of ComDroid [2]
by evaluating the described vulnerabilities using blackbox tests; however this approach
considers neither the component type broadcast receiver nor attack patterns involving
several different intent actions.

To enable developers to adopt best practice recommendations regarding intent-related
security, [14] developed a plugin for the Android Studio IDE, which analyzes the code
for common intent-based vulnerabilities. The vulnerability detector was created to check
the source code during implementation to detect the OWASP Top 10 mobile security
risks [15]. The tool warns the developer when a component is automatically exported by
defining an intent filter or when globally sent intents are used for internal communication.
For each found vulnerability, the plugin offers an alternative implementation which follows
the best practice guidelines.

To improve the detection precision of previous works, VanDroid [16] uses a model-driven
approach, whereby an apk is analyzed to formulate security aspects of the Android appli-
cation into a formal model, which is then matched with patterns of predefined security
vulnerabilities such as data leakage and injection attacks. The approach was analyzed
using 130 applications and found 501 vulnerabilities. VanDroid showed a detection
precision of 100the with the tools IccTA [17], FlowDroid [9] and Amandroid [18], thus
outperforming all compared approaches.

2.1.2 Malicious behavior analysis

The goal of malicious behavior analysis is to identify attacking applications which aim
to exploit vulnerabilities in the operating system or other applications. To detect such
behavior, taint analysis has been employed to analyze vulnerabilities and alternative
approaches. In addition to finding a single malicious application, collusion attacks are
discussed, where multiple malignant applications cooperate to perform an attack.

To detect malicious data flows, FlowDroid [9] parses the bytecode of applications to find
suitable sources and sinks for potential data flows, which are then processed by SuSi [19],

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
blio
nowledge

(]
I
rk

2.1. Static analysis

a tool which automatically detects data sources and sinks in the Android system. After
creating a call graph describing the invocation flow of each components life cycle methods,
Soot [6] is used to track the flow from sources to sinks. FlowDroid showed a 86% detection
rate for malicious data flows when testing 500 samples taken from Google Playstore and
1,000 malicious ones. This approach improves on the similar work of Chez [3] through a
higher detection precision due to considering callback and component life cycle methods
and through greater sensitivity to the context and objects involved in the data flow.
In addition to inherent limitations of static analysis, the approach does not consider
multi-threading but instead treats all operations as occurring sequentially.

Similar to FlowDroid’s approach [9], DroidSafe [20] also employs SuSi [19] to create a
list of sources and sinks for their analysis; however, DroidSafe additionally uses manual
identification to ensure tracking all sources and sinks necessary for the analysis, since
some are not discovered automatically. When performing static flow analysis between
these endpoints, DroidSafe managed a detection rate of 93% of malicious data flows when
evaluated on 24 applications, including 13 false positive findings. This approach thus
surpasses FlowDroid regarding detection precision. Although this approach’s accuracy
depends on a complete list of sources and sinks, endpoints missed or not considered as
sensitive by DroidSafe, can-not be detected, and furthermore no implicit data flows are
mined.

AmanDroid [18] generates a flow graph to model interactions between components and
API methods of the Android system, representing an abstraction of the applications
behavior and allowing a more comprehensive analysis of data flows over IC'C' between
components compared to previous works. Testing 753 benign and 100 malicious applica-
tions revealed several data leakage and injection attacks between the sample applications.
AmanDroid improves on FlowDroid by tracking ICC calls over multiple components
and on Epicc [4] by leveraging the result values of inter-component analysis for ICC
calls. The limitations of AmanDroid include cases where security exceptions are thrown
in a sampled application leading to false negatives and methods using reflection and
concurrent running threads are not tracked.

Building on FlowDroid [9] and Epicc [4], the approach of DidFail [21] combines both.
After analyzing the manifest file of an application, FlowDroid [9] is used to track data
flows inside components while Epicc [4] identifies and tracks properties of sent intents.
After individually analyzing each sample application, the collected data are used to
find data flows from sources and sinks between different components. This approach
has proven feasibility for both benchmark tests and malicious applications created for
evaluation. The approach also inherits the limitations of FlowDroid and Epice, and
DidFuil only examines intents related to activity components.

Similar to DidFail [21], IccTA [17] can detect and track malicious data flows over mul-
tiple components. After generating possible data sources and sinks with SuSi [19] and
building a flow graph between them, multiple sample applications are merged, with
Epicc generating links between components and FlowDroid facilitating intra-component
taint analysis. When evaluating the approach using 1,260 malicious applications, IccTA
showed a 96.6% precision rate for detecting malicious data flows, which improves on both

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
blio
nowledge

(]
I
rk

2.

STATE OF THE ART

employed approaches’ accuracy while expanding the detection scope of data flows to
multiple components; however, the limitations of both approaches are inherited as well.
Using the approach of signature-based malware detectors such as anti-virus software,
Apposcopy [8] defines the semantic characteristics of Android malware and aims to identify
these signatures in sample applications. Similar to Epice, [4] a call graph models the
data flow between components used in the taint analysis, which relies on hand-written
models of 1,100 Android system classes. Evaluating 1,027 malicious applications showed
a 90% accuracy in detecting malware, although the precision varies based on the type of
malware. The signature-based approach includes an inherited vulnerability to obfuscation
techniques such as dynamic code loading and reflection; furthermore, the time-consuming
detection technique does not allow the instant discovery of malware.

To detect potential data leakage and injection vulnerabilities, PCLeaks [22] employs
FlowDroid [9] to create a flow graph to model the relation between component’s sources
and sinks. The collection of sources and sinks are generated by SuSi [19] since this
approach builds on FlowDroid [9]; however PCLeaks treats all entries as sources and
exits to accommodate cases in where a source or sink method call is overwritten by a
custom implementation. To verify potential leaks, an automatically generated Android
application attempts to exploit the vulnerable component. Evaluating 2,000 applications
revealed 290 findings, 75% of which were confirmed as true positives, although not all
ICC-related system methods are considered in the analysis.

To reduce the challenge of inter-application communication analysis, ApkCombiner [23]
utilizes the fact that the Android OS uses the same functionality to facilitate inter-
application and intra-application communication. After merging one malicious and one
benign application into a single apk, ApkCombiner can employ IccTA [17] to detect
inter-app vulnerabilities as encapsulated within a single application. Evaluating 3,000
samples showed that ApkCombiner can detect inter-application communication; however
this approach is limited by its scalability since combining more than two applications
increases the chance that combining resources and dependencies of the applications leads
to a non-executable package.

Attempting to detect permission leakage between applications, [24] aims to improve
on Covert [25] and ApSet [13] by comprehensively handling asynchronous calls and
Android life cycle calls. After building a graph for IPC calls and determining the tar-
get components of the intents, this approach matches all found execution paths with
predefined vulnerability patterns. Soot [6] is employed to handle calls over Android’s
life-cycle methods, while FlowDroid [9] is used to tracks call paths from sources to sinks.
Evaluating 550 applications showed a true positive rate of 68%, although the system
failed to analyze 15.6% of the applications due to the large computational overhead of
the taint analysis. While previous works do not analyze intents which are obtaining and
reused by a component other than the sending one, ICCA [26] aims to detect such cases.
After analyzing the bytecode of an application and using Soot [6], IC3 [7] is used to infer
values and methods of the ICC calls, while considering the reused intents. Modeling this
data on a call graph allows tracking the components’ intent communication. Through this
method, ICCA improved on IC8 by detecting 73 revised intents in the tested application

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
blio
nowledge

(]
I
rk

2.1. Static analysis

set and by tracking 431 implicit intents, which IC3 is not designed to handle.

To detect data leakage between applications, SDLI [27] computes a summary for each
analyzed sample, including a list of tainted information sent through intents and of which
intents an application can receive. These data are extracted from both manifest and
bytecode files. Comparing the summaries of samples using a static analyzer detected
applications leaking data outside of their contexts. SDLI tracks explicit and implicit in-
tents and considers all types of Android components, and evaluating 47 applications from
the Google Playstore showed that all but one included at least one case of information
leakage. Using a similar approach as FlowDroid [9], [28] uses data from the application’s
bytecode and manifest file to create a call graph of the used ICC-related methods using
IC3 [7]. Based on this graph sources and sinks in different components are connected
and taint analysis is applied to track the flow of the ICC calls to decide whether attacks
can be performed on this path by one of the communicating components. Evaluating
60 applications, showed that this method can detect more types of vulnerabilities than
previous works such as Chez [3].

Aiming to identify malicious applications by analyzing manifest files, [29] compiled a
list of keywords from the manifests of 30 benign and 30 malicious applications. This
analysis showed that manifest properties such as actions, intentfilter categories as well
as used permissions and process names indicate application’s maliciousness. Comparing
these keywords to manifests of 130 known malicious and 235 benign applications allowed
calculating a malignancy score for each sample, which showed a true positive rate of
91.4% for benign applications and 87.5% for malicious ones. The evaluation also showed
that certain types of malware such as adware can not be detected by this approach since
their manifest files were too similar to those of benign applications.

Aiming to discover combinations of characteristics associated which malware, Drebin [30]
extracts features from application manifest files and used API calls from the disassembled
source code and embeds them into a vector space. To efficiently detect these patterns,
machine learning algorithms are used on the vector model to decide whether a sample
should be considered to be malware. Using 10 virus scanner services to divide test
samples into 123,453 benign and 5,560 malicious applications, Drebin showed a precision
of 94% when detecting malware, with a false positive rate of 1%. While aiming to be
resilient to obfuscation during analysis, the precision of Drebin is susceptible to pollution
attacks, whereby malware showing benign features can poison the training dataset.
ICCDetector [31] similarly only considers how an application uses inter-component com-
munication. Using Eppic [4] to extract ICC communication patterns from the apk files
of 5,264 malicious and 12,026 benign application samples, ICCDetector uses this data
to train a decision-making engine to detect malware with a precision of 97.4% and false
positive rate of 0.67%. Thus, ICCDetector shows higher accuracy than Drebin [30] yet
experiences the same limitations regarding the training data.

Combining the analysis of intents with that of used permissions, AndroDialysis [32] plans
to achieve higher detection precision compared to systems considering only one of these
aspects. Using extracted data from manifest files and source code to create a statistical

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
blio
nowledge

(]
I
rk

2.

STATE OF THE ART

10

model, which is fed to a decision-making algorithm, allows labeling a sample application
as benign or malicious. Evaluating 1,846 clean applications and 5560 infected ones taken
from the Drebin dataset [30] showed 91% precision when only using intents as indicator
of maliciousness, 93% when only using permissions and 95,5% when combining both
aspects.

IntGet [33] aims to distinguish between malicious and benign applications by comparing
the property values of the used intents. To obtain these values IntGet analyzes applica-
tions’ manifest and bytecode, to create a list showing implicit and explicit intents as well
as which and how many IPC method calls are used by the application. Performing these
steps on 20 benign samples and 20 malicious ones from the Drebin dataset [30] allows
defining characteristics which are typical of malware, such as certain intent actions and
frequency concerning the use of IPC. This approach shows that infected applications
exhibit different pattern in the usage of actions in intents; however the work discusses
these results only for the component-type activity.

Aiming to improve previous approaches such as Epicc [4] which focused on analyzing
single applications, Covert [25] intends to detect malicious behavior originating from
the collusion of multiple applications. In an initial step, a formal model of each sample
application and the configuration of the respective Android framework version used in
the analysis are created using the Soot tool [6]. Afterwards, formal analysis is performed
on the combined models of the applications and framework to find vulnerability patterns.
This approach detected malicious behavior with a precision of 60% after testing on 200
samples, and it is vulnerable to false positives since only static analysis is employed.
Fuse [34] aims to detect app collusion in a specified set of applications by initially
performing single-app analysis on each application in the set, followed by a second
analysis which considers the relationship between the applications. For each app, Fuse
generates an extended application manifest which contains the sources, sinks and data
flows between them. Based on this data, a call graph is generated to model the data flow
between the set’s applications, and then taint analysis is performed to find data flows to
reachable sinks. Although performing a more detailed single app analysis compared to
Chezx [3] and Epicc [4], Fuse showed a lower precision compared to FlowDroid [9].
Employing two different approaches to detect app collusion, with both relying on the
analysis of used permissions and communication methods, [35] extracted data from
the application’s byte code and from the manifest file. The first approach uses this
information to model the possible communication methods of application pairs and then
examines the model using a set of rules to identify colluding applications. The second
approach uses machine learning techniques to detect colluding pairs of apps. For testing
purposes, 4 sets containing 11 colluding and 3 benign apps were created. While the
rule-based method detected all malicious app sets with 8 false positives, the second
one found only 2 app sets with 5 false positives. These approaches, however were not
evaluated using actual malware, the success of the rule-based approach depends on the
focus of the employed rules and both methods include scaling-issues, since the detection
must be performed for all possible combinations of applications. MrDroid [36] uses an
empirical approach to rank applications suspected of collusion. In an initial step, a call

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
blio
nowledge

(]
I
rk

2.2. Dynamic analysis

graph is built to show pairs of apps sharing multiple I/PC connections by parsing the
application’s byte code and manifest files, after which IC3 [7] is employed to analyze the
data to discern the sources and sinks of the IPC calls. The connections between apps’
pairs are ranked using a scoring system, which analyzes whether the communication is
uni or bi directional for example, to identify high-risk applications. This approach was
tested on 500 samples and resulted in rating 6 application pairs as high risk and 169 as
medium risk for colluding with each other. During the evaluation, MrDroid identified
all 8 colluding app pairs in the sample set. This approach includes limitations in that
intent attributes are considered for the inspection but no data flow analysis is performed,
which might allow malicious applications to remain undetected, and only pairs of apps
can be detected for collusion. To detect leaks of sensitive data across multiple apps, [37]
creates a model containing information concerning the use of IC'C-related classes such
as intents and intent filters as well as the usage of methods which can access sensitive
resources like the device id. By analyzing this data using a model checker, ICC paths
which leak data from one application context to another are uncovered. This approach
was evaluated on a set of 8 sample applications implemented for this purpose. While the
initial tests checked tuples of applications for collusion showed promise, the aim is the
ability to detect three or more applications performing collusion attacks. Furthermore,
this approach claims to be able to identify leaks not detectable by its predecessors
IccTA [17], FlowDroid [9] and DroidSafe [20]. Aiming to detect colluding applications,
DialDroid [38] extracts permissions and intent filters from applications’ manifest files
and uses IC3 [7] to determine which intents can pass the found intent filter. Similar to
that used by FlowDroid [9], a call graph is generated to identify entry and exit points
of intents in each applications’ component. A database is compiled using this data to
allow efficiently calculating potentially sensitive inter-application IPC paths. Evaluating
100,206 benign and 9,944 malware applications showed a higher accuracy compared to
Covert [25] and ApkCombiner [23] in addition DialDroid improves on IC3 by identifying
28% more intents and processing 33% more applications for which IC3 failed.

2.2 Dynamic analysis

Unlike static analysis approaches, in dynamic analysis a program is executed to observe
the behavior of the application during runtime. Although this analysis allows detecting
malicious behavior which can-not be detected by a static approach, such as the origin of
malicious functionality in native or dynamically loaded code, it also entails some challenges.
Because malware aims to remain undetected, a goal of dynamic analysis is to create a
controlled execution environment while providing all necessary input to trigger malicious
or vulnerable behavior in applications. Some approaches aim to create suitable input
values via fuzzing, whereby random data is employed; however the range and succession of
possible inputs may reach an infeasibly large amount regarding creation and repeatability.
In addition, a dynamic approach must not draw the monitored application’s attention
towards the analysis since malware might cease malicious behavior when recognizing
an analysis attempt. Aside from providing input, a monitoring environment must also

11

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
blio
nowledge

(]
I
rk

2.

STATE OF THE ART

12

provide or emulate resources which might be required by a malicious application, and
thus some approaches employ machine learning techniques to classify vulnerable and
malicious applications.

2.2.1 Vulnerability analysis

DRFuzzer [39] aims to identify vulnerabilities in real-world applications by targeting
exposed components of applications with crafted intents to trigger exceptions. While the
intents’ action, category and data values are used unchanged, the key value pairs in the
intents’ extra payload are randomly fuzzed. The target components behavior towards
such intents is compared to intents with extras of the expected type and value range
as well as to intents with no extra payload values. Although the fuzzing showed a high
success rate for causing application crashes, the underlying vulnerabilities were difficult
to reproduce. To detect vulnerabilities with-out heavy system instrumentation such as
that of CopperDroid [40], IntentDroid’s [41] detection is executed on unchanged Android
systems via debug breakpoints. This approach monitors a selected set of platform APIs,
which it deems security related, to reveal execution paths when invoked. These paths
are tested by predefined attack patterns, whereby intent fields are fuzzed according to
preset conditions to reduce the effort from attempting unsuitable values. The approach
detected 150 of 163 vulnerabilities in 80 applications, although the system’s detection
capabilities are limited to the restricted set of monitored API endpoints.

2.2.2 Malicious behavior analysis

By modifying the IPC binder library, TaintDroid [42] can dynamically track data flows
by tagging information used in variables, files and method calls. These taint tags are
tracked from their origins in trusted applications until they reach an untrusted appli-
cation context, and if the tracked data leak through a sink such as the network, the
system classifies this application as potentially malicious. Testing 30 applications showed
105 incidents of data leakage were flagged by TaintDroid, of which 68 were deemed as
problematic. Evaluating the system showed a 14% performance overhead due to the
adapted binder functionality. This approach has limited accuracy since it is unable to
track implicit intents and it produces false positives when tracking configuration data
such as the device’s IMSI number.

CopperDroid [40] aims to aid tracking IPC calls through Android’s life-cycle and binder
functionality by employing virtualization of the Android image as well as the underlying
Dalvik VM and Linuz kernel in order to collect and track all system calls involved in the
communication. During analysis, events based on the application’s manifest are injected
to trigger the execution of different parts of the application’s code. Using the obtained
data, the Android IPC traffic is afterwards reconstructed to classify system calls into six
malicious behavior types. The system was tested on 2,900 malware samples and in 60%
of the samples triggered malicious behavior which had not been previously identified.
Employing a machine learning approach to detecting malicious applications, [43] instru-
mented 3780 benign and known malware samples with API monitoring code and executed

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
blio
nowledge

(]
I
rk

2.3. Hybrid analysis

them in a virtual device. Using the obtained data, features regarding the frequency of
used system calls and consumed API interfaces by the samples were extracted and used to
train a classifier, which was used to test 3,740 samples consisting of malicious and benign
applications. Evaluating the approach showed a true positive detection rate of 96.82%,
although the approach fails to provide the stimulation necessary to trigger malicious
behavior of samples as well as being detectable during monitoring. [44] relies on machine
learning techniques to identify malicious applications, and the created system executes
sample applications in an virtual environment which integrates parts of TaintDroid [42]
to facilitate data tracking. The approach injects events into the sample applications
to trigger malicious behavior, which has been predefined by a set of intents which are
deemed as malignant. For each of the defined intents, the system retains weather by the
sample launched such an intent or not. These data are then used by machine leaning
algorithms to classify the sample as malignant or benign. The system was trained with
15,000 benign and 15,000 malicious sample applications and was evaluated on 1,315
samples from each malware and benign datasets, which showed a high performance and
a high accuracy in correctly identifying the applications as malicious. Not all types of
intents were considered in the approach, and intents relating to service launches were
omitted.

Aiming to increase the detection precision of approaches similar to [44], Droidcat [43]
extracted 122 behavioral features from 135 malicious and 136 benign applications and
determined hat 70 are characteristic of malicious behavior. The approach was evaluated
using 70% each of 17,365 benign and 16,978 malicious sample applications to train the
decision-making algorithm and afterwards classify the remaining 30%. The approach
showed a 97.4% accuracy in correctly labeling the samples, although the system’s effi-
ciency depends on a balanced training set since machine learning techniques are employed.
While Droidcat showed more stable and precise malware detection in compared to [44],
the authors of [43] claimed that [44] is more precise when used for malware categorization.

2.3 Hybrid analysis

As discussed above, both static and dynamic analyses show benefits and drawbacks
regarding the ability to detect vulnerable and malicious applications and regarding
computational expenditure. Combining both types of analysis allows compensating for
the shortcomings of the separate approaches; for instance, static code evaluation may
enable limiting the range of promising input values for dynamic analysis. This hybrid
approach, can increase the overall complexity of the process since two analysis steps must
be performed.

Following a similar approach as DRFuzzer [39], Intent Fuzzer [45] uses extracted data
from application manifest files to calculate the expected makeup of intents accepted by
the application’s components by using a modified version of FlowDroid [9]. Based on the
outcome of this step, valid intents with randomized data payload, are generated to target
exposed components. The applications are monitored regarding code coverage and error

13

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
blio
nowledge

(]
I
rk

2.

STATE OF THE ART

14

handling, while receiving the intents to identify exploitable components. Fuzzing the
intent data payload showed a 12,5% increase of executed code in the targeted components,
compared to the usage of intents carrying no data while triggering unwanted behavior,
thereby demonstrating this approach’s feasibility.

[46] created an analysis framework to assess the extent of intent-based attacks on
unexposed components which are not directly accessible by outside attackers. After
examining manifest files and source code to identify exposed components and statements
in them which utilize data received from intents, the data flow paths to these sinks are
processed using a similar approach as Epicc [4] by interpreting the dataflow as IDFE
problem. After discovering a vulnerable data path, an intent’s makeup is determined to
induce malicious behavior into the unexposed component. When testing the approach on
64 samples from the Google Playstore, 29 exhibited vulnerable data paths, 26 of which
were feasible using a concrete exploit.

During an initial static analysis phase, RainDroid [47] creates a vulnerability model
based on extracted data from manifest files and the application’s IPC communication
patterns obtained from the app’s bytecode. This model is then used during runtime by a
analyzer based on Covert [25] to monitor the application’s interactions for intent-based
security problems. During evaluation, the approach detected an insecure intent’s launch
by dynamically loaded code, which deviated from the previously created communication
model of the application.

To identify vulnerable data flow paths from unprivileged sources that could execute
privileged operations in their destination component, [48] employs FlowDroid [9] to
facilitate static taint analysis. During a second phase the identified IPC' paths are
examined using TaintDroid [42] to check whether a particular path is taken during
runtime. From 329 analyzed applications, the static analysis phase flagged 53 apps
as vulnerable, while 9 of the findings were confirmed as true positives during dynamic
analysis.

[49] uses a similar approach as [45], but bases the static analysis on the sample application’s
smali instead of bytecode to mitigate the impact of obfuscation techniques on the analysis.
After modeling a graph of IPC' communication which describes paths from application
components to sensitive system apis, the resulting data are used to create suitable intents
to execute these paths to trigger the sensitive sinks. Evaluating the framework on 6,187
known malicious applications detected 79 previously unidentified cases of information
leakage. Executing the intents requires the framework to enrich the sample apks with
additional code, which may influence the result.

[50] extracts the names of exported unsecured components from an application’s manifest
file and targets them with forged intents to trigger unwanted behavior, and thus a keystore
for intent communication is proposed, where the sender and receiver application must
be linked by the user via a cryptographic key before being allowed to exchange intents
signed using this key. Evaluating the approach showed promise while revealing issues
regarding performance and application stability when receiving components fail to match
the intents’ key.

To supplement dynamic analysis systems such as TaintDroid [42], IntelliDroid [51] focuses

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
blio
nowledge

(]
I
rk

2.4. Policy-based security tools

on generating targeted input values to trigger malicious behavior while ICC-Inspect [52]
aims to model application functionality by visualizing the employed intent traffic. A call
graph is created by analyzing the bytecode of an application and employing IC3 [7], and
during the applications execution a dynamic call graph is constructed which depends
on the user’s interaction. Combining the two analysis steps models an interactive visual
representation of the IPC traffic, showing both the intent messages started and received
as well as potential destination components of intents based on registered intent filters.
While the runtime performance showed no overhead, the initial analysis ran 15 minutes
on average per application when using static analysis and 3 minutes on average when
omitting this step.

AndroShield [53] aims to create a more comprehensive vulnerability model compared to
previous approaches by initially performing static analysis using FlowDroid [9], before
a second dynamic analysis phase, when random fuzzed input values are used to trigger
unwanted behavior in the sample applications. The collected data are used to model
a vulnerability profile for each application, which ranks the samples’ risk to defined
vulnerabilities and their impact on the user. While finding security issues in developer’s
code, the Xposed-based [54] approach demonstrated its capability during the evaluation
on 70 applications and its effective usage by end users.

NIVAnalyzer [51] focuses on detecting an attack vector named nezt intent vulnerability,
whereby an intent targets a public component while carrying another intent aiming to
exploit a private component of the receiving application. The vulnerability emerges when
a component, such as an activity after confirming a successful login, allows redirection to
another internal activity in an unsafe manner. To detect such cases, NIVAnalyzer initially
uses static flow analysis to find occurrences of unsafe redirection in an application’s smali
code, which would allow this type of attack. Afterwards, suitable intents are created
to confirm the access to internal components. The execution on 20,000 apps from the
Google Playstore confirmed that 190 were susceptible to such attacks.

To build on the work of NIVAnalyzer [51], which did not consider all methods to transport
intents which can be used for next intent vulnerability attacks, NIVD [55] compiles a list
of all possible execution paths which can potentially lead to such attacks and subsequently
tests their feasibility. Testing 100 applications showed 9 occurrences of such vulnerabilities,
and this approach was 20% faster in detection than NIVAnalyzer [51], while claiming a
precision of 100%.

2.4 Policy-based security tools

Policy-based security tools aim to extend the permission system of Android to monitor
and manage the operations which an application is allowed to perform. In the scope of
intent-based security, several approaches have created a solution which offers versatile
and fine-grained policy definition while achieving a low performance overhead. The
discussed tools follow two paths to achieve this task: Some approaches provide policies
which are predefined by human experts or automatically derived via the previous analysis
of applications; others enable tool’s user to define policies or implement policy decision

15

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
blio
nowledge

(]
I
rk

2.

STATE OF THE ART

16

algorithms which are then enforced by the system. To extend the Android permission
system, some approaches require an adapted version of the operating system, while other
tools adapt third-party applications in order to make them compatible with the respective
policy tool.

Saint [56] extends Android’s permission system to allow application developers to ship
security policies with their applications to configure conditions, whereby the application
may grant self-defined permissions to other packages. Furthermore, runtime policies
allow specifying how components from other packages may interact with the application
over IPC. The Saint framework adapts the operating system to parse these policies
while installing the package; however, no policies can be defined by the user nor can
application-defined policies be adapted.

To detect and prevent privilege escalation and collusion attacks, XmanDroid [57] changes
Android’s monitoring system to check IPC calls for potential maliciousness during run-
time. The system is configured by extracting requested permissions from applications
during installation as well as by a list of system policies defining conditions under which a
component may interact with another, depending on their respective permissions. Aiming
for independence from user configuration, XmanDroid grant the user the decision to
allow a particular intent, provided no expert knowledge is required. Although able to
prevent privilege escalation attacks over IPC in several test applications, this approach
entails several shortcomings: When analyzing over-privileged applications, a high number
of false positives disturb the monitoring mechanism, and attacks on the kernel level as
well as single solely working malicious applications are not detected.

To protect middleware resources such as ICC and kernel-level resources such as IPC,
FlaskDroid [58] introduces security servers on different system levels, which manage
security policies for accessing the resources on their respective level and which synchro-
nize with counterparts on other levels when a policy changes. The employed policies
were generated via trials monitoring and analyzing user interaction. Evaluating the
approach showed a slightly better runtime performance compared to XmanDroid [57],
although FlaskDroid similarly suffers from many false positives when detecting collusion
and privilege escalation attacks.

To identify vulnerabilities in a set of applications, Separ [59] first extracts data from the
manifest and bytecode of applications, which are then used with predefined intent vulner-
ability specifications to find possible exploits during static analysis. For these exploits,
security policies are generated which are enforced during runtime by an Xposed-based
security extension [54]. During the comparison of the static vulnerability analyzer with
DidFail [21] and AmanDroid [18], Separ detected multiple types of vulnerabilities which
the fore-mentioned approaches could not. During evaluation on 4,000 applications, Separ
identified all 385 vulnerabilities while DidFail and AmanDroid flagged 55% and 86%
respectively. This approach does not consider dynamically loaded code due to the lack of
dynamic analysis, and the policy enforcement showed an overhead of 11.8% for each IPC
call.

Sealant [51] aims to detect and restrict malicious intent traffic between multiple applica-
tions by combining static analysis to find possible vulnerable IPC' communication with

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
blio
nowledge

(]
I
rk

2.4. Policy-based security tools

an extension of the Android framework to manage intent traffic. The initial analysis of
application apks employs IC3 [7] and Covert [25] to create a list of IPC paths which
are used to configure an extension to the Android framework to monitor the intent
traffic and enforces policies. Compared to similar approaches such as Separ [59] and
XmanDroid [57], Sealant’s analysis raises fewer false positives, although Separ can detect
more types of vulnerabilities. Sealant, like Separ, creates automatic polices based on
prior analysis, and the overhead of policy enforcement during runtime was measured at a
mean of 25 ms per execution.

To allow policy-based control of application interaction without requiring changes to the
Android system, AppGuard [60] rewrites untrusted applications before installation to
enable the user to control the consumption of resources during runtime. The changes to
the applications and creation of policies are performed through AppGuard which must
be installed on the device as a regular third party apk. The instrumented applications
show a low performance overhead and high stability during testing, although both factors
depend on the employed policies. The rewriting process changes the signing key of the
applications however, which can cause issues.

To decouple decision making and policy enforcement, ASF' [61] alters the Android system
to offer a programmable interface for security extensions which are loaded into the
Android framework during the boot process. These modules solely manage their policies
for resources on both the kernel and middleware levels, similar to FlaskDroid’s [58]
architecture, while the ASF framework focuses on executing the decisions of the respec-
tive modules. To demonstrate the feasibility of their approach, the authors ported the
functionality of AppGuard [60] as a security module for the framework, with no loss in
functionality. The efficiency of the activated policy modules primarily contribute to the
overhead during runtime, the framework itself produces 11.8% overhead compared to
systems running a stock Android version.

ASM [62] follows a similar approach as ASF [61] by allowing security applications to
register for authorization hooks to interact with security-related system functions. A
major difference from ASF is that the function hooks only allow tightening existing
restrictions, such as the allocation of permissions. Although this approach offers less
expression potential than ASF modules, which are assumed to be trusted by the ASF
framework, a faulty or malicious third party security module can-not compromise the
security of the whole system. During evaluation, the framework itself imposed a perfor-
mance overhead of 3.3% on the system; with no security module loaded, while including
a single running module contributed to an overhead of 9.3%.

Aiming to offer complex system wide policing while avoiding changes to the Android
system, DroidForce [63] employs FlowDroid [9] to analyze applications and afterwards
use Soot [6] to add the code necessary to enforce policies during runtime. Before the
application can perform a privileged operation, the DroidForce application installed on
the system is queried whether this operation is violating an active policy. While such
polices may be adapted by the user during runtime, each update to an instrumented
application requires a new analysis cycle. The approach offers a finer-grained policy
definition compared to the similar approaches of AppGuard [60] and XmanDroid [57]

17

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
blio
nowledge

(]
|
rk

2.

STATE OF THE ART

18

and adds no additional performance overhead during runtime. Because the range of
operations monitored by the system is based on FlowDroid’s [9] initial analysis, this
approach inherits its limitations.

Similar to ASM [62], IEM [64] changes Android’s monitoring system to inspect and alter
the IPC traffic. This functionality is exposed via an application programming interface,
which can be consumed by custom security modules by defining security policies and
decision-making algorithms, which are then enforced by the ITEM framework. This ap-
proach demonstrates its viability by implementing and evaluating several custom firewall
modules in order to block and redirect specific IPC' traffic. The runtime overhead of the
framework itself is shown to be low, with a mean of 5 milliseconds per intent, although the
main contribution to the runtime overhead originates from the active security modules.
Sealant [65] aims to handle a wider range of intent-based attacks and for greater precision
in their detection compared to previous approaches by initially finding vulnerable ICC
paths through static analysis on an application’s bytecode using Covert [25] and IC3 [7],
where potential findings are confirmed via manual verification. The validated vulnerable
paths are stored and matched against incoming intents during runtime by an interceptor
component based on the user’s choice for the respective path. This functionality requires
changes to system components such as the ActivityManagerService. When evaluating
1,100 applications, this approach raised fewer false alarms than Separ [59] due to its
finer-grained evaluation of ICC paths. This approach can also detect more types of
attacks compared to XmanDroid [57], due to its independence from user-created policies.

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
blio
nowledge

(]
I
rk

CHAPTER

Background

3.1 Android operating system

The Android OS employs an inter-process communication (IPC) system to facilitate
interaction between components running in different processes. This system follows a
publish—subscribe pattern, whereby receiver components register filters to subscribe to
intent messages. Because components are allowed to decide which messages they send
and to which messages they subscribe, this mechanism can be misused to eavesdrop on
communication and to inject malicious messages into unprepared components.

3.1.1 Components of Android applications

All applications running on the Android operating system are built from four elements
or types of components: activity, service, broadcast receiver or content provider. The
content provider component is the only one not involved in the IPC' messaging system.
Although an application can employ several components of each type, it is necessary to
declare only one of either activity, service or broadcast receiver component to act as a
main entry point of the application to allow its interaction with users and the operating
system. Using a certain component requires its declaration in the application’s manifest,
which is a vital configuration file of each application named AndroidManifest.xml. The
manifest must also declare the package name of the application as well as permissions
and features used in the application.

3.1.2 Sand boxed processes

Android applications by default run in their own process, so that no application can
access the resources of another. Each application package is treated as a distinctive user
with a unique user identifier (UID), which is assigned at the time of the installation and
does not change, but can be reassigned after the package is removed. Two applications

19

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
blio
nowledge

(]
I
rk

3.

BACKGROUND

20

sharing the same package name can request to run in the same process by both setting
the attribute sharedUserld in their respective manifests. To communicate with each
other, applications use inter-process communication messages, called intents, to share
data and functionality.

3.1.3 Permissions

Permissions restrict applications from accessing sensitive user data and system features.
Until API level 23, an application had to list the permissions intended for use during
installation and proceeding with the installation meant granting the requested permissions
to the application. The permission system has since been altered so that no permission
usage must be granted during installation, bu instead applications must ask each time
before performing a privileged operation requiring a dangerous permission, which grants
the user the ability to revoke permissions at any time. There are four protection levels
dividing permissions: nmormal permissions, which are granted by the system automatically;
signature permissions, which are signed from third party applications by a certificate;
dangerous permissions, which involve access to sensitive user data and therefore must be
granted by the user; and special permissions, which are viewed as particularly sensitive.
Applications can customize permissions to require other applications to request these
permissions before sharing their functionally. To use a permission declared by another
application, the application declaring the permission must be installed first. If both
applications declare the same permission, the system does not allow the installation of
the second application unless both are signed with the same certificate.

3.2 Intent

An intent is a message used by the Android OS inter-process communication system
to perform varied tasks, which can be divided into three use cases: transfer data, start
activity or service components. The exact operation, a specific intent triggers is derived
via a resolution process from the data encapsulated by the respective intent. An intent’s
data fields are categorized into primary and secondary ones, depending on their their
level of influence on the outcome of the resolution process. As primary data fields are
considered action and data, while secondary values include the category, component and
mimetype of the data as well as optional data payload and flags. Actions are string values
which represent the kind of task the intent performs, for example, ACTION_ _VIEW
displays the specified data. An intent can only carry one action at a time, and thus
the previous action value is overridden when setting an action on an intent object. The
system predefines a set of actions, and some may be used by applications to request
specific operations by the system, while others may only be used by the system itself.
In addition, each application may define its own actions, and the action of the intent is
applied to its data, specified as an URI. An intent allows specifying a particular mimetype,
which is usually derived from the data URI itself during the resolution process. Examples
of mimetypes include img/jpg to describe an image resource in the format jpg or content

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
blio
nowledge

(]
I
rk

3.3. Intent filter

to describe an arbitrary content object. Similarly to actions, mimetypes can be defined
by applications, and an intent can specify a list of categories which provide additional
information about the action. Categories can be added by applications to extend the
list predefined by the system. During resolution, these data values are evaluated to find
a suitable target component for the intent. The component field alternatively allows
defining the name of a particular component class to use instead. Setting a specific
component in an intent makes the values in the data fields optional since there is no
need to resolve the target component for the intent. Intents which specify a component
are called explicit, while intents which requiring resolution are called implicit. Intents
can also carry data payloads as key value pairs, which can be simple predefined data
types such as boolean as well as complex custom defined classes. For the later, the
class must implement the Parcelable or Serializable interface to add them as intent
payloads. Another method of encapsulating additional information in an intent regards
the numerical flag, which has the value 0 if no flag value has been set or a combination
of the 28 predefined flag values. A component can retrieve each of these values after
receiving the intent.

3.3 Intent filter

Intent filters are data structures specifying the same data fields similarly as intents.

Components can declare intent filters to indicate which intents they can handle. Each
time an intent is started, the system matches the values declared in the intent against all
registered intent filter to decide which components will receive a particular intent. The
system does not decide which intent filters are registered by a component, which is free to
register for intents it is incapable of handling. Intent filters can be declared statically in
the manifest or dynamically during runtime, although the latter option is only available
for broadcast receivers. An intent can specify a single action while an intent filter can
declare multiple, but one must match the intent’s action to pass the filter. Similar to
actions, an intent filter can declare multiple categories; however , all specified categories
in a filter must be matched by the intent to pass. To filter an intent’s data the respective
parts of a data URI can be specified separately in the intent filter. Data schemes can
be individually declared, but can also be combined with a scheme-specific part to more
finely filter. Scheme-specific parts can be added as a regular expression which requires a
matching pattern and type. The matching type can be literal, which must completely
match the given value, while prefiz only checks the beginning and finally the glob value
allows matching with a pattern. A scheme-specific part is only considered during the
matching process when at least one scheme has been specified in the filter, and the same
functionality is used to store and match the path of the specified data value. The data
mimetypes must be specified in the format a/b, which allows declaring partial types such
as img/*. Furthermore, a list of host and port values can be specified for matching. In
contrast to RFC host names, schemes and data types, the comparison used in the intent
filter is case sensitive. Every intent filter retains a priority value which is 0 by default
but can be changed to a value between -1,000 and 1,000, with higher numbers filters

21

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
blio
nowledge

(]
|
rk

3.

BACKGROUND

22

receiving broadcasts before those with lower numbers. The priority of activity filters can
only be set when statically declaring filters in the manifest file.

3.4 Activity

Activities are designed for direction interaction with human users since they represent the
only components which can contain Ul elements such as buttons and text fields. When
an activity is started by the system, it passes through several stages of a predefined
life-cycle, from the initial creation to the termination of the component. Each time a
component enters one of the stages, it executes the defined code for the respective stage.

3.4.1 Declaring an activity

Activities must be declared in the manifest file by adding the activity tag, which must
at least contain the name of the activity and may also define additional attributes.
Figure 3.1 shows the declaration of different activity components as described below.
Declaring an intent filter inside of an activity tag, such as ActivityOne does, automat-
ically marks the component as exported and allows the activity to be started by an
implicit intent. Specifying the action android.intent.action. MAIN and the category
android.intent.category. LAUNCHER in an intent filter declares this activity as the main
activity of the application, and this activity will be shown when the application is started
(ActivityTwo). When declaring no intent filter and manually setting the ezported attribute
to true, the activity can be launched by an explicit intent started by another application
than that declaring the activity (ActivityThree). If the activity is not exported in either
manner, it can only be started by a component of its own application (ActivityFour). By
listing a permission in an activity, only an application with this permission may start it
(ActivityFive).

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

M Sibliothek,
Your knowledge hub

3.4.

Activity

<activity =" "
<intent-filter>
<action =" e
<category =" "I
</intent-filters:
<factivity>
<activity =" ">
<intent-filter>
<action =" “I>
<category =" i
</intent-filter>
<factivity>»
<activity
_ "y
</activity»
<activity =" "
<factivity>
<activity
= "
<factivity>»

Figure 3.1: Declaring activity components

3.4.2 Starting an activity

To start an activity, the calling component has to invoke the system-provided function
startActivity, or one of the related methods, on a suitable intent. ActivityOne declared
an intent filter and hence is exported by default, and an implicit intent specifying the
action EXAMPLE ACTION would match the intent filter (as shown in Figure 3.2),
and it can additionally be started explicitly in the same manner as described below for
Activity Three. ActivityTwo, as the application’s default activity, would be displayed
when the package’s main activity is defined in an intent, such as when the application’s
launch icon is clicked, as shown in Figure 3.3. ActivityThree is flagged as exported, and

therefore any application can launch the activity with an explicit intent (see Figure 3.4).

A similar intent can be used to launch ActivityFour although the intent must be launched
by its own package since this activity is not exported. ActivityFive was exported but was
however secured with the permission VIEW_ _CONTACTS and thus can only be started
by an application holding this permission. To prevent exception’s caused by starting
an intent with no suitable activity to launch, the method querylIntentActivities can be

invoked, which returns a list of activities which can resolve the intent (see Figure 3.5).

If multiple activities are suitable to handle an implicit intent, the system lists them in
a dialog for the user to choose, unless a default was previously chosen. To receive a

23

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

3. BACKGROUND

result from an activity once it is closed, the activity can be started by calling the method
startActivityForResult instead of startActivity as shown in Figure 3.6. This method
accepts an integer value which is used as an identifier to retrieve the result after the
activity terminates (see Figure 3.7).

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
lio
nowledge

b

i
r

24

Intent intent = new Intent();
intent.setAction(" B H
startActivity(intent);

Figure 3.2: Launching an activity with an implicit intent

Intent intent = getPackageManager().
getLaunchIntentPackage(" "¥;
startActivity(intent);

Figure 3.3: Launching the default activity

Intent intent = new Intent();
intent.setComponent {new ComponentName(" »

"33
startActivity(intent);

Figure 3.4: Launching an activity with an explicit intent

Intent intent = new Intent();
intent.setComponent {new ComponentName("

"))
if{getPackageManager().queryIntentActivites(intent,0).size() » 0)
startActivity{intent);

Figure 3.5: Resolving targets for an activity intent

Intent intent = new Intent();
intent.setComponent{new ComponentMame ("

”3
s
startActivityForResult(intent,)i

Figure 3.6: Awaiting a result from an activity

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
lio
nowledge

b

i
r

3.5.

Service

protected void onActivityResult{int requestCode, int resultCode, Intent data){

super.onfictivityResult{requestCode, resultCode, data);
if(requestCode == 42) data.getStringExtra(" "y;
b

Figure 3.7: Retrieve a result from an activity

3.5 Service

Services are intended to perform background tasks and thus cannot contain Ul elements
to allow direct user interaction. Services run on the application’s main thread by default,
and derived classes such as IntentService provide a worker thread to sequentially handle
requests and perform given tasks. Similar to activities, services have a life-cycle, in which
the component is created and destroyed after finishing its task.

3.5.1 Declaring a service

Services can run in the foreground, which means they are granted high priority by
the system and thus likely the last to be terminated during a memory shortage. To
keep the user informed of such currently running services, a foreground service shows
a notification in the taskbar which can not be closed by the user. Background services
run unnoticed by the user since they are not required to show a notification, and they
also are lower priority compared to foreground services. Services may allow binding,

which means interacting with other components through a client interface called Binder.

This allows even components from other applications to interact with the service using
inter-process communication. Like activities, service components must be declared in

the application’s manifest, with name again representing the only mandatory attribute.

Service declarations allow using the exported attribute to make the service available to
other packages besides the one declaring the service component. Like activities, the
interaction with a service can be restricted with permissions (see Figure 3.8). Although
service components can also specify intent filters to flag them as exported, they cannot
be started or bound through an implicit intent. This behavior was introduced for security
reasons in API level 21.

¢service

¢/services>

Figure 3.8: Declaring a service component

25

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
lio
nowledge

b

i
r

3.

BACKGROUND

[\~
[

3.5.2 Starting a service

Similar to launching an activity, Android offers several methods to start a service
component, where the basic method is startService. When using an explicit intent the
service specified in the intent is started directly (see Figure 3.9), when using an implicit
intent, the service component is chosen by resolving the intent against all intent filters
declared in service components, with the latter option available only on systems running
a version of Android lower than API level 21. Once a service starts via startService,
it will run indefinitely until stopService is called on the component or the service itself
invokes the method stopSelf. The system prioritizes a running service higher when a
component is bound to it, while the priority of a service running in background will be
lowered by the system until it may be terminated. The service can be started again
with the START STICKY flag, which signals the system to restart the service when
terminated in this fashion. To bind to a service, the service must implement the binder
functionality as shown in Figure 3.10, while the component using the binding must
implement the binder connection (see Figure 3.11) and invoke bindService with a suitable
intent (see Figure 3.12). After binding to the service, the component can invoke public
methods declared by the service. Similar to activity components, services can be secured
by permissions, which a component must acquire before being allowed to start or bind to
a secured service.

Intent intent = new Intent();
intent.setComponent {new ComponentName(" "

"

startService(intent);

Figure 3.9: Starting a service

public class LocalBinder extends Binder {
ExampleService getService() {
return ExampleService. H
}

public IBinder onBind{Intent intent) {
return new LocalBinder();

}

Figure 3.10: Service declaring a binder

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
lio
nowledge

b

i
r

3.6. Broadcast

private ServiceConnection connection = new ServiceConnection() {

public void onServiceConnected(ComponentName className, IBinder service) {
ExampleService.lLocalBinder binder = (ExampleService.) service;
service = binder.getService();

public void onServiceDisconnected(ComponentMName argd) {

}
I

Figure 3.11: Component declaring a connection to a service binder

Intent intent = new Intent();
intent.setComponent (new ComponentName(" "y

E

bindService{intent, connection, Context. B

Figure 3.12: Binding to a service

3.6 Broadcast

Besides starting components as described above, intents can be used as broadcast messages
to transport data from one component to another, to trigger certain operations by the
operating system or receive a notification when such an operation has been performed.

3.6.1 Global receiver

To receive broadcast intents, the abstract class BroadcastReceiver and its method onRe-
cetve require implementation, which are executed each time an intent is delivered to the
receiver and allow the component to obtain and process the incoming intent. To inform
the system that a component is supposed to receive intents, the receiver must be declared
in the manifest file or dynamically registered during runtime. A manifest-declared receiver
allows the system to start an application if it is not already running when the broadcast is
performed. If an application starts in this manner, the system may close it again after the
code inside the onReceive method concludes, since the system no longer highly prioritizes
the component hosting the receiver. The API level 26 receivers for implicit broadcasts
can no longer be declared in the manifest; however there are exceptions to this restriction
for broadcasting-system related events such as newly connected devices or the completion
of the boot process [66]. To declare a static receiver, the receiver tag has to be added to
the manifest, and setting the exported attribute to true will allow other packages to send
explicit broadcasts to the receiver. Adding an intent filter exports the component as
well and enables the receiver to be triggered by suitable implicit broadcasts, (see Figure

27

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
lio
nowledge

b

i
r

3.

BACKGROUND

28

3.13). A dynamically registered receiver must be declared by calling registerReceiver
in the respective context 3.14. The receiver is active as long as this context is valid,
which means that if registered in an activity context, the receiver will run as long as
this activity remains in the foreground. When registering in the application context, the
receiver is active until the application is closed. A receiver can be unregistered when no
longer needed by calling unregisterReceiver. If a receiver is not properly unregistered
before the context is destroyed, an exception is thrown due to the occurring memory leak.
All dynamically registered broadcast receivers declaring an intent filter are exported.
Both static and context-declared receivers can specify permissions to ensure that only
broadcasts which are sent with the respective permissions can execute the receiver.

<receiver

</receivers»

<receiver =" "
<intent-filters:>
<action =" e
</intent-filter:s
</receivers»

Figure 3.13: Register a receiver statically

MessageReceiver receiver = new MessageReceiver();

IntentFilter filter = new IntentFilter();
filter.addCategory(Intent.CATEGORY DEFAULT);
filter.addAction(" B H
registerReceiver(receiver, filter);

Figure 3.14: Register a receiver dynamically

3.6.2 Global broadcast

To start a global broadcast, a component must call the function sendBroadcast on an
intent. If no target component is set for the broadcast, the intent is implicit and resolved
by comparing the fields containing data to all registered broadcast intent filters, (see
Figure 3.15). This is called a global broadcast, since it is delivered system wide to any
subscribed receiver in random order, and no receiver knows which or how many other
receivers received this broadcast. The broadcast can not be aborted by any receiver nor
can a receiver process the result from the preceding receiver. If a target component is set,
the intent is directly delivered only to the specified receiver, provided the component in
question exists and is exported, in case the sender is part of another application package
(see Figure 3.16).

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

M Sibliothek,
Your knowledge hub

3.6. Broadcast

Intent intent = new Intent();
intent.setAction(" BH
sendBroadcast(intent);

Figure 3.15: Starting an implicit broadcast

Intent intent = new Intent();
intent.setComponent (new ComponentName ("

"N

sendBroadcast{intent);
Figure 3.16: Starting an explicit broadcast

3.6.3 Ordered broadcast

Ordered broadcasts are global broadcasts sequentially delivered to each suitable receiver
according to the priority value in the matching intent filter, where receivers with the same
value are executed in arbitrary order. After processing the broadcast, each receiver can
propagate the result to the next receiver or abort the broadcast. An ordered broadcast is
started by invoking the function sendOrderedBroadcast on a suitable intent (see Figure
3.17).

Intent intent = new Intent();
intent.setAction(" ";
sendOrderedBroadcast(intent);

Figure 3.17: Starting an ordered broadcast

3.6.4 Sticky broadcast

While global broadcasts are inaccessible after processing, a sticky broadcast is retained
and accessible for a certain amount of time until removed, which can be used to keep
information frequently required by multiple applications, such as the battery status,
quickly accessible at any time. If a suitable receiver is registered while the sticky
broadcast is active, the broadcast is delivered to the receiver upon registration. To
start a sticky broadcast (as shown in Figure 3.18), the sender requires the permission
android.permission. BROADCAST _STICKY.

29

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
lio
nowledge

b

i
r

3. BACKGROUND

Intent intent = new Intent();

intent.setAction(" B H

send5StickyBroadcast(intent);

Figure 3.18: Starting a sticky broadcast

3.6.5 Local broadcast
The use of a local broadcast is advised when a broadcast is not expected to reach receivers
outside of the sending package. Similar to a global receiver, a local receiver can be
registered during runtime (see Figure 3.19). While the broadcast types discussed above
involve inter-process communication, a local broadcast is only propagated to receiver
inside the application in which the broadcast originated, which makes them more resource
efficient since the resolution process does not involve all system wide registered receivers.

LocalBroadcastManager localBroadcastManager =

LocalBroadcastManager.getInstance(this);

localBroadcastManager.registerReceiver(receiver, filter);

Intent intent = new Intent();

intent.setAction(" BH

localBroadcastManager.sendBroadcast{intent);

Figure 3.19: Starting a local broadcast
3.6.6 Sending with permissions
If the receiver of a broadcast has specified a permission, the broadcast must be started
with the same permission to trigger the respective receiver, and the sending application
requires the permission in question as well to start such a broadcast.
3.7 Pending intent
A pending intent allows passing a specific intent to another process without starting
the intent. The receiver of this intent may launch the intent using the identity and
permissions of the creating application. Pending intents enable an application to start an
intent at a certain time or event after the application itself been closed. A pending intent
is an activity, broadcast or service, has its setup defined by the creating application and
may be directly passed to a system process such as the alarmmanager service (see Figure
3.20) or sent within a broadcast intent (see Figure 3.21).
30

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
lio
nowledge

b

i
r

3.8. Resolving intents

PendingIntent pendingIntent = PendingIntent.getActivity(this,

new Intent(), PendingIntent. B
AlarmManager alarmManager = (AlarmManager) getSystemService(Context. B
alarmManager.set{AlarmManager. » » pendingIntent);

Figure 3.20: Passing a pending intent to the alarmmanager

PendingIntent pendingIntent = PendingIntent.getActivity(this,

new Intent(), PendingIntent. VB
Intent intent = new Intent("” H
intent.putBExtra(” "y pendingIntent);

sendBroadcast (intent);

Figure 3.21: Sending a pending intent in an implicit intent

3.8 Resolving intents

The system performs a matching process to identify which components will receive a
certain intent, which must be as effective as possible since the inter-process communication
is a central and vital part of the operating system. Unnecessary time-consuming operations
lead to noticeable delays in the launch of components and delivery of messages, to avoid
such issues, the Android OS stores all registered intent filters in data structures named
IntentResolver to efficiently manage recipients of started intents.

3.8.1 Intent resolver

An intent resolver retains a number of data structures to effectively store registered
intent filters, which are stored in a global list and added to other lists depending on the
respective values specified in the intent filter. Besides the global filter list, six additional
data structures retain intent filters associated with particular actions, mimetypes and
URIs. When an intent filter is unregistered, it is removed from all lists.

3.8.2 Resolving process

To check whether a registered intent filter matches an intent, the relevant intent is passed
to the resolver by invoking the method querylntent. The resolver then evaluates the
parameters set in the passed intent to decide which collections to query for suitable intent
filters. In several iterations, the resolver collects the matching intent filter, where the
resolver first queries based on the mimetype whether any such type has been resolved for
the intent. Afterwards, all intent filters matching the intents scheme are added before
adding all filters with the intent’s action. After each collection iteration, the built list of
filters is checked for cases where a suitable filter was already added in a previous iteration

31

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
blio
nowledge

(]
I
rk

3.

BACKGROUND

32

or a filter from a package matches while the intent is only intended for the intent sender’s
own package. After matching the intent against all filter candidates by invoking each
filter’s match function, the matching filters are sorted by priority value defined in the
filter and returned to the calling process.

3.8.3 Intent filter matching

Whenever a resolver passes an intent to the filter’s match function, firstly the intents
action is evaluated and only passes if the filters action list contains the intent’s action
value. Although an empty action might pass the test in a filter, the intent resolver’s
matching process will discard the match. The intent’s scheme is then matched against
the filter and passes if the filter declares the same scheme as the intent. If the intent does
not contain a scheme, the filter matches only if it specifies no scheme or an empty string.
Intents which specify file, content or an empty string as scheme value will pass the test,
even if the filter declares no schemes. The data property of the intent is only evaluated
if the scheme test has been passed, and the intent’s URI must match one of the the
filter’s data authorities to pass. If the filter specifies no data authorities, the intent passes
even if it contains a data URI; however, if the intent does not specify an URI, it only
passes a filter with no data authorities. If an intent filter specifies no mimetypes, only
an intent which also specifies none is allowed to pass. If the filter lists any mimetypes,
the intent must match one of them to pass. Filters specifying all possible types (*/%)
match all intents with a mimetype; intents defining */* as type are allowed to pass if the
filter contains at least one mimetype; and if a filter contains a partial mimetype such
as audio/* all intents matching the base type pass the test. If the intent specifies a
partial type, the filter must contain at least one entry matching this base type.To pass
the category test, an intent filter must contain all the categories specified by the intent.
Every intent automatically contains the CATEGORY _DEFAULT category, which means
a filter requires the same if any implicit intents become accepted by the filter.

3.9 Android intent firewall

The ActivityManagerService identified a valid target component for a launched event,
which is passed to the intent firewall (IFW) for inspection before delivery. Depending on
the firewall configuration the intent is either blocked or allowed to be propagated to its
destination component. The intent firewall was initially added to the Android system
in version 4.4, and after receiving minor changes in version 5.1 its functionality has not
been changed or upgraded.Configuring the firewall with modular rules enables motoring
and regulating the global intent message traffic. After the com.android.server.firewall
package is loaded during the boot process, the firewall begins to monitor the secure
system directory for changes. Whenever a change is made to the directory, all contained
XML files are checked for firewall rules, and the rules currently active in the firewall’s
configuration are dropped during the process and replaced by the newly parsed ones.

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
blio
nowledge

(]
I
rk

3.9. Android intent firewall

3.9.1 Firewall rules

Firewall rules are exclusively defined for activity, broadcast or service intents and must
specify whether matching intents should be blocked or logged and allowed to be propagated.
To be matched with intents, rules may hold three data structures: a list of intent filters,
a list of intents’ target component names and a list of additional filters nested in tree
form as described below. While a firewall rule may contain multiple intent filters and
target component names, at least one of either must be specified to be considered valid.
Specifying additional filters is optional to allow more finely grained matching. Figure
3.22 shows the makeup of a basic firewall rule filtering for a destination component and
for intents with a specific action. A finer filtering is used in the rule as shown in Figure
3.23, where after the initial match of the defined component, the intents action is checked
to ensure it starts with a certain value. In addition, the intent must define a specific port
value range or may not carry a specific category to pass the filtering. Firewall rules may
employ the following additional filter types:

Logical filter

Logical filters can nest one or multiple filter types to combine the matching results. The
and-filter holds a list of child filters, and during the matching process all nested filter
must match, to allow the and-filter to match. The or-filter can nest a list of filters, one
of which must match for the or-filter to match. The not-filter holds one child filter and
inverts the matching result of this filter. The root filter holding all additional filters in a
firewall rule is treated as an and-filter, and therefore all containing filter must match.

Category filter

The category-filter stores the name of a single category which must be matched by the
intent to pass the test and allows distinguishing between intents matching an intent filter
specifying several categories.

Port filter
Using a port-filter allows filtering for intents with a specific port or port value in a specific
range and defining a port-filter without a port value will match all intents specifying any
port value.

Sender filter
The sender-filter specifies if the sender of an intent is either the system or has the same
UID or signature as the receiver.

Sender permission filter
This filter allows checking for a specific permission required by the intent’s sender to
allow the intent to match.

String filter

The string-filter holds an intent property name and string value, which must be partially
or fully matched by the respective intent property. A pattern or regular expression can
also be specified instead of a specific value, if no matching type is passed, the filter checks
for the existence of the specified property.

33

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

@ Sibliothek,
Your knowledge hub

3. BACKGROUND
<rules>»
-Cactivity =" " =" "
<component-filter =" “fx
<intent-filter>
<cat =" "I
<action =" e
</intent-filters>
<factivity>
</rules>
Figure 3.22: Basic rule with intent filter and component name filter
<rules>
<3Cti\l'ity =" " =" "
<component-filter =" "I
<and>
<action =" i
<ors
<not>
<category name=" S
</not>»
<port min=" " max=" ks
<for>
</and>»
<factivity>
</rules>
Figure 3.23: Fine-grained rule filtering for category and port values
3.9.2 Rule resolving
To find matching rules, the firewall builds upon the intent resolver mechanism described
above. Depending on the type of the incoming intent, the resolver holding activity,
broadcast or service rules are queried for matching intent filter and target component
names. An intent must match at least one intent filter or component name filter for the
rule to be considered an initial match. Rules containing several matching intent filter
or target components are only added once to the list of matching rules. In a second
matching phase each rule in this list is checked for matching additional filters by calling
the match function of the root filter. This filter is regards an and-filter which will match
if none of its nested child filters mismatch, which means that it will also match if no
child filters are specified.
3.9.3 Shortcomings
The current implementation of the intent firewall system entails shortcomings. Since files
containing firewall rules must be deployed into a folder in the system’s root directory,
the file system must be booted in write mode. Depending on the ROM in use, regular
34

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
blio
nowledge

(]
I
rk

3.10. Intent-based attacks

operation requires the device’s file system to be rebooted into read only mode after
deploying the rule files. Because rules are automatically parsed and activated once
deployed, this process error prone since one faulty rule can prevent the device from
booting correctly. Furthermore, the current architecture prevents users from composing
rules which combine intents and component filters or which filter intents based on their
senders’ package name. Finally, the output of successfully matched intents is sparse and
written directly to the system log file, which is inconvenient for usage.

3.10 Intent-based attacks

The implementation of Android’s IPC system contains several weaknesses which can
be exploited by malicious applications to eavesdrop on communication or manipulate
other applications by misusing intents. Some attacks described below can be prevented
by application developers abiding by the best practice guidelines, and by application
users being careful and vigilant.

Activity hijacking
As described above, activities can be launched by implicit intents to allow the system

to search for suitable target applications, which are presented to the user for selection.

This process may be abused by malicious applications by providing, or pretending to
provide, greater functionality compared to the other candidates in order to trick the
user into choosing the malicious application. The use of a misleading name for the
attacking activity might cause the user to be unaware when choosing an unintended
activity component. Once started, the malicious activity can perform several attacks, as
outlined in Figure 3.24. In a basic form, the attacker can read any payload carried by
the intent (D). In a more complex scenario, the malicious activity could disguise itself
using an identical user interface as the benign application’s activity to trick the user to
input sensitive data, which could then be used in a further attack @). Furthermore, the
attacker can relay the user to another activity using an explicit intent, even the one it
previously impersonated, and pass a changed data payload with the intent @). If the
initial sender of the intent expects a result from the invoked activity, the attacker can
use this opportunity to pass malicious data back to the caller @). The success of this

attack relies on the user’s chosen activities which are allowed to execute a certain intent.

A malicious activity may misuse sensitive intents over a period of time without notice
by the user. Application developers may mitigate the attack’s impact by not passing
sensitive data via implicit intents or by protecting them using strong permissions, while
data received from other applications must be thoroughly sanitized.

35

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

w 3ibliothek,
Your knowledge hu

3.

BACKGROUND

36

Implicit intent
carrying data
payload

Obtaining user
entered data

Explicit intent
carring altered

payload 9 /

Returing malicious
result data

Figure 3.24: Activity hijacking

Activity injection

Exposing activities allows applications other than the declaring one to launch their
components (see Figure 3.25), which is dangerous since an activity intended only for
internal use, may not expect to receive input from another context and therefore may
not sanitize received data before use. In addition, simply starting the activity may unex-
pectedly alter the state of the application (D), and the invoked activity may incautiously
return sensitive data to any calling component). The attacker could also invoke an
exposed activity of an exploitable application to trick the user into believing this activity
belongs to the attacker’s own application. The user would then perform operations,
such as changing settings, in a benign application while believing these actions to be
performed in the malicious application @). This attack may be effectively countered by
application developers avoiding exporting activities which are not designed to handle
communication with other applications [2]. Since an intent filter automatically exports
an activity, components should not handle sensitive internal logic when also designated to
participate in outside communication, and thorough input data sanitation should occur
when receiving intents. The use of permissions on an activity can prevent its launch by
applications without these permissions.

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
lio
nowledge

b

i
r

3.10.

Intent-based attacks

@\

Sensitive operation
performed in wrong
context

Injecting data
with explicit intent

Implicit intent

carrying data
payload

Figure 3.25: Activity injection

Broadcast eavesdropping

Since implicit broadcasts utilize a publish-subscribe pattern, every implicit global broad-
cast intent is delivered to every suitable broadcast receiver registered before the broadcast
started. This behavior is intended but can be misused to eavesdrop on messages by mali-
cious receivers. An attacker can register a broadcast receiver with various intent filters
specifying a wide range of values to capture as many broadcasts as possible (see Figure
3.26). To prevent broadcast eavesdropping, implicit global broadcasts should only be
used if the sent intent is supposed to reach destinations outside its application’s context,
otherwise local broadcasts offer a more efficient and secure alternative. Furthermore, if
intents carrying sensitive data are sent globally, they should be made explicit or protected

by strong permissions.

37

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

w 3ibliothek,
Your knowledge hu

3. BACKGROUND
/ Eavesdropping \
on data in
implict broadcast
Figure 3.26: Broadcast eavesdropping
Sticky broadcast eavesdropping
Sticky broadcasts pose a security risk since they are not dismissed after the initial
broadcast is completed but rebroadcasted to newly registered receivers as outlined in
Figure 3.27. Since they can not be protected by permissions like normal broadcasts
can, sticky broadcasts have been declared deprecated since API level 21; if employed
nonetheless, they should not be used to broadcast sensitive data.
Eavesdropping \
on data in
sticky broadcast

Figure 3.27: Sticky broadcast eavesdropping
Ordered broadcast interruption and result spoofing
Ordered broadcasts are also vulnerable to attacks since they are propagated in a serial
fashion to all communication participants, and thus a malicious receiver can register with
the highest priority to receive the intent first and can abort the broadcast (see Figure
3.28). Furthermore, the result value as well as result data can be set by each receiver
before propagating the broadcast to the next one, which can be used by an attacker to
distribute malicious data to the subsequent receiver as shown in Figure 3.29. Since the

38

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
lio
nowledge

b

i
r

3.10. Intent-based attacks

mechanism of ordered broadcast intents allows an application to interrupt the broadcast
and return an arbitrary result, each application developer must be aware of this process
and employ input sanitation when using this type of broadcast.

Eavesdropping
on data in
ordered broadcast

Disrupt
propagation of
broadcast

Figure 3.28: Ordered broadcast interruption

Eavesdropping
on datain
ordered broadcast

Relaying
broadcast with
malicious data

Figure 3.29: Ordered broadcast result spoofing

Broadcast injection

Exported broadcast receivers can be addressed from outside the respective application
through implicit or explicit intents. If the application has exposed the receiver unin-
tentionally or is not thoroughly sanitizing the data input, an attacker can inject data
or trigger operations inside the exploitable application (see Figure 3.30). Similar to
protecting activity components, broadcast receivers offer a smaller attack surface when
only handling external communication, thus sanitizing received data before use, while
internal communication is performed via local broadcasts.

39

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

w Sibliothek,
Your knowledge hub

3.

BACKGROUND

40

Injecting data
with broadcast

Figure 3.30: Broadcast injection

Service hijacking

Service components can only be started and bound by explicit intents since APT level
21, making it more difficult to trick an application to invoke another service component
than intended. A vulnerable application could still be tricked if the package name of the
target service component is set dynamically and an attacker manages to alter this value
via the exploits described above (see Figure 3.31). Such an attack would be especially
problematic, since service components are designed to process business logic which may
involve sensitive data and to handle asynchronous tasks such as server communication.
Furthermore, unlike activities, services function in the background, unnoticed by the user.
If an unsuspecting component connects to the malicious service, the data in the intent
could be read (see Figure (D). If the targeted component binds to the service and the
anticipated methods are offered by the malicious service, sensitive data could be obtained
by the attacker and malicious values could be passed to the invoking component (see
Figure @). To prevent such attacks, application developers must be aware when starting
and binding to services which are not hard coded but instead resolved dynamically by
the application logic.

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

w 3ibliothek,
Your knowledge hu

3.10. Intent-based attacks

Stealing data
payload during
service launch

Injecting and
stealing data
using binder

Figure 3.31: Service Hijacking

Service injection

Similar to activities, service components face the risk of abuse by malicious applications
if exposed intentionally or otherwise. An attacker can execute a variety of problematic
operations, depending on the service’s function and its exposed methods (see Figure
3.32). Malicious values can be injected if the service uses data from the intent’s payload
(D. If the service allows binding, the attacker may invoke public methods to pass and
receive data, depending on the method’s implementation). The service may also be
stopped by a suitable intent in the same manner it starts. To prevent such attacks,
services should only be exported when they are intended and equipped to serve external
applications and should thoroughly sanitize input data. Like activities and broadcast
receivers, services should not bundle internal and external functions into one component,
while services designated for internal functionality should not use intent filters to avoid
automatic exportation.

41

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
lio
nowledge

b

i
r

3.

BACKGROUND

42

Injecting data payload
during service launch
or interrupt service

}

®
S

Injecting and
stealing data
using binder

Figure 3.32: Service injection

Pending intent abuse

Pending intents allow applications to perform operations with another package’s identity
and permissions and thus present a target for misuse. Following the example of [10],
Figure 3.33 shows a malicious application obtaining a pending intent created from
an implicit base intent, which is sent via implicit broadcast intent. Because the base
specifies no values, the malicious application may use the pending intent to execute
arbitrary actions using the permissions of the intents creator application. The vulnerable
application holds the permission to make phone calls, unlike the malicious application,
which however can now trigger phone calls using the permission of the pending intent’s
creator (see Figure 3.34).

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
lio
nowledge

b

i
r

3.10. Intent-based attacks

/

Adapt and execute
pending intent with
gained permission

Obtaining
pending intent

== o

=

Figure 3.33: Using an pending intent to perform privileged operations

/{ wulnerable application

Intent baseIntent = new Intent();

PendingIntent pendingIntent = PendingIntent.getActivity(this, 1,
baseIntent, PendingIntent. 'H

Intent implicitWrappingIntent = new Intent(Intent. 'H
implicitWrappingIntent.putExtra(” ", pendingIntent);

sendBroadcast(implicitWrappingIntent);

// malicious application
Bundle extras = intent.getExtras();

PendingIntent pendingIntent = (PendingIntent) extras.get(" B H
Intent newIntent = new Intent(Intent. » Uri.parse(” "1
pendingIntent.send(context, 7, newIntent, >)

Figure 3.34: Using an pending intent to misuse privileges

As discussed above, the IPC system offers several attack vectors for malicious applications

to obtain sensitive data, manipulate other applications or gain unauthorized privileges.

Vulnerability research shows that the recommendations discussed above best enable
preventing or mitigating the repercussions of such attacks [29]. Application developers
are advised to designate their components as internal and external, with the latter viewed
as inherently vulnerable and focus on input sanitation while employing strong permissions
for communication, while also supervising which data are allowed to leave the applications
context [1, 3, 4, 12, 27, 29, 33]; however a user has no indication if this has been the case
when installing an application.

43

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
blio
nowledge

(]
I
rk

CHAPTER

Enhanced intent firewall

4.1 Enhanced intent firewall

To remedy the issues of the original intent firewall implementation as described in 3.9, the
Enhanced intent firewall (EFW) application builds on its design and aims finer-grained
filtering, modular extension points and easier handling. The EFW is divided into two
parts: the frontend application which handles user interaction and the backend which
contains the firewall logic. While the frontend runs in the application’s own context, the
backend employs the Xposed framework to run in the operating systems context to alter
the functionality of the native Android intent firewall.

4.1.1 Xposed framework

The Xposed framework allows user-created applications to perform operations or alter
the Android operating system’s behavior in a manner which is usually only possible for
system applications. The use of the Xposed framework requires a rooted device with
the framework installed along with the Xposed installer application to manage Xposed
modules, which are user-created Android applications utilizing the framework. Xposed
offers convenient methods to access class variables and hooking functions to execute
custom code before, after or instead of the original function’s code. During the devices
boot process, hooks declared in active modules are placed on their respective target
functions. All code executed in a function hook will run in the context of the hooked
package. To use the Xposed framework, an Android application must declare which class
acts as an entry point for the framework and the minimum version of the framework
required to use the module. The fully qualified class name of the entry point class must
be provided in a file named zposed_init which has to be placed inside the assets folder of
the module application. The framework version must be specified in the zposed tag in
the manifest file, which is 30 (Android API 5.1) for the EFW application.

44

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

@ Sibliothek,
Your knowledge hub

4.1. Enhanced intent firewall

4.1.2 Hooked methods for intent interaction

To interact with intents reaching the intent firewall, function hooks are placed on the
respective methods responsible for handling intents, as listed in Figure 4.1. All global
intents with a valid target component are passed to one of these methods depending on
their type before delivery to their destination. The original functionality of the three
methods has been completely replaced by custom code in which the Enhanced intent
firewall is invoked to handle the intents. As before, the methods listed in the table
will return true to allow intents to be propagated to their destination and false if the
operating system should discard them.

checkStartActivity
checkService

com.android.server firewall.Intent Firewall
com.android.server firewall.Intent Firewall

com.android.server firewall.Intent Firewall checkBroadcast

Figure 4.1: Hooked methods of the intent firewall package

Android application
running in own

Xposed hooks
overriding intent

EFW implementation
running in system

context checking methods context
/m /m
o9 » Manage firewall » » Igﬁgﬁgz » ow
rules & settings .
L4 intents 4
Receive reports Block or
EFW UI » of triggered » » propagate » EFW
rules intents service
= =

Figure 4.2: Enhanced intent firewall

4.1.3 Firewall rules

Similar to the original intent firewall implementation, the Enhanced intent firewall defines
a structure in which firewall rules must be specified. One difference from IFW is that
EFW rules are not written in XML files and copied into the respective system folder
but rather are uploaded via the EFW user interface in JSON format. Figure 4.3 shows
the structure of FFW firewall rules. As before, rules must specify a rule level, rule
type and set of filters to be matched with candidate intents. The rule level can be log
to register an occurrence of a matching intent or block to prevent a matching intent
from being propagated, and the rule type requires specification as activity, broadcast or
service. Although the Enhanced intent firewall knows the type all which is used in rules

45

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

M Sibliothek,
Your knowledge hub

4.

ENHANCED INTENT FIREWALL

46

to prevent a package from sending or receiving global intents, this type is reserved for
system-generated rules, as discussed below. A major difference from the rules used in the
original IF'W regards how filters are applied to intents. As discuses in 3.9, I[FW rules
must match an intent filter or destination component filter before performing other filter
evaluation. To allow a wider combination of filters in which single intent values, including
the destination component name, can be filtered during a single matching phase, EFW
rules retain only a single filter, in which all other filter types can be nested. The filter
types which can be specified in EFW rules are listed below.

rules:[
ruletype:
rulelevel :
filter:
b
1

Figure 4.3: General setup of a firewall rule

Logical filter The logical filter types and-filter, or-filter, not-filter are used the same as
in the original implementation to concatenate the results of nested filter (see Figure 4.4).

{
filtertype:
filter:

}

{
filtertype:
filter:

¥

Figure 4.4: Filter types and, not, or concatenate nested filter

String filter The string-filter was extended to match sender package names the same
as other intent data fields are handled. After removing the intent filter as filter type, the
string-filter becomes the main intent value filter since it allows matching single intent
data properties independent from each other and facilitates different comparing methods
such as patterns and regular expressions (see Figure 4.5).

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

@ Sibliothek,
Your knowledge hub

4.1. Enhanced intent firewall

{
filtertype:
field:
value:

by

{
filtertype:
field:
value:

by

Figure 4.5: Filter type string

Port filter To check for the existence of a port value in intents the port filter can match
specific port value ranges as well as intents with no port value (see Figure 4.6).

{
filtertype:
equals:

b

{
filtertype:
min:
max :

S

Figure 4.6: Filter type string

Disbanded filter types

The type category-filter was decommissioned since its functionality is now provided by
the string-filter. Furthermore, the sender-filter and the permission-filter were discarded
since they rely on internal functions of the system’s permission system which are not
accessible without causing technical side effects.

System-generated rules

The rules generated by the FF'W itself regard a special type since they do not specify a
particular intent type but completely block all intent traffic of a package. These rules
are activated and deactivated by the firewall depending whether the package in question
is currently installed on the monitored device. A system-generated rule can be deleted
by the user but can not be manually altered or deactivated.

47

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
lio
nowledge

b

i
r

4.

ENHANCED INTENT FIREWALL

48

4.1.4 Intent processing

As discussed above, each time an intent reaches the Android intent firewall, the method
hooks relay the passed intents and other parameters to the Enhanced intent firewall
where they are processed in five phases.

System thread

®
L)= o o off

Identify Evaluate Evaluate
- EFW X m) =)
« intent system rules block rules

Intents & Rule &
configuration configuration

Background thread changes changes

(o3 o3 o= o

Resolve Handle

Analyze Evaluate N .
component | EEp ! m) configuration
names intent log rules tasks

— t = 3
Invoke .
detection Create new Store intent @ Store_rules_and
system rule configuration
modules

Figure 4.7: Enhanced intent firewall detail

Phase 1 - Intent identification

After receiving an intent, D in Figure 4.7, the Enhanced intent firewall assesses how the
intent must be handled depending on the type of the intent and the current firewall-
settings). For the type activity and service the decision to process the intent is solely
based on whether the firewall is currently running, in which case the intent and its
respective meta data are culled from the passed function parameters and handed to the
next phase of the evaluation process. The activity and service intents started by the
EFW package are permitted without further processing. Broadcast intents require a
more sophisticated evaluation since the Enhanced intent firewall application uses them to
communicate between the user interface and the backend running in different processes

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
blio
nowledge

(]
I
rk

4.1. Enhanced intent firewall

as well as to trigger the one-time initialization of the firewall after a system reboot. As
long as the firewall has not been initialized, each broadcast intent is checked for the
BOOT _COMPLETED action, which triggers the initialization process. Afterwards, each
intent is handed to the next processing phase while the firewall is active unless the sender
or receiver of the intent is the EFW application. When the intent is a command from the
firewalls user interface, it is handed directly to the EFW service (3, where it is processed,
while otherwise the intent’s sender is vetted for security reasons, as discussed below.

Phase 2 - System rule evaluation
The first set of rules applied to incoming intents are created by the EFW application
after classifying a package as malicious due to its intent usage. For this purpose, the
firewall service retains a list of package UIDs and rules associated with the package to
determine whether the intent in question should be blocked @), before the intent and
matching rule are handed to phase 4.

Phase 3 - User rule evaluation

If the intent was not blocked in the previous phase, user-defined block rules are applied
corresponding to the intent type @. Once an intent is matched by a rule, the remaining
rules are not further evaluated and the intent is stopped from propagating, and if no rule
matches the intent, it is allowed to be delivered to its destination. In either case, the
intent along any matching rules are passed to the next phase.

Phase 4 - Background processing

The time critical phase of the evaluation is completed and intents entering this phase have
been blocked or propagated to their destination components (2. All further processing is
done in a separate thread to allow the FFW service to receive the next intent passed to
the IF'W interface. Before the evaluation progresses, depending on the intent’s type, the
package names of both sender and receiver must be determined from the UIDs of the
sending and receiving components (). If the intent was blocked during phases 2 or 3, it
is handed directly to phase 6 and is otherwise screened for signs of malicious behavior in
phase 5.

Phase 5 - Detection of malicious intents

The analyzer of the EFW is modularly designed to allow registering separate detection
algorithms. When receiving an intent, the analyzer checks which detection module is
active () and sequentially passes the intent to each (7). The intent analysis and creation
of firewall rules are handled inside of each module ®). The findings of the intent analysis
described in Chapter 5 discuss also the implementation of such a detection module 5.6.

Phase 6 - Log Rule evaluation
In a final step the intent is matched with user-specified logging rules), before storage
in the SQLite database (0.

Figure 4.11 shows the settings activity of the EFW application, which allows controlling
the status of the firewall, while the Figures 4.12 and 4.13 list the firewall rules and details
of a selected rule. When a rule is triggered by an intent, a notification alerts the user as

49

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
blio
nowledge

(]
I
rk

4.

ENHANCED INTENT FIREWALL

50

shown in Figure 4.14, and the details of the event are shown in the summary log, Figure
4.15.

4.1.5 Communication and security

The communication between the user interface running in the application context and
the EFW backend service running in the system context depends on the same IPC
functionality monitored by the firewall. To avoid unnecessary intent traffic, the firewall
backend retains the status of the user interface, which sends an intent when opened or
closed. With the sign-in intent, the user interface triggers a single push update, which
supplies the stateless frontend with information regarding stored firewall rules, currently
active settings and summarized occurred events. These events include triggered firewall
rules; system events such as errors; findings of suspicious intents; and the subsequent
automatic creation of firewall rules. While the user interface is active, the backend pushes
the summarized information to the frontend in 30-second intervals. These data are
displayed as a notification while the user interface is closed. To prevent other applications
from eavesdropping on the intent communication between the front- and backends or
from injecting intents into the EF'W application, all broadcast intents started by the
firewalls user interface are discarded after being consummated by the firewall backend in
the function hook responsible for handling broadcast intents. Intents targeting the EFW
package are only propagated if the sender is a system package, such as intents started by
the firewall backend service.

4.2 Intent collector

Learning which uses of inter-process communication are dangerous requires observing
both malicious and benign applications during runtime. The malware sample set of Argus
lab [67] was analyzed for this purpose along with varied applications from the Google
Playstore. The above EFW implementation was altered to collect the intent traffic of
the respective sample applications, and to automate the sampling process, an additional
application was created to orchestrate the data collection and perform optimization and
post-processing on the sampled data.

4.2.1 General architecture

The Intent collector application is based on the EFW implementation and thus shares the
same architecture. Instead of hooking all methods listed in 4.1, the Intent collector only
hooks the checkBroadcast method to facilitate communication between the application’s
front- and backend. To monitor the global intent traffic, the Intent collector hooks
various methods of the system and instead of a user interface, the application declares
two empty activity components, which start or stop the sampling process when launched.

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
blio
nowledge

(]
I
rk

4.2. Intent collector

4.2.2 Hooked classes for intent sampling

Unlike the function hooks used in the EFW implementation, where the custom code is
executed instead of the original method’s code, the Intent collector application executes
the original code of the hooked methods after the extraction of the parameters passed
to the function call. This approach enables accessing the launched intents without
altering the functionality of the IPC' system or disrupting the intent traffic. As discussed
in 3.8, global intent communication includes a resolution process in which the system
seeks components suitable for intent delivery. For explicit intents, the respective target
component must exist on the device when the intent is started, while the resolution
process of implicit intents is more complex. In both cases, the intent is discarded in
the absence of a suitable target component. Challenges arose when choosing a point in
the resolution process at which the intents are being sampled. Sampling intents at the
beginning of the resolution process allows capturing all sent intents; however, there is

an absence of data regarding which components would have received an implicit intent.

Performing the sampling process at the end of the resolving process this data would be
accessible at the disadvantage that intents without a suitable receiver would have been
discarded already. The latter option can be accomplished by accessing the intents at
the IFW'’s interface similar to the FFW implementation. Since this option would yield
only a fraction of the total volume of started intents for sampling, the earliest point in
the resolution process was chosen instead. Table 4.8 depicts the methods and declaring
classes which were hooked to siphon the launched intents. All methods were hooked
before any of the native code was executed to ensure none of the parameter objects were
changed. After sampling the data, the methods were allowed to continue with the original

values.
com.android.server.am Activity Stack Supervisor startActivity Locked
com.android.server.am ActivityManagerService broadcastintentLocked
com.android.server.am ActiveServices retrieveServiceLocked

Figure 4.8: Hooked methods of the system

4.2.3 Data collection process

Starting the Intent collector application launches the main activity component, which
signals the backend to start the sampling process (see (D in Figure 4.9). When the
hooked methods are invoked, the respective parameter values are collected and passed
to the background thread @). Unlike the EFW implementation, no rule evaluation or
other processing of the intents are performed, and the data collection ceases once the
respective activity is launched @.

51

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

M Sibliothek,
Your knowledge hub

4.

ENHANCED INTENT FIREWALL

52

Android application Xposed hooks on Collector service
running in own system manager running in system
context methods context
VLN @ Ve =% o
Start intent
0 => Globally 0
= [launched m)
Stop intent intents
Collector » T » Collector
frontend monitoring System service
\ (e} @ \] J [

Figure 4.9: Intent collector setup

4.3 Data collection pipeline

To automate the data collection and orchestrate the tools such as the Intent collector
application, a data collection pipeline was implemented in Java SE 8, which executes
each sampling stage on every sample file, as outlined in Figure 4.10, to compile a data
set containing the sample’s IPC traffic for further analysis.

4.3.1 Virtual device preparation

To perform the data collection in a controlled environment, a virtual machine running
Android 5.1 was used to execute the sample applications. Genymotion Android emulator
for desktop [68], which relies on Oracle VM VirtualBoz, was chosen for this task since
it provides a command line interface which allows programmatical interaction with the
created virtual devices. To ensure that each sampling iteration was performed under
the same conditions, a template virtual device was created and was used to clone a new
instance for each data collection procedure. The template virtual machine was prepared
by installing the Genymotion ARM translation patch (version 1.1), which makes the
x86-based Genymotion emulator compatible with applications including ARM code. The
Xposed installation was then performed by installing SuperSU root (version 2.46) [69],
the Xposed installer apk (version 3.1.1) and the Xposed framework (version 89) [54].
Finally, the Intent collector application was installed and activated as a Xposed module
on the virtual device.

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

w 3ibliothek,
Your knowledge hu

4.3. Data collection pipeline

Virtual device \

/e o\
Sample
apk [4 J
=) 0
=
| 1 Intent (V] -
collector Excercicer -
\i/ monkey
Log DB
Extract Creal_te VM Inject events Copy log file
3 and install .
manifest into sample and database
sample

{ 3\

APKTool

Android debug bridge Genymotion CLI OO
L TOOL o
4)
Data collection pipeline ;i—ij)]ava-

g J

« Filter and .
@ optimize data « Select data « Validate data

Csv

Figure 4.10: Data collection pipeline

4.3.2 Stage 1 - Sample preparation

As described in 5, all application samples were present in the form of a single apk file.
To allow the Data collection pipeline to ingest the samples in a structured manner,
the apk files required placement in a fixed folder structure. Each malware family was
placed in a designated directory with separate folders for each malware variety, which
in turn contained separate folder for each sample apk. Samples obtained from the
Google Playstore are similarly organized with each sample placed in its designated folder
which was placed in a directory representing the application’s Playstore category. The
pipeline application then performed the sampling process for each sample folder, and the
respective apk file required disassembly to allow ample analysis. This step was performed
by employing the ApkTool (version 2.4.0) [70] library which allows to disassembling and
rebuilding Android binary files (see D in Figure 4.10). The option to disassemble the
source code was omitted since Apktool allows specifying which parts of the binary should
be unpacked. This decision aimed to reduce disassembling effort since the sample’s source

53

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
blio
nowledge

(]
I
rk

4.

ENHANCED INTENT FIREWALL

54

code was not needed for analysis. The output of the reverse engineering process was
piped into a temporary directory inside the respective sample folder. After disassembly,
the pipeline checked whether the AndroidManifest.zml file of the sample was successfully
extracted; if not, the pipeline retried the extraction before skipping processing the sample.
With the manifest file successfully obtained, the file was copied into the sample directory
directly and the temporary unpacking directory was deleted. The manifest file was then
parsed and the package name extracted and stored in a text file created inside the sample
directory. Afterwards, the pipeline ensured that each successfully processed sample folder
contained the files required for further analysis: the sample apk, extracted manifest and
file containing the package name.

4.3.3 Stage 2 - Data collection

After preparing a sample, the data collection was performed using the Genymotion
command line interface and Android’s adb tool. Each process began with a timeout
value, which automatically terminated the process after the respective time was elapsed
if the process fails to finish on its own. After terminating a command, the return
code was checked to ensure that each step was performed before moving to the next.
The processing of the sample was aborted if an error occurred following a command
execution. The return values of the execution processes were logged for later analysis.
The first step of the stage regarded retrieval of the sample’s package name from the
associated packagename.txt file. Before creating a new instance of a virtual device, the
pipeline ensured that all instances of previous sampling iteration were destroyed, and
afterwards the pipeline created a new copy of the device template VM and started the new
virtual device. Following the device’s boot process, the data collection commenced using
Android’s debug bridge CLI to launch the Intent collector application. The same process
was used to install and launch the sample application using the package name retrieved
from the associated packagename.tzt file (see @) in Figure 4.10). Android’s UI Exerciser
Monkey was employed to simulate interaction with the sample application to tailor the
simulated events generated and injected into the target application @). To ensure all
samples received the identical order and type of events, the seed value 1535075680546
was randomly created by the UI Ezerciser Monkey during the initial sampling process
and was used for subsequent iterations. The distribution of event types was also fixed
with 15% each for touch, motion, trackball and basic navigation events, as well as 20%
each for general navigation and activity launch events. A 1,000 ms delay between each of
the 3,000 injected events allowed the application to respond to the event. Furthermore,
the option to terminate UI Exerciser Monkey was activated for cases when the sample
application suffered an unrecoverable crash during the process. After the Ul Ezerciser
Monkey finished injecting events or the process was terminated after encountering a
timeout, the pipeline closed the sample application and its running processes. To signal
the Intent collector to stop recording IPC traffic and close the database connection and
log files, the respective activity was triggered via an adb command. Finally, after the
Intent collector was closed, the database and log file were pulled from the virtual device
and copied into the respective sample folder, @. Following each data collection iteration,

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
10
edge

b

now!

(]
I
rk

4.3. Data collection pipeline

the used instance of the virtual device was terminated and deleted.

4.3.4 Stage 3 - Data validation

To determine the success of the data collection process on a particular sample, the
respective log file and database were analyzed, (see (® in Figure 4.10). The sample was
discarded if the log file or database were unsuccessfully pulled from the virtual device.
Otherwise, the log file was parsed to check whether any sampling stages produced errors;
if so, the sample was omitted from further analysis; if not, the number of successful
injected events into the sample application was calculated. Samples with less than 2,000
successful injected events were discarded as well. Lastly, the database was analyzed, to
ensure that the sample application was involved in any inter-process communication. If
no intents were started or received by the application, the sample was excluded from
further analysis.

4.3.5 Stage 4 - Data selection

The pipeline steps Sample preparation, Data collection and Data validation were performed
on batches of ten malware samples and three Playstore samples respectively. The
maximum number available was used in cases when fewer then ten samples were available
for a certain malware variety. The number of processed samples for a certain variety was
calculated after each batch, and if at least three fulfilled the requirements described above,
the sampling of the respective malware variety or Playstore category was considered
finished. In the absence of available samples for a particular malware variety, the
maximum number of successful samples were chosen for further analysis. This was also
employed when the threshold of 50 analyzed samples for a variety was passed without
yielding at least 3 successfully processed samples, and if more than three samples of
a category were available, three were chosen at random (see ® in Figure 4.10). The
number of sampled applications and of those which are successfully and unsuccessfully
processed are listed in 5.1.1.

4.3.6 Stage 5 - Data optimization

Before analysis, the collected intents required separation from noise data, since only IPC
traffic involving a sample application was relevant for the analysis. Furthermore, since
the data collected in each sampling iteration were stored in a separate database and
therefore unfeasible for efficient analysis, the data required merging into a single database
each for malware and Playstore samples. During this process, the sampled data were
optimized by connecting the intent destination component names with the associated
package names for more efficient querying. After preparing the cleaned and optimized
sample data, a final step sorted and organized the data by querying two sample databases
to separate the IPC traffic regarding the type of intents as well as sender and receiver
packages. The data returned by these queries were dumped into CSV data files, which
presented the basis for further analysis (see @ in Figure 4.10).

55

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

Y 3ibliothek,
Your knowledge hu

4.

ENHANCED INTENT FIREWALL

56

Android application
running in own

context

of triggered
rules

Xposed hooks

overriding intent
checking methods

-

Globally
launched
ntents

Block or
pagate
intents

EFW implementation
running in system
context

Figure 4.11: Controls of the firewall applications

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
lio
nowledge

b

i
r

4.3. Data collection pipeline

V.4 H554

SETTINGS RULES EVENTS SYSTEM

Wctivity Log (Ruleid 1) - Not active
Broadcast Block (Rule id 2) - Active
Service Log (Rule id 3) - Not active

LOAD FIREWALL RULE

Figure 4.12: Overview of available firewall rules

o7

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
lio
nowledge

b

i
r

4.

ENHANCED INTENT FIREWALL

58

Ruleid: 2

Broadcast Block

{

"ruletype™: "broadcast’,
"rulelevel”: "block”,
"filter”: {
"filtertype”: "equals’,
"field": "action’,
"value"; "cruelintentions. TestApplication. EXAMPLE_ACTION"

Toggle Rule DELETE RULE

Figure 4.13: Detail view of a firewall rule

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

4.3. Data collection pipeline

Saturday, August 1

©
=
@
=
[
o
=
@
2
=
o
Q
Q
=
@
=
c
i

r
2
i
()
=
w
2
S
o
=
(]
=

=

OPEN APP

Figure 4.14: Notification of a rule event

“}auioljqig usipn NL e ud ul s|ge[rene si sisayl SIUl JO UOISIaA feulBblio pasoidde ay
“JeqBnyan 3auloljqig usipn N1 Jap ue isi iagrewoldiq Jasalp uoisiaAfeulBuO apjonipalb ausiqoidde aiqg

59

qny a8pajmoud| INoA

S8ylolqie

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
blio
nowledge

(]
|
rk

4. ENHANCED INTENT FIREWALL
¥4 @554
SETTINGS RULES EVENTS SYSTEM
01/08/20 | 05:53:58 - 05:54:28
RULE 2 - Intent count: 1
Action: cruelintentions.TestApplication. EXAMPLE_ACTION
Sender: cruelintentions.TestApplication
Receiver: cruelintentions.TestApplication
Flags: 16
Figure 4.15: Detail view of a rule event
60

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
blio
nowledge

(]
I
rk

CHAPTER

Evaluation

Analyzing a sufficiently large collection of recent malware samples was needed to learn
which TPC calls are performed by malware on the Android platform, and reference
samples of non-malicious applications also required evaluation to determine which intent
traffic should be considered malicious. These two datasets were similarly processed and
analyzed as described in 4.3 draw meaningful conclusions from the analysis.

A set of malicious applications, the Android Malware Dataset, was shared by the Argus
Cyber Security Lab [71] for this project and consists of 24,553 samples which have been
studied and categorized into 135 different varieties of 71 malware families [72]. The
set contains benign applications altered to contain malicious components as well as
standalone malware. Figure 5.1 shows the number of samples available for each malware
and the type of malicious payload characterizing the respective family. Comparable
analysis data of a reference dataset was needed to interpret the outcome of the malware
analysis. Because every uploaded apk is screened for malware signatures before becoming
downloadable in the official Google Playstore, it can be assumed that the applications
in this market place do not contain malware. [73] estimated the prevalence of infected
applications in the Google Playstore at 0.02 percent. Samples were randomly selected for
analysis from 30 application categories, as listed in Figure 5.3.

61

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

@ Sibliothek,
Your knowledge hub

5. EVALUATION
| Airpush ' Adware 1| 7842
AndroRAT Backdoor 1 46
| Andup Adware 1 45
Aples ' Ransom 1| 21
BankBot ' Trojan-Banker g 648
Bankun ' Trojan-Banker 4 70
Bogx ' Trojan-Dropper 2' 215
Boxer ' Trojan-SMS 1| 44
Cova Trojan-SMS 2 17
Dowgin ' Adware 1| 3385
DroidKungFu ' Backdoor 6 546
Erop ' Trojan-SMS 1| 46
FakeAngry ' Backdoor 2| 10
FakeAV Trojan 1] 5
FakeDoc Trojan 1| 21
Fakelnst ' Trojan-SMS 5 2172
FakePlayer Trojan-SMS 2 21
| FakeTimer Trojan 2| 12
Fakelpdates ' Trojan 1|]
Finspy ' Trojan-Spy 1 . 9
Ficon ' Backdoor 1| 16
Fobus Backdoor 1| 4
Fusob ' Ransom 2| 1277
Gingerlaster ' Backdoor 7| 128
GoldDream ' Backdoor 2| 53
- Gorpo ' Trojan-Dropper 1 . 36
| Gumen ' Trojan-SMS 1| 145
Jisut Ransom 1 560
. Kemoge ' Trojan-Dropper 1 . 15
Koler ' Ransom 2| 69
Ksapp ' Trojan 1 ' 36
Kuguo ' Adware 1| 1199
Kyview ' Adware 1] 175
Leech ' Trojan-SMS 1| 128
| Lk Trojan 1| 5
Lotoor HackerTool] 329

62

Figure 5.1: Argus Lab malware samples - part 1

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

@ Sibliothek,
Your knowledge hub

Mecor
Minimob
Mmarketpay
MobileTX
Mseg

Mtk
Nandrobox
Obad

Cgel
Opfake
FPenetho
Ramnit
Roop
RuMmMS
SimpleLocker
SlemBunk
SmsKey
SmsZombie
Spambot
SpyBubble
Stealer
Steek
Svpeng
Tesbo
Triada
Univert
UpdtKiller
Utchi

Vidro
VikingHorde
Vol
Winge
Youmi
Zitmo

Ztorg

Trojan-Spy

' Adware

Trojan

' Trojan

Trojan

Trojan

Trojan

I Backdoor
Trojan-SMS

' Trojan-SMS

I HackerTool

' Trojan-Crropper

Ransom

Trojan-SMS

Ransom

' Trojan-Banker

Trojan-SMS

Trojan-SMS

' Backdoor

' Trojan-SMS
Trojan-SMS

Trojan-Clicker

' Trojan-Banker
Trojan-3M3

Backdoor

' Backdoor

' Trojan

' Adware
Trojan-SMS

Trojan-Cropper

' Trojan-Spy

Trojan-Clicker

Adware
Trojan-Banker

Trojan-Crropper

Figure 5.2: Argus Lab malware samples - part 2

1820
203
14
17
235
67
78

10
18

48
402
173
174
165

15
10
25
12
13

210
10
24
12
23

13
19
1301
24
20

63

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

Y 3ibliothek,
Your knowledge hu

5. EVALUATION

Google Playstore category

Art and Design
Beauty

Books

Car

Comics
Customizing
Dating
Efficency
Entertainment
Finance

Food

Health

House and garden
Learning
Lifestyle

Map

Medicine
Messaging
Music

News

Office
Parents
Photography
Shopping
Social

Sport

Tickets and Events
Tools

Travel
Videoplayer
Wetter

Figure 5.3: Google Playstore sample categories

64

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
blio
nowledge

(]
I
rk

5.1. Results of data collection

5.1 Results of data collection

Following the process discussed in 4.3, both sets of applications were sampled to obtain
sufficient data for analysis. As shown in Figure 5.4, of the 24,553 malware samples
available, 1,544 were processed to obtain data from at least one sample of each malware
variety, with 39.89% of the sampling procedures resulting in a positive outcome, yielding
data from 616 samples, covering 114 (84.44%) of the different varieties and 61 (85.91%)
of the different malware families respectively. The threshold of 3 samples was reached,
with 14 varieties yielding 2 and 10 varieties yielding 1 successfully sampled apk, as listed
in Figure 5.5. No usable data could be obtained for 21 malware varieties and 10 malware
families. As shown in Figure 5.6, processing 155 samples from the benign Playstore set
yielded 97 successfully sampled applications, providing data from at least three samples
of each Playstore category. Figure 5.7 lists the errors occurring during the sampling
of the unsuccessful processed 928 malware and 58 benign samples. Errors within the
sampled application represented the main reason for unsuccessful sampling attempts
and accounted for 64.66% and 65.62% of all occurred errors, followed by unsuccessful
installation attempts of the sample package on the virtual device with 17.56% and 20.69%
respectively. In 4.2% and 13.79% cases the UI Exerciser Monkey reported an error while
interacting with the sample application while incorrect activity names were specified by
the sample in 6.03%. Furthermore, all samples were discarded if less than 2,000 events
were injected (2.05%) or if no IPC traffic involving the sample application could be
monitored (4.31%). In 11 cases (1.19%), the Intent Collector application did not behave
correctly. From the 616 malicious and 97 benign samples successfully processed, 308 and
90 respectively were randomly selected for analysis.

All samples 24553 100.00% 135| 100.00% 71 100.00%
Processed Samples 1544 6.28% 135| 100.00% 71 100.00%
Unsuccessfull processed * 8928 60 11% 21 15.56% 100 14.09%
Successfull processed * 616 39.89% 14| 84 44% 61 8591%
Detailed analysis ** 308 50% 114 100.00% 61/ 100.00%

* of processed samples
** of successfull processed samples

Figure 5.4: Processed malware samples

65

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

Y 3ibliothek,
Your knowledge hu

5. EVALUATION

Successful processed

One sample per variety 10 162% 10 B8.77%
Two samples per variety 28 4 54% 14 12 28%
Three or more samples per variety 578 93.83% 90 78.94%
Total 616 100.00% 114 100.00%

Figure 5.5: Successful processed malware samples per variety

Status # Samples # Categories
All samples NA. 100.00% 35 100.00%
Processed samples 155 NA. 30 85 71%
Unsuccessfull processed * 58 37.41% 30 100.00%
Successfull processed * a7 62.59% 30 100.00%
Detailed analysis ** a0 92.78% 30 100.00%

* of processed samples
** of successfull processed samples

Figure 5.6: Processed Playstore samples

Error during processing Malware samples | Playstore samples
Error installing sample 163 17.56% 12| 20.69%
Less than 2000 events injected into sample 19 2.05%
Error in analysis application 11 1.18%
Error in sample application 600 64 66% 38| 6552%
Mo activities found in sample application 56 6.03%
Mo intents of sample application collected 40 4. 31%
Unable to connect to activity manager 39 4.20% 8 13.79%
Total 928 100% 58 100%

Figure 5.7: Errors during sampling

66

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
blio
nowledge

(]
I
rk

5.1. Results of data collection

5.1.1 Collected intents

The 308 malware samples chosen for detailed analysis include 392,343 globally sent
intents which were started or received by one of the sample applications. For the benign
samples, the overall number of captured intents is 19593, as shown in Figure 5.8. In
both sample sets, the majority regards activity intents with 353,933 (90.21%) and 16,561
(85.53%) respectively. In the malicious dataset, broadcast intents constitute the second
greatest portion with 37,041 (9.44%), which for the benign dataset regards service intents
with 2,608 (13.31%). The smallest fraction of intents in the malicious sample set are
service-related intents with 0.35% or 1,369 in total and broadcast intents with 424 (2.16%)
for the Playstore set. As discussed in 4.3, the intents were grouped based on their type,
origin and destination components for the structured analysis of the sampled data.

Activity 353833 80.21% 16561 84.53%
Broadcast 37041 9.44% 424 2.16%
Service 1369 0.35% 2608 13.31%
Total 392343 100% 19593 100%

Figure 5.8: Overview of sampled intents

Activity intents

The captured activity intents were divided into six types as listed in 5.9, with the first
group labeled Al containing intents explicitly started by a sample to launch an activity
of a system package. Groups A2 and A4 include intents sent by a sample application
to a third party package or its own. Intents in the group A3 were also launched by a
sample package, but these intents are not explicit and therefore do not specify a target
component. Since the intents were sampled before the resolving process, the actual
destination component of the intents in this category are unknown, as described in 4.2.2
The groups A5 and A6 contain intents received by a sample application from a system
package or the UI Ezerciser Monkey. As shown in Figure 5.9, malicious samples primarily
sent intents to system packages, which accounted for 71.49% of all activity intents,
followed by intents sent to their own package (16.58%). The third sizable portion (11.7%)
of the activity intent traffic includes intents received by the sample from unresolved
packages, and the remaining 0.21% IPC traffic comprises intents from categories A2, A3
and A5. For the benign Playstore sample set, the largest number of intents (87.32%) were
those generated by the Ul Ezerciser Monkey during sampling, while the intents received
from the system was comparably low at 0.02%. The largest group of started intents
are those sent to their own application package, while intents sent to other packages
comprise 2.2% of all sampled intents.

67

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
blio
nowledge

(]
|
rk

5. BEVALUATION
A1 | Sample package to system package 2530320 71.491% 70 0.423%
A2 Sample package to third party package 727 0.205% 269 1.624%
A3 | Sample package to unresolved package 41 0.012% 29 0.175%
A4 Sample package to same sample package 58713 16.589% 1727 10.428%
A5 | System package to sample package 2 0.001% 4 0.024%
AB Ul Exerciser Monkey to sample package 41418 11.702% 14462 87.326%
Total 353933 100% 16561 100%
Figure 5.9: Distribution of sampled activity intents
Broadcast intents
As shown in Figure 5.10, implicit broadcast intents with unknown receiver packages are
used by both malicious and benign sample sets. Grouped as category B1, this type of
intent accounts for 95.58% of all broadcasts used by malicious samples and 58.9% for
benign ones. The remaining sent broadcast intents were explicit and aimed at the same
package which started them, amounting to 4.42% and 44.1%.
B1 | Sample package to unresolved package 35403 895 58% 237 55 9%
B2 Sample package to same sample package 1638 4.42% 187 44 1%
Total 37041 100% 424 100%
Figure 5.10: Distribution of sampled broadcast intents
Service intents
For the malware and Playstore sample sets, service intents aimed to start or interact
with a component declared in their own package, representing 90.43% and 96.97% of
all service intents (see Figure 5.11), followed by implicit intents targeting an unresolved
service component, with 9.42% and 2.15% respectively. Lastly, 0.15% and 0.88% of the
intents targeted service components declared in third-party applications.
68

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
blio
nowledge

(]
I
rk

5.2. Evaluation of activity intents

51 | Sample package to third party package 2
52 | Sample package to unresolved package 129
53 | Sample package to same sample package 1238

Total 1369

0.15%
9.42%
90.43%
100%

23
56
2528
2608

Figure 5.11: Distribution of sampled service intents

5.2 Evaluation of activity intents

This section discusses activity-related intents, describing their composition
while assessing their maliciousness.

5.2.1 Intents sent to system packages

Al_

Al

Al_

Al

Al_

Al_

Al

Al_

Al

2

QOF QOF OF OPF OF OF OF QF OF

- android.intent.action. CHOOSER
- com_android.internal.app.ChooserAciv ity

- android.intent. action. PICK_ACTIVITY
- com_android_settings_Activ ityPicker

- android.intent.action VIEW
- com.android.internal_app.Resolv erActivity

: android.intent.action. MAIN
: com_android_settings WirelessSettings

- android.seftings. SETTINGS
- com.android.settings. Settings

: android.settings. APPLICATION_DETAILS_SETTINGS
- com_android settings_applications_|nstalledA ppDetails

: android.settings. MANAGE_APPLI CATIONS _SETTINGS
: com.android.settings. Settings$M anageA pplicationsActiv ity

- android_seftings. SECURITY _SETTINGS
- com.android_settings Settings$S ecurity SetfingsActiv ity

- android.app.aciion.ADD_DEVICE_ADMIN
: com_android_settings.DeviceAdminAdd

Total

24

252977

353932

0.009%

0.0007%

0.0011%

0.0011%

0.0075%

0.0007%

0.0007%

99.978%

100%

Figure 5.12: Intents starting a system package activity

0.88%
2.15%
96.97%
100%

and function

41 558.6%

1 1.4%

14| 20%

14 20%

70 100%

69

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
blio
nowledge

(]
|
rk

5.

EvVALUATION

70

App chooser dialog

The intents A1_1 to A1l_3 each another intent as a payload to be opened by a fitting
activity and to allow the user to choose this activity, the wrapping intent creates a
chooser dialog to display all activities able to handle the payload intent. The chooser
dialog created by intent A1 1 starts the selected activity, and then the dialog created
by intent Al 2 passes the chosen activity class to the sender of the wrapping intent
to allow the component to react to the user’s choice. Intent Al 3 shows a selection
activity which behaves similarly to A1_ 1, although this approach allows the setting of
an preferred activity to handle the wrapped intent in future launches.

System settings

The intents A1_4 to A1l_8 launch an activity associated with the system settings. All
the intents open a specified activity component, while A1_8 also requires passing the
name of an installed package and a data URI to show the detailed settings for this specific
package.

Device Admin

Applications may use the operating system’s device administration API to enforce
security policies on a device, which grant control over system-level features such as
password-related settings, data encryption or the remote installation of applications.
Before the user can exert this control, they must grant the application permission to do
so. With the intent A1_9, the respective settings activity is shown which asks the user
to enable an application as device administrator. The package name of the application
in question must be passed with the intent, and an optional explanation can be passed
to give the user additional information regarding the request. As shown in Figure 5.13,
the distribution of the quantity in which this intent is employed by sample applications
greatly varies, with some packages launching several thousand of this particular intent
while most samples do not employ this intent at all. Since the rapid consecutive opening
of the admin request activity creates a screen lock, the application aims to coerce the
user to grant the requested administration privileges. In addition, the message passed
with the intent informs the user that granting administrative privileges is necessary for
the application to properly function. The numbers listed in Figure 5.14 indicate that
the launch of a single intent is not triggered by user interaction but by an automated
procedure started at application launch, confirming the assessment of [72] for this type
of malware.

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

Y 3ibliothek,
Your knowledge hu

5.2. Evaluation of activity intents

Malware Variety Sample 1 Sample 2 Sample 3
5 94972 9808 9976
6 9969 9802 9332
BankBot
T 9332 9366 9275
8 9808 9687
Koler 1 6443 6472 6456
Obad 1 1929
1 9353 9183 9321
2 9332 9235 9042
RuMMS
3 8606 8223 7609
4 9320 9147 9312
SimplelLocker 2 2911 2685 3032
SlemBunk 2 7763

Figure 5.13: Device administration requests per sample

S s # Sampies

0 259
1-20 13
50-100
100 - 200 2
=1900 31

Figure 5.14: Distribution of samples using the device administration request

71

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
blio
nowledge

(]
I
rk

5.

EvVALUATION

72

5.2.2 Intents sent to third party packages

A2 1

A2 2

A2 3

A2 4

A2 5

A2_6

A2 7

A28

A2 9

A2 10

A2 11

A2 12

A2.13

A2 14

A2_15

A2 16

A2 17

QOF QF QF OF QF QF OF QF QF OF OF OF OF OF OF OQF OF

- android.intent.action. VIEW
: com_android.brows er. Brows erActivity

: android.intent.action. VIEW
: com._android.contacts_activities_PeopleActivity

- android.intent.action VIEW
: com._android.packageinstaller. Packagelnstaller Activity

- android.intent.action. DELETE
: com_android_packageinstaller. Uninstall erActiv ity

- android.intent.action DIAL
- com.android.dialer DialtactsActiv ity

: android.intent. action. GET_COMNTENT
: com_android_documentsui. DocumentsActiv ity

- android.intent.action. INSERT
: com.android.contacts_activities ContactEditorActivity

- android.intent.action. INSERT _OR_EDIT
- com.android.contacts_activities. ContactSelectionAdtivity

- android.intent.action. MAIN
: com_android.brows er. Brows erActivity

- android.intent.action. MAIN
- com.android.dialer DialtactsActiv ity

: android.intent.action. MAIN
- com_android.calendar AlllnOneActivity

- android.intent.action. MAIN
: com_android_dev elopment.Development

- android.intent.action. MAIN
- de_robv_android.xpos ed.installer. Welco meActiv ity

- android.intent.action. MAIN
: com._android.customlocale2 CustomlLocaleActivity

- android.intent.action. PICK
- com.android.contacts._activities. ContactSelectionActivity

: android.intent.action. PICK
: com_android_gallery3d.app.Gall ery Activity

- android.intent.action. RINGTOME_PICKER
- com.android_providers. media. Ringtone PickerActiv ity

Figure 5.15: Intents starting a third party package activity

Jg2

65

55

Ll

19

17

52.54%

0.27%

11.69%

1.1%

7.56%

0.13%

0.13%

0.13%

1.51%

2.61%

0.27%

0.13%

0.27%

0.27%

2.33%

199 | 73.97%

100 3.71%
1 0.37%
2 0.74%

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
blio
nowledge

(]
I
rk

5.2. Evaluation of activity intents

- android.intent.action. SET_WALLPAPER

A g
A2_18 C: com.android.launcher3 LauncherWallpaperPickerActivity 1) 0.37%
A2 19 A: android_service wallpaper CHANGE_LIVE_WALLPAPER 1 013%
— | C: com.android.wallpaper.livepicker LiveWallpaperChange i
A android_service wallpaper LIVE_WALLPAPER_CHOOSER o
A2_20 C: com.android. wallpaper live picker Live\Wallpa per Activity 73110.04%
A: android.intent.action. SENDT O o
A2_21 C: com.android. mms_ui.ComposeMessageActivity 46| 6.32%
A android_search. action. GLOBAL_SEARCH o
A2 22 C: com.android_quicksearchbox SearchActivity 2| 0.27%
Az android.media.action.|MAGE_CAPTURE
e e C: com.android.camera. CameraActivity Sl e
A android.speech.tts.engine. CHECK_TTS_DATA
A2_24 C: com.svox_ pico.CheckVoiceData 1) 0.37%
A2 95 A android.spelec:h.tls.engine.INSTALL_TTS_DATA 4 1.48%
= | C: com.svox pico.DownloadVoiceData

Total 27 100% 269 100%

Figure 5.16: Intents starting a third party package activity

‘Web browser

Intent A2 1 specifies the action VIEW and web browser application as targets to display
a webpage which is passed in the form of a data URI. This intent is common for the
malware and Playstore sample sets and malicious applications use this intent in 342
of 382 instances to display advertising webpages, while for benign samples this is the
case in only 25 usages, all of which use an official Google advertising A PI, unlike the
malware samples. In 25 cases, malicious samples pass device information such as phone

number, IMFEI or operating system version as URL parameters to the contacted server.

This information can be used to identify the device and further action by the malicious
application, as it is instructed by the contacted control server [72].

Contact management

The intents in this category interact with the device’s stored contacts. Similar to A2 1,
intent A2_ 2 uses the action VIEW to display the specified component, where in this
case the contact overview activity lists existing contacts. A2_ 8 displays the same list of
contacts, and unlike VIEW which has no return value, the action INSERT OR__EDIT
will return the selected or newly created contact to the invoking component in the form
of an URIL. A2_ 7 similarly returns the created contact as data URI but directly opens the
activity containing the contact creation form. Intent A2 15 employs the PICK action
and a data URI, in this case identifying the list of stored contacts, to display a set of
data from which the user may select an item, which again is returned as URI.

Package management

73

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
blio
nowledge

(]
I
rk

5.

EvVALUATION

74

The intent A2_ 3 opens a dialog to ask the user for confirmation to remove an installed
application package from the device. The name of the package must be passed via the
intents data URI property. Similar to A2_ 3, the intent A2 4 opens a dialog to request
confirmation from the user to make changes to the devices application packages. The
dialog lists the name of the package supposed to be installed on the device and the
permissions requested by the package, and the intent must pass the package name as
data URI. The installation of a package regards an ordinary operation, but this intent is
misused to trick the user into loading malicious payloads on the device or into installing
additional unwanted applications by disguising the operation as an urgent update for the
host application [72].

Dialing activity

To launch the devices dialer activity, the intent A2 5 can specify a data URI with the
scheme tel to start the activity with the passed phone number preselected or without
additional data to show the dialer in an empty state. Both options are used by the
sample.

Choose image

Using an intent with the GET _CONTENT action as with A2 6 allows passing a
mimetype of data, enabling the user to select a resource corresponding to this type, which
is then returned to the calling component. A2 16 specifies the action PICK and an
URI pointing to a data directory, which also returns the URI of the selected item. Both
intents define that only resources of type image may be chosen.

Open application

The intents A2_9 to A2_ 14 use the action MAIN to open the specified activity as the
main entry point of the respective application, meaning that no additional data are
expected to be specified in the intent.

Choose ringtone

A2 17 opens a dialog listing all currently available ringtones on the device to allow the
user to choose one, which returns no data but sets the selected resource as the active
ringtone.

Choose wallpaper

While A2 18 and A2 19 show a gallery containing images suitable as background
wallpaper, A2 20 shows a preview of a wallpaper passed with the intent, allowing the
user to confirm the selection to set the currently active wallpaper.

Send message
Intent A2_ 21 opens the message composing activity of the installed MMS application
and intent can carry data to preset the message content and receiver for the message.

Global search
A2 22 opens the global search provider activity and similar to A2_ 21 can carry additional
data such as the search query.

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
blio
nowledge

(]
I
rk

5.2. Evaluation of activity intents

Image capturing
Intent A2 23 launches the main activity of the installed camera application.

Text to speech

The intents A2_ 24 and A2_ 25 interact with Android’s text-to-speech engine. The first
checks the installation status of the required components to use the service, while the
second opens the Playstore application to install the package.

5.2.3 Sample package to unresolved package

A3 _1 | A android.intent.action. VIEW 36 87.8% 291 100%
A3_2 A android.intent.action. SENDTO b1 12.2%
Total 41 100% 29 100%

Figure 5.17: Implicit intents starting an activity of a unresolved package

Display data

The implicit intent A3 1 specifies the action VIEW and a data URI, which allows the
system to resolve a suitable component to display the data. The Playstore sample set
employs this intent to specify URIs pointing to the marketplace, the Google Playstore
website and to PDF files on the device’s drive. Although the malware samples refer to
applications in the marketplace, the target applications differ, as the benign samples
use this intent to link to their own page in 80% of the cases or to a Google or Facebook
application in the remaining 20%, while the malware samples refer to applications

unrelated to the domain of the sample (58%) and to online gambling applications (37%).

Only 5% of the intents link to the sample package’s own marketplace page.

Send message

Similar to A2_ 21, A3_ 2 uses the action SEND__TO to compose a message, and the
system resolves the used application to send emails by defining the type mailto. This
action allows passing additional properties defining the title, text and receiver of the
message with the intent. In all five instances where the malware sample set uses this
intent, the values for these three properties are specified by the application. While the
passed string values are encrypted, the content of the message contains device-specific
information such as the device name and operating system version.

75

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
blio
nowledge

(]
I
rk

5.

EvVALUATION

76

5.2.4 Sample package to same sample package

A android. intent_action MAIN
Ad_1 C: Custom component 7| 0.25% 150| 8.66%
Ad 2 A android.intent.action VIEW 14109 24 03% 34 1.96%
C: Custom component
A4_3 |A: Gustom action 11 0.01% 39| 2.25%
=" | C: Custom component
A4 4 | C: Custom component 44446 75.7%| 1504 87.08%
Total 58713 100%, 1727 100%

Figure 5.18: Intents starting an activity of the own package

Open activity

The intents A4 1 to A4_ 4 open specified activities, which in all cases regard the same
sample package which started the intents. The action property becomes optional since
the component is explicitly defined, and since no intents contain a data URI, the action
VIEW behaves like MAIN by launching the activity component without being expected
to pass additional data. Any custom-defined action in A4 4 may impact the internal logic
of the component, but has no influence on which activity is launched. 56758 (96.67%)
of all intents used by the malware samples were sent by the nine applications listed
in 5.19, which shows the number of this type of intent launched by each sample. The
resulting activities notify the user of urgent updates requiring root privileges in order to
be added to the system’s device administrator list. Identical to the behavior of A1_9, the
intent’s rapid launch aims to coerce the user into granting requested privileges to regain
control of the device. The remaining 1,955 intents launched by the malware samples were
unsuspicious along with the 1,720 intents launched by the benign samples.

BankBot 3 3948 5000 5038
1 7164

SlemBunk 2 7183 7148
4 7092 7070 7104

Figure 5.19: Samples launching their own activities repeatedly

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

Y 3ibliothek,
Your knowledge hu

5.2. Evaluation of activity intents

5.2.5 System package to sample package

1D Intent Malware Playstore
A5 1 A android.intent.action.MAIN 1 509
— | C: Custom component
A5 2 C: Custom component 1 50% 4 100%
Total 2| 100% 4/ 100%

Figure 5.20: System intents starting an activity of a sample package

Open activity
The intents of types A5 1 and A5_ 2 were launched by the system to start a sample
application activity. This behavior can be achieved by passing a pending intent to
the alarm manager service to allow the system to invoke the intent at a later time, as
discussed in 3.7.

5.2.6 UI Exerciser Monkey to sample package

D Intent Malware Playstore
As_1 B g":;‘;:—@;f;‘;{ﬂﬁ;‘“m” 41418 100% | 14439 99.84%
2 ST 2 ooz
A6_3 | C: Custom component 200 0.13%

Total 41418 100% 14462| 100%

Figure 5.21: Intents sent by the UI Exerciser Monkey to start activities of sample packages

Open Activity
The intents A6_ 1 to A6_ 3 are generated by simulated user events of the Ul Fzxerciser
Monkey to start a sample package’s activity.

7

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
blio
nowledge

(]
I
rk

5.

EvVALUATION

78

5.3 Evaluation of broadcast intents

This section discusses all broadcast intents launched or received by a sample package.

5.3.1 Sample package to unresolved package

B1_1 | A: android.intent.action. MEDIA_SCANMER_SCAN_FILE 1 0.43%

B1_2 | A: android.intent.action. CLOSE_SYSTEM_DIALOGS 34535 97.548%

B1_3 A:com.android.launcher.action INSTALL_SHORTCUT 14| 0.039%

B1 4 | A- com.android_ launcher.action UNINSTALL SHORTCUT 3| 0.008%

B1_5 | A: Custom action 868 2.403% 236 |9957%
Total 35403 100% 237 100%

Figure 5.22: Implicit broadcast intents started by a sample package

Media scanner

Broadcast intents such as B1 1 which use the action MEDIA SCANNER SCAN FILE
must pass a URI pointing to a media resource along with the intent. The resource is
then scanned by the media scanner and afterwards added to the media database for later
usage.

Change shortcuts

Broadcasts B1_3 and B1_ 4 interact with the application shortcut manager, where the
former requests creating a new pinned shortcut while the latter requests removing an
existing one. The name and shortcut icon as well as action of the shortcut in the form of
an intent are passed as extra payloads of the broadcast. Both intents require the user’s
approval before a shortcut is added or removed.

Close system dialog

Intent B1_ 2 requests closing temporary system dialogs such as the recent tasks overview
or notification messages. Although this intent accounts for 97.54% of all broadcasts in
this category, only 9 samples launch the 34,535 intents. Figure 5.23 shows that three
samples launch one of these intents each, while the remaining six use this intent several
thousand times. The rapid broadcasting of this intent ensures that system dialogs are
immediately closed after being opened, thus impeding the user’s interaction with the
system such as trying to uninstall an application. Notably, malware Bankbot uses this
intent in conjunction with intent A4 4.

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
blio
nowledge

(]
I
rk

5.3. Evaluation of broadcast intents

Implicit custom broadcast

Like with B1_ 5, implicit broadcast intents defining an action are received by all broadcast
receivers which have previously subscribed to the respective action. Because custom-
defined actions are not known to other applications, the intents could have been only
intended for local usage and therefore sent through a local broadcast, as discussed in
3.10.

Aples 1 1 1 1
BankBot 3 3947 4999 5037
Koler 2 5866 6840 6843

Figure 5.23: Samples requesting the closing of a system dialog

5.3.2 Sample package to same sample package

Updating app widget

Intents using the action APPWIDGET UPDATE such as specified by B2_ 1 are used to
signal that an app widget component should be updated and the widget’s id must be
passed as extra payload with the intent.

Interaction with Google libraries
Intent B2 2 is used to send data to an app measurement receiver component of the
Google Firebase analytics service.

Explicit custom broadcast

Broadcast intents B2_ 3 and B2_ 4 are received by the same package which started them,
and if following the best practice guidelines discussed in 3.10, these intents should have
been sent through a local broadcast.

Az android.appwidget.action APPWIDGET_UPDATE
B2.1 C: Custom component 25/13.36%
B2 2 ,é. téom_google_androld_gn‘ﬁ_measurementUPLOAD 35 18.71%
: Custom component
p2_3 |A: Custom action 38| 231% 115 61.49%
C: Custom component
B2 4 C: Custom component 1600 97 68% 12 6.41%
Total 1638 100% 187 100%

Figure 5.24: Explicit broadcast intents started by a sample package

79

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
blio
nowledge

(]
I
rk

5. EVALUATION
5.4 Evaluation of service intents
This section evaluates all intents used to interact with service components.
5.4.1 Sample package to third party package
Interaction with Google libraries
Intent S1_1 is used to start a service component of the Google Analytics library.
Az com.google.android.gms._analytics service START o o
511 C: com.google.android.gms.analytics sewice AnalyticsService 2| 100% 231 100%
Total 2 100% 23 100%
Figure 5.25: Explicit service intents started by a sample package
5.4.2 Sample package to unresolved package
Intents discussed in this subsection are implicit and used to interact with service com-
ponents. As discussed in 3.5.1 only applications using A PI level 20 or lower may use
implicit intents in this manner.
Interaction with Google libraries
The intents S2_ 1 to S2_ 5 interact with service components of a Google library. S2_ 1
starts a service of the Google Analytics library , as it defines the same action as S1__1.
Similar to A2_ 24 and A2 25, S2_ 2 is used to interact with Android’s text-to-speech
engine, while S2_ 3 is used by the Custom tabs support library. Intents S2_4 and S2_5
are used in conjunction with Google Play billing and ads service respectively.
Custom defined action
Intent S2_ 6 is defines a custom action for interacting with a package-defined service
component.
80

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

Y 3ibliothek,
Your knowledge hu

5.4. Evaluation of service intents

1D Intent Malware Playstore

S52_1 | A com.google.android.gms.analytics.service START 6| 4.65% 2 357T%
82 2 | A android.intent action. TTS_SERVICE 19 33.92%
52_3 | A android.support.customtabs.action. CustomTabsService 4 T14%
S2_4 | A com.android.vending.billing.InAppBillingS ervice BIND 5 B8.92%
S52_5 | A com.google. android.gms.ads.identifier service. START 26/46.42%
52 6 A Custom action 123 195.34%

Total 129| 100% 56| 100%

Figure 5.26: Implicit service intents started by a sample package

5.4.3 Sample package to Sample package

Package defined service
The intents S3_ 1 and S3_ 2 interact with services defined in the their own package.

Interaction with Google libraries
Intents S3_3 and S3_ 4 target a service component using the Google Firebase analytics
service and unlike with S2_ 1 the destination service component is defined.

1D Intent Malware Plays tore
53 1 | C: Custom component 11558 |93.61% 1139 |54.03%
53 o | A: Custom action 79 6.38% 421 16.64%
= | C: Custom component
53 3 A com.google.android.gms_measurement. UPLOAD 35| 1.38%
—" | C: Custom component
Az com.google.android gms.measurement. START
S C: Custom component B
Total 1237 100% 2529 100%

Figure 5.27: Explicit service intents started by a sample package

81

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

M Sibliothek,
Your knowledge hub

5.

EvVALUATION

82

5.5 Countering attacks

The above evaluation of the IPC traffic, shows that malware employs intents to execute
and facilitate malicious behavior, which can be identified by monitoring the intent traffic
during runtime by the EFW. This section discusses how firewall rules can be configured
to counteract these intents.

Component filter

To filter intents solely based on the packages involved in the communication, filter 5.28
matches all intents sent or received by the specified package, which can be used in a rule
to monitor all traffic of the respective package without interfering with the IPC traffic.
An application can be hindered from launch but still receive intents by only defining a
sender package filter in a rule set in order to block matching intents. Blocking a package
from receiving intents prevents this application’s launch since all intents sent to the
applications entry points would be blocked.

filtertype:
filter: [

1
filtertype:

field:
value:

s

{
filtertype:

field:
value:

¥

Figure 5.28: Filter matching sender or receiver package name

Device admin filter

To match device administration request intent A1 9, the filter 5.30 matches the action
and component name of the device administration request intent when started by the
specified package.

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

5.5. Countering attacks

filtertype: and,
filter: [

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

Y 3ibliothek,
Your knowledge hu

filtertype: equals,
field: senderpackage,
value: malicious.package.name

s

{

filtertype: equals,

field: action,

value: android.app.action.ADD DEVICE ADMIN
¥s

{
filtertype: equals,

field: component,
value: com.android.settings.DeviceAdminAdd

¥

Figure 5.29: Filter blocking a device admin request intent

83

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

w 3ibliothek,
Your knowledge hu

5.

EVALUATION

84

Browser URL filter

Filter 5.30 matches URIs containing a certain string when opened in the browser activity
component, and the sender package is also matched. A rule with this filter setup can be
used to block intents of type A2 1.

filtertype:
filter: [

{
filtertype:

field:
value:
Ts

{
filtertype:

field:
value:

I

{
filtertype:
field:
value:

¥s

{
filtertype:
field:
value:

b

Figure 5.30: Filter blocking a device admin request intent

Settings broadcast filter

Figure 5.31 shows a filter matching intents using the action CLOSE_SYSTEM_DIALOGS
sent by the specified package. When used in a broadcast rule this filter can block intents
of type B1_ 2.

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

w Sibliothek,
Your knowledge hub

5.5. Countering attacks

filtertype:
filter: [

1
filtertype:

field:
value:

s

{
filtertype:

field:
value:

¥

Figure 5.31: Filter blocking close settings intent

Market scheme filter
Specifying the scheme market, filter 5.32 matches all intents using the sender component
containing a data URI with this scheme, such as intents of type A3_ 1.

filtertype:
filter: [

i
filtertype:

field:
value:

¥s

1
filtertype:
field:
value:

b

Figure 5.32: Filter blocking access to market

Once discovered, all malicious intents described above can be blocked via firewall rules,
although intents started in rapid succession to screenlock the device pose a challenge.
Creating a sender component filter before installing the application package would
prohibit such an attack, although it would also prevent the application from starting,
thus preventing detection if such an attack were performed by the application without
launching the package. An automatic detection module which is specifically designed to
detect this type of behavior could thus counteract this attack.

85

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
blio
nowledge

(]
I
rk

5.

EvVALUATION

86

5.6 Screenlock attack detection module

This section discusses implementing a detection module aiming to discover and prevent
attacks involving intents from being launched in rapid succession. If activated the
detection module receives an intent during phase five of the intent processing (as described
in 4.1.4). Because the algorithm’s goal is to pinpoint packages with an irregular sending
pattern, the module first checks whether the intent stems from a package which was
already blocked from sending intents (see (D in Figure 5.33). This ensures that intents
are excluded from analysis if they have been passed to the module between when an
attack was discovered and the blocking of the malicious package. The analysis module
is thus not slowed by unnecessary processing intents. Furthermore, intents launched
by a system package are treated as trusted by the module and ignored in the analysis.
For all other intents, the analysis calculates a five-second period before the moment the
intent was received at the interface of the intent firewall, (2 and @). Afterwards, the
module queries a map of intents which retains their occurrences respective receiving
timestamp. The algorithm matches the specified action and destination component of
the analyzed intent to find its prior usages by the sender package in question. This
package is considered malicious if the query shows that 10 intents, including the one
currently monitored, were launched by the same package during the calculated time
window @. The data structure containing the information regarding previously analyzed
intents is cleaned during each query for a specific intent. To exclude intents originating
in this package from further analysis, the internal UID block list was updated). Once
a package is flagged as matching the analysis parameter of the module, a new firewall
rule is created and blocking the package from sending future intents . The amount of
10 intents over a timespan of five seconds as a metric for maliciousness was chosen for
two reasons. To detect the point where user-interaction, such as closing an unintentional
launched activity, is no longer possible, a threshold must be low enough for a human
user to respond. Even with the intents evenly clocked each 500 milliseconds, it would
be difficult for a user to react at this pace. Although this behavior could be recognized
by monitoring the occurrence of 2 intents in a window of one second, spreading of the
observation over several seconds, grants a brief temporal increase in intent emergence.
For instance, a repeatedly pressed button by a user causing a short increase in intent
communication would not trigger the algorithm unless this behavior is continued for
several seconds.

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

@ Sibliothek,
Your knowledge hub

5.7. Firewall evaluation

Check UID
status

Il
"

|
M.

®

|
L)

-p

Shr!

Register new
intent event

ol

Update UID

=)

ol

Calculate
time window

ol

Count events

~

fitting profile

Create new

system rule « status «
Figure 5.33: Makeup of the screenlock attack detection module

When the detection module blocks a malicious package, the user is informed by a
notification (see Figure 5.43) as well as by a popup after reopening the application (see
Figure 5.44). In Figure 5.45 the created system block rule can be inspected and deleted
by the user, while the event log summarizes the blocked intents by the rule (see Figure
5.46).

5.7 Firewall evaluation

To evaluate the performance of the Enhanced intent firewall, a virtual machine was
employed running Android version 5.1 with 1 GB RAM. The firewall application was
configured to contain 500 identical rules, while an additional performance evaluation
application was established to send a specific intent 1,000 times. The firewall rule
contained 21 filters, with the first 20 designed to match the performance-test intents’
values, while the last one was configured to reject the intents. This ensured that all
filter were evaluated against the intent before the firewall could decide on how to handle
the intent. Since the same makeup was used in all 500 rules, each performance test
intent required evaluation against every rule. The same configuration of the performance
test rule and intent were used for evaluating the activity, broadcast and service intents.
The makeup of the filter used in the performance test rule is shown in Figure 5.35.
Figure 5.34 shows the minimum, maximum and mean timespan required by the EFW to
evaluate one performance test intent. The mean time for evaluating intents was for all
three intent types was 2.2 milliseconds, while the maximum values for examining one
intent at 15 milliseconds remained distinctively under the human perceivable delay of
100 milliseconds [74].

87

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

EVALUATION

5.

Broadcast

0
4
g
E
=
@
o
:
5
o

1.328
2.296
10.060

0.51
2.265

8773

M inimum

2257
15.108

Mean

M aximum

Figure 5.34: Performance of EFW rules

ayiolgig uaip\ N1 e wid ul sjgejieAe si sisayl Syl Jo uoisiaa [euiblio panoidde ay
“regBnpian ¥aylolqig usipn NL Jap ue 1si uagrewoldiq Jasalp uoisianeulbLO apjonipab ausiqoidde aig

0
o0

qny a8pajmoud| INoA

Saylolqie

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
lio
nowledge

b

i
r

5.7. Firewall evaluation

{ filtertype: and

filter: [
{ filtertype: equals
field: senderpackage
value: intent.test.application.package },
{ filtertype: =squals
field: component
value: intent.test.application.package.activity },
{ filtertype: or

filter: [
{ filtertype: and
filter: [

{ filtertype: exists
field: action
value: true },
I filtertype: esquals
field: category
value: intent.test.cateoryl }]},
{ filtertype: and
filter: [
{ filtertype: equals
field: action
value: intent.test.action2 },
I filtertype: equals
field: category
value: intent.test.cateoryz }]1}1L,
{ filtertype: equals
field: scheme
value: https },
{ filtertype: or
filter: [
{filtertype: and
filter: [
{ filtertype: not
filter: { filtertype: port}},
{ filtertype: contains
field: host
value: foo 1]},
{ filtertype: and

filter: [
{ filtertype: equals
field: host

value: bar },
{ filtertype: not
filter: { filtertype: contains
field: path
value: qux}3}]}lis
{ filtertype: not
filter: { filtertype: equals
field: senderpackage

value: intent.test.application.package }}]}

Figure 5.35: Makeup of the filter in the performance test rule

89

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
blio
nowledge

(]
I
rk

5.

EvVALUATION

90

5.7.1 Performance of screenlock attack detection

To test the efficiency of the above analysis, a sample from each of the 16 malware varieties
performing a screenlock attack (as listed in 5.36), was installed on a system using the
specifications described above. As Figure 5.36 shows, the mean number of intents sent
per second by each of the samples considerably exceeds the minimum required to trigger
the detection algorithm, making the time needed to detect the attack only dependent on
the time needed by the module to process the first ten intents. Figure 5.37 lists the time
measured for the analysis as the minimum, mean and maximum value for the ten intents
analyzed by each sample, while Figure 5.38 lists the means for the three parameters
shown in Figure 5.37. Assuming the mean value of 0.021 milliseconds, the consecutive
analysis of ten intents would require 0.21 milliseconds while a conservative calculation
using the average maximum of 0.135 milliseconds would result in a duration of 1.35
milliseconds. After the intent analysis identifies a malicious package, a firewall rule is
created and deployed to block the IPC traffic of the respective package. Figures 5.39
and 5.40 show the time measured to create a new firewall rule as absolute values for
each sample package as well as the minimums, means and maximums of these values.
Although a significant difference in length can be observed with a minimum value of
2.136 milliseconds and maximum of 29.255 milliseconds, this step is only necessary
when a malicious package is found and thus has overall low impact on the modules
performance. The maximum values for the detection and blocking of an attack would
lead to a conservative overall estimation of 30.9 milliseconds. Using 100 milliseconds as
a threshold for human perception of reaction delays [74], the screenlock would be not
perceivable by the user. Although control of the device would be remain in the user’s
hand, the malicious package would continue to rapidly send intents towards the intent
firewall interface. As described in 4.1.4, rules which concern packages blocked by the
firewall are evaluated at the earliest point possible to mitigate the impact of rapid intent
traffic on the interface’s responsiveness. Figure 5.41 shows the time needed to block a
single intent by a system-created rule as the minimum, mean and maximum values for
each sample as well as their overall averages (see 5.42). With an average mean value of
0.029 milliseconds and average maximum of 0.345 milliseconds, blocking an intent by
a system-created rule is considerably faster than the evaluation of user-generated rules.
Furthermore, the performance impact on the system by the EFW repelling the attack
is negligible, while the user retains unrestricted control over the device to remove the
malicious package.

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

Y 3ibliothek,
Your knowledge hu

5.7. Firewall evaluation

Sample # Intents per minute

BankBot (variety 3)
BankBot (variety 5)
BankBot (variety 8)
BankBot (variety 7)
BankBot (variety 8)
Kaoler {variety 1)
Koler (variety 2)
Obad (variety 1)
RuMMS (variety 1)
RuMMS (variety 2)
RuMMS (variety 3)
RuMMS (variety 4)
SimpleLocker (variety 2)
SlemBunk (variety 1)
SlemBunk (variety 2)
SlemBunk (variety 4)

Figure 5.36: Mean intents per second

2725
83863
1636
7444
833.07
2898
28488
68.84
956.95
802.8
750.89
91395
1406.9
10.22
10.58
967

91

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

Y 3ibliothek,
Your knowledge hu

5. EVALUATION

Intent analysis time in milliseconds

Sample :

BankBot (variety 3) 0.000089 0.017372 0.056308
BankBot (variety 5) 0.011269 0.021797 0.456393
BankBot (variety 6) 0.010901 0.016982 0.067927
BankBot (variety 7) 0.016641 0.019918 1.197159
BankBot (variety 8) 0.012914 0.021149 1.029068
Koler (variety 1) 0.020305 0.029270 1.086133
Koler (variety 2) 0.000089 0.020388 0.476262
Obad (variety 1) 0.017320 0.021097 0.092912
RuMMS (variety 1) 0.000053 0.016490 0.043300
RuMMS (variety 2) 0.010936 0.022293 0.075293
RuMMS (variety 3) 0.0149538 0.017673 0.021841
RuMMS (variety 4) 0.015896 0.020236 0.791405
SimpleLocker (variety 2) 0.017813 0.021320 0.169727
SlemBunk (variety 1) 0.014746 0.021579 0.062652
SlemBunk (variety 2) 0.012965 0.021420 1.182842
SlemBunk (variety 4) 0.010226 0.026234 0.100280

Figure 5.37: Analysis time of intents

Parameter Time in milliseconds
Mean of minimums 0.012939
IMean of means 0021123
Mean of maximum 0.135000

Figure 5.38: Overall analysis time of intents

92

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

Y 3ibliothek,
Your knowledge hu

5.7. Firewall evaluation

Sample Block rule creation in milliseconds

BankBot (variety 3) 2.286
BankBot (variety 5) 17.026
BankBaot {variety) 29 255
BankBot (variety 7) 14.628
BankBot (variety 8) 16.242
Kaoler (variety 1) 8988
Kaoler (variety 2) 2 628
Obad (variety 1) 2290
RuMMS (variety 1) 16.796
RuMMS (varety 2) 18.349
RuMMS (variety 3) 24 077
RuMMS (variety 4) 12.351
SimpleLocker (variety 2) 17.547
SlemBunk (variety 1) 2136
SlemBunk (variety 2) 2286
SlemBunk (variety 4) 2.308

Figure 5.39: Creation time of firewall rules

Block rule creation in milliseconds

M inimum 2.136
Mean 14628
M aximum 29255

Figure 5.40: Overall creation time of firewall rules

93

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

Y 3ibliothek,
Your knowledge hu

5. EVALUATION

Intent block time in milliseconds

Sample -

BankBot (variety 3) 0.005981 0.013503 0.054227
BankBot (variety 5) 0.002925 0.013567 0.038814
BankBot (variety 6) 0.003025 0.015444 0.065348
BankBot (variety 7) 0.000035 0.029836 0.112814
BankBot {variety 8) 0.000035 0.043072 0.048926
Koler {variety 1) 0.002838 0.048258 3.466684
Koler (variety 2) 0.003076 0.034618 0.034618
Obad (variety 1) 0.000036 0.028195 0.195963
RuMMS (variety 1) 0.002955 0.005205 0.031754
RuMMS (variety 2) 0.000035 0.006677 0.097036
RuMMS (variety 3) 0.000036 0.031557 0.033209
RuMMS (variety 4) 0.000035 0.029582 0.029582
SimpleLocker (variety 2) 0.000036 0.113097 0.113097
SlemBunk (variety 1) 0.000035 0.014722 1.11558
SlemBunk (variety 2) 0.000035 0.045051 0.058247
SlemBunk (variety 4) 0.000036 0.004878 0.026048

Figure 5.41: Block time of intents

Time in milliseconds

Mean of minimums 0.001322
Mean of means 0.029832
Mean of maximum 0.345121

Figure 5.42: Overall block time of intents

94

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

5.7. Firewall evaluation

Saturday, August 1

5:47 AM

©
<
@
=
[
—
[=
[
—
c
=
@
[&]
c
L]
=
=
w

o
@
&
©
=]
=3
5
0
2
o
w
=]
(=]

e

OPEN APP

Figure 5.43: Notification of a newly created block rule

“}auioljqig usipn N1 Te ud ul s|gereAe si sisayl Syl JO UoISIaA [eulflio paoidde ay L
“JeqBnyan 3auloljqig usipn N1 Jap ue isi iagrewoldiq Jasalp uoisiaAfeulBuO apjonipalb ausiqoidde aiqg

95

qny a8pajmoud| INoA

S8ylolqie

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

EVALUATION

5.

o
9]
o
L)
@
2
o
=
]
2
=
L
o
=
E
o
©
=
o
2
°
{ =
<
=
o
o

New dos block rule for
Figure 5.44: Notification of a blocked package

“}auioljqig usipn NL e ud ul s|ge[rene si sisayl SIUl JO UOISIaA feulBblio pasoidde ay
“JeqBnyan 3auloljqig usipn N1 Jap ue isi iagrewoldiq Jasalp uoisiaAfeulBuO apjonipalb ausiqoidde aiqg

Nej
(=}

qny a8pajmoud| INoA

Saylolqie

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
lio
nowledge

b

i
r

5.7. Firewall evaluation

Ruleid: 1 DOS Block

"ruletype": "dos”,
"rulelevel”: "block",
"filter”: {
"filtertype": "package”,
"senderpackage”. "com.android.admin.center"

}

DELETE RULE

Figure 5.45: Detail view of system block rule

97

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
lio
nowledge

b

i
r

5.

EvVALUATION

98

SETTINGS RULES

EVENTS

W4 534

SYSTEM

01/08/20 | 05:32:39 - 05:33:11

RULE 1 - Intent count: 1625

Action: android.app.action.ADD_DEVICE_ADMIN
Sender: com.android.admin.center

Receiver: com.android.settings

Component: com.android.settings/.DeviceAdminAdd

01/08/20 | 05:33:11 - 05:33:41

RULE 1 - Intent count: 4521

Action: android.app.action.ADD_DEVICE_ADMIN
Sender: com.android.admin.center

Receiver: com.android.settings

Component: com.android.settings/.DeviceAdminAdd

Figure 5.46: Detail view of a system block rule event

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
blio
nowledge

(]
I
rk

CHAPTER

Conclusion

The implementation of the inter-process communication (IPC) system on the Android
platform enables misusage by malicious applications. The intent messages sent via the
IPC system may be eavesdropped on or forged by malicious applications to prey on
vulnerabilities in the implementation of benign apps. To mitigate the repercussions of
such attacks, the Android OS allows users to monitor and block intent traffic based on
rules through the system’s Intent firewall (IFW), although the capabilities and usability
of this tool limit its versatility. By employing the Xposed framework, the Enhanced intent
firewall (EFW), which is based on the IF'W'’s approach, demonstrated its capability to
compensate the shortcomings of the original implementation without requiring changes
to the operating system image beyond a rooted device. By monitoring the IPC traffic
of known malicious applications, various attacks could be observed and countered by
firewall rules without a discernible slowdown in the system’s performance. Finally, the
extensibility of the approach was shown by implementing a real-time detection module
for screenlock attacks, which showed the feasibility of the tool for detecting more complex
attacks. The screenlock detection algorithm only considers the frequency, action and
component of the sent intent as metrics for maliciousness and does not consider other
intent values. Evaluating data fields such as category or data URI allow improving the
detection capability. Another possible application for future detection modules is to
monitor the intent payload for suspicious values such as IMEI or entries from stored device
contacts and to swap this sensitive data with dummy values when certain conditions apply,
such as when these data values are passed to a server via URL parameters. Furthermore,
the application could be improved through resorting options for created firewall rules
to orchestrate rules matching the same intent from coarse to finer-grained filter rules.
Finally, while the user interface shows summarized information regarding triggered rules,
the database containing the verbose data is only accessible via a database dump. A
Ul-based export function would offer more convenient access to the collected data.

99

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
blio
nowledge

(]
|
rk

3.1

3.2

3.3

3.4

3.5

3.6

3.7

3.8

3.9

3.10
3.11
3.12
3.13
3.14
3.15
3.16
3.17
3.18
3.19
3.20
3.21
3.22
3.23
3.24
3.25
3.26
3.27
3.28
3.29
3.30
3.31
3.32
3.33

100

List of Figures

Declaring activity components
Launching an activity with an implicit intent
Launching the default activity
Launching an activity with an explicit intent
Resolving targets for an activity intent
Awaiting a result from an activity
Retrieve a result from an activity
Declaring a service component
Starting a service
Service declaring a bindero
Component declaring a connection to a service binder . .
Binding to a service
Register a receiver statically
Register a receiver dynamically
Starting an implicit broadcast
Starting an explicit broadcast
Starting an ordered broadcast L.
Starting a sticky broadcast
Starting a local broadcast,
Passing a pending intent to the alarmmanager
Sending a pending intent in an implicit intent 000
Basic rule with intent filter and component name filter . .
Fine-grained rule filtering for category and port values . .
Activity hijacking oo oL
Activity injection
Broadcast eavesdropping
Sticky broadcast eavesdropping
Ordered broadcast interruption
Ordered broadcast result spoofing
Broadcast injection
Service Hijackingo
Service injectiono

Using an pending intent to perform privileged operations

23
24
24
24
24
24
25
25
26
26
27
27
28
28
29
29
29
30
30
31
31
34
34
36
37
38
38
39
39
40
41
42
43

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
blio
nowledge

(]
|
rk

3.34

4.1
4.2
4.3
4.4
4.5
4.6
4.7
4.8
4.9
4.10
4.11
4.12
4.13
4.14
4.15

5.1
5.2
5.3
5.4
9.5
5.6
5.7
5.8
9.9
5.10
5.11
5.12
5.13
5.14
5.15
5.16
5.17
5.18
5.19
5.20
5.21
0.22
5.23
5.24
5.25
5.26

Using an pending intent to misuse privileges

Hooked methods of the intent firewall package . . .
Enhanced intent firewall
General setup of a firewall rule
Filter types and, not, or concatenate nested filter . .
Filter type string
Filter type string
Enhanced intent firewall detail
Hooked methods of the system
Intent collector setup
Data collection pipeline
Controls of the firewall applications
Overview of available firewall rules
Detail view of a firewall rule
Notification of a rule event
Detail view of aruleevent

Argus Lab malware samples - part 1
Argus Lab malware samples - part 2
Google Playstore sample categories
Processed malware samples
Successful processed malware samples per variety . .
Processed Playstore samples
Errors during sampling
Overview of sampled intents
Distribution of sampled activity intents
Distribution of sampled broadcast intents
Distribution of sampled service intents
Intents starting a system package activity
Device administration requests per sample

Distribution of samples using the device administration request

Intents starting a third party package activity
Intents starting a third party package activity

Implicit intents starting an activity of a unresolved package

Intents starting an activity of the own package . . .
Samples launching their own activities repeatedly . .

System intents starting an activity of a sample package

Intents sent by the UI Exerciser Monkey to start activities of sample packages

Implicit broadcast intents started by a sample package

Samples requesting the closing of a system dialog . .

Explicit broadcast intents started by a sample package

Explicit service intents started by a sample package
Implicit service intents started by a sample package

43

45
45
46
46
47
47
48
o1
52
53
56
o7
58
99
60

62
63
64
65
66
66
66
67
68
68
69
69
71
71
72
73
75
76
76
7

78
79
79
80
81

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
lio
nowledge

b

i
r

9.27
5.28
5.29
5.30
5.31
5.32
2.33
5.34
5.35
5.36
5.37
5.38
5.39
5.40
5.41
5.42
5.43
5.44
5.45
5.46

102

Explicit service intents started by a sample package
Filter matching sender or receiver package name
Filter blocking a device admin request intent
Filter blocking a device admin request intent

Filter blocking close settings intent . . .
Filter blocking access to market

Makeup of the screenlock attack detection module

Performance of EFW rules.

Makeup of the filter in the performance test rule

Mean intents per second
Analysis time of intents
Overall analysis time of intents
Creation time of firewall rules
Overall creation time of firewall rules . .
Block time of intents
Overall block time of intents
Notification of a newly created block rule
Notification of a blocked package
Detail view of system block rule
Detail view of a system block rule event

81
82
83
84
85
85
87
88
89
91
92
92
93
93
94
94
95
96
97
98

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
lio
nowledge

b

i
r

Bibliography

A. Sadeghi, H. Bagheri, J. Garcia, and S. Malek. A taxonomy and qualitative
comparison of program analysis techniques for security assessment of android software.
IEEE Transactions on Software Engineering, 43(6):492-530, 2017.

Erika Chin, Adrienne Porter Felt, Kate Greenwood, and David Wagner. Analyzing
inter-application communication in android. In Proceedings of the 9th International
Conference on Mobile Systems, Applications, and Services, MobiSys ’11, pages
239-252, New York, NY, USA, 2011. ACM.

Long Lu, Zhichun Li, Zhenyu Wu, Wenke Lee, and Guofei Jiang. Chex: Statically
vetting android apps for component hijacking vulnerabilities. pages 229-240, 10
2012.

Damien Octeau, Patrick McDaniel, Somesh Jha, Alexandre Bartel, Eric Bodden,
Jacques Klein, and Yves Le Traon. Effective inter-component communication
mapping in android with epicc: An essential step towards holistic security analysis.
In Proceedings of the 22Nd USENIX Conference on Security, SEC’13, pages 543-558,
Berkeley, CA, USA, 2013. USENIX Association.

Mooly Sagiv, Thomas Reps, and Susan Horwitz. Precise interprocedural dataflow
analysis with applications to constant propagation. Theor. Comput. Sci., 167(1-
2):131-170, October 1996.

Raja Vallée-Rai, Etienne Gagnon, Laurie J. Hendren, Patrick Lam, Patrice Pom-
inville, and Vijay Sundaresan. Optimizing java bytecode using the soot framework:
Is it feasible? 1In Proceedings of the 9th International Conference on Compiler
Construction, CC 00, pages 18-34, London, UK, UK, 2000. Springer-Verlag.

Damien Octeau, Daniel Luchaup, Somesh Jha, and Patrick McDaniel. Compos-
ite constant propagation and its application to android program analysis. IEEE
Transactions on Software Engineering, 42:1-1, 11 2016.

Yu Feng, Saswat Anand, Isil Dillig, and Alex Aiken. Apposcopy: Semantic-based
detection of android malware through static analysis. pages 576-587, 11 2014.

103

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
lio
nowledge

b

i
r

[10]

[11]

[12]

104

Steven Arzt, Siegfried Rasthofer, Christian Fritz, Eric Bodden, Alexandre Bartel,
Jacques Klein, Yves Le Traon, Damien Octeau, and Patrick McDaniel. Flowdroid:
Precise context, flow, field, object-sensitive and lifecycle-aware taint analysis for
android apps. ACM SIGPLAN Notices, 49, 06 2014.

Sascha Grof3, Abhishek Tiwari, and Christian Hammer. PIAnalyzer: A Precise
Approach for Pendinglntent Vulnerability Analysis, page 41-59. 08 2018.

David Kantola, Erika Chin, Warren He, and David Wagner. Reducing attack surfaces
for intra-application communication in android. pages 69-80, 10 2012.

A. Cozzette, K. Lingel, S. Matsumoto, O. Ortlieb, J. Alexander, J. Betser, L. Florer,
G. Kuenning, J. Nilles, and P. Reiher. Improving the security of android inter-
component communication. In Integrated Network Management (IM 2013), 2013
IFIP/IEEFE International Symposium on, pages 808-811, May 2013.

Sébastien Salva and Stassia Zafimiharisoa. Apset, an android application security
testing tool for detecting intent-based vulnerabilities. International Journal on
Software Tools for Technology Transfer, 17:201—, 02 2015.

Xianyong Meng, Kai Qian, Dan Lo, and Prabir Bhattachrya. Detectors for intent
ice security vulnerability with android ide. pages 355-357, 07 2018.

OWASP Mobile Security Project. Owasp mobile security project - top ten mobile
risks.

Atefeh Nirumand, Bahman Zamani, and Behrouz Ladani. Vandroid: A framework for
vulnerability analysis of android applications using a model-driven reverse engineering
technique. Software: Practice and Fxperience, 10 2018.

Li Li, Alexandre Bartel, Jacques Klein, and Yves Le Traon. Detecting privacy leaks
in android apps. CEUR Workshop Proceedings, 1298, 01 2014.

Fengguo Wei, Sankardas Roy, Xinming Ou, and Robby. Amandroid: A precise and
general inter-component data flow analysis framework for security vetting of android
apps. ACM Transactions on Privacy and Security, 21:1-32, 04 2018.

Siegfried Rasthofer, Steven Arzt, and Eric Bodden. A machine-learning approach
for classifying and categorizing android sources and sinks. 01 2014.

Michael Gordon, Kim deokhwan, Jeff Perkins, Limei Gilham, Nguyen Nguyen, and
Martin Rinard. Information-flow analysis of android applications in droidsafe. 01
2015.

William Klieber, Lori Flynn, Amar Bhosale, Limin Jia, and Lujo Bauer. Android
taint flow analysis for app sets. 06 2014.

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
lio
nowledge

b

i
r

[22]

23]

Li Li, Alexandre Bartel, Jacques Klein, and Yves Le Traon. Automatically exploiting
potential component leaks in android applications. 09 2014.

Li Li, Alexandre Bartel, Tegawendé F. Bissyandé, Jacques Klein, and Yves Le Traon.
Apkcombiner: Combining multiple android apps to support inter-app analysis. In
Hannes Federrath and Dieter Gollmann, editors, ICT Systems Security and Privacy
Protection, pages 513-527, Cham, 2015. Springer International Publishing.

Songyang Wu, Yong Zhang, Bo Jin, and Wei Cao. Practical static analysis of
detecting intent-based permission leakage in android application. pages 1953-1957,
10 2017.

A. Sadeghi, H. Bagheri, and S. Malek. Analysis of android inter-app security
vulnerabilities using covert. In 2015 IEEE/ACM 37th IEEE International Conference
on Software Engineering, volume 2, pages 725-728, May 2015.

Cong Tian, Congli Xia, and Zhenhua Duan. Android inter-component communication
analysis with intent revision. pages 254-255, 05 2018.

Rocco Salvia, Pietro Ferrara, Fausto Spoto, and Agostino Cortesi. Sdli: Static
detection of leaks across intents. 05 2018.

Yutong Chen. A static detection of inter-component communication vulnerability
in android application. In Proceedings of the 2019 International Conference on
Computer, Network, Communication and Information Systems (CNCI 2019), pages
532-537. Atlantis Press, 2019/05.

Ryo Sato, Daiki Chiba, and Shigeki Goto. Detecting android malware by analyzing
manifest files. volume 36, page 23, 08 2013.

Daniel Arp, Michael Spreitzenbarth, Malte Hiibner, Hugo Gascon, and Konrad Rieck.
Drebin: Effective and explainable detection of android malware in your pocket. 02
2014.

Ke Xu, Yingjiu Li, and Robert Deng. Iccdetector: Icc-based malware detection
on android. IEEE Transactions on Information Forensics and Security, 11:1-1, 06
2016.

Ali Feizollah, Nor Badrul Anuar, Rosli Salleh, Guillermo Suarez-Tangil, and Steven
Furnell. Androdialysis: Analysis of android intent effectiveness in malware detection.
Computers and Security, 65:121-134, 2017.

Mohamed El-Zawawy. A new technique for intent elicitation in android applications.
Iran Journal of Computer Science, 2, 02 2019.

Tristan Ravitch, E. Creswick, Aaron Tomb, Adam Foltzer, Trevor Elliott, and Ledah
Casburn. Multi-app security analysis with fuse: Statically detecting android app
collusion. pages 1-10, 12 2014.

105

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
10
edge

b

now!

i
r

[35]

[38]

106

Irina As™avoae, Jorge Blasco, Thomas Chen, Harsha Kalutarage, Igor Muttik, Nga
Nguyen, Markus Roggenbach, and Siraj Shaikh. Towards automated android app
collusion detection. 04 2016.

Fang Liu, Haipeng Cai, Gang Wang, Danfeng Yao, Karim Elish, and Barbara Ryder.
Mr-droid: A scalable and prioritized analysis of inter-app communication risks.
pages 189-198, 05 2017.

Shweta Bhandari, Frédéric Herbreteau, Vijay Laxmi, Akka Zemmari, Partha S. Roop,
and Manoj Singh Gaur. Detecting inter-app information leakage paths. In Ramesh
Karri, Ozgur Sinanoglu, Ahmad-Reza Sadeghi, and Xun Yi, editors, AsiaCCS, pages
908-910. ACM, 2017.

Amiangshu Bosu, Fang Liu, Danfeng (Daphne) Yao, and Gang Wang. Collusive
data leak and more: Large-scale threat analysis of inter-app communications. In
Proceedings of the 2017 ACM on Asia Conference on Computer and Communications
Security, ASTA CCS ’17, page 71-85, New York, NY, USA, 2017. Association for

Computing Machinery.

Hongji Song and Hua Zhang. Drfuzzer: Detector of android app inter-component
vulnerability. 01 2016.

Kimberly Tam, Salahuddin J. Khan, Aristide Fattori, and Lorenzo Cavallaro. Cop-
perdroid: Automatic reconstruction of android malware behaviors. In NDSS, 2015.

Roee Hay, Omer Tripp, and Marco Pistoia. Dynamic detection of inter-application
communication vulnerabilities in android. pages 118128, 07 2015.

William Enck, Peter Gilbert, Byung-Gon Chun, Landon P. Cox, Jaeyeon Jung,
Patrick McDaniel, and Anmol N. Sheth. Taintdroid: An information-flow tracking
system for realtime privacy monitoring on smartphones. In Proceedings of the 9th
USENIX Conference on Operating Systems Design and Implementation, OSDI’10,
page 393—-407, USA, 2010. USENIX Association.

H. Cai, N. Meng, B. Ryder, and D. Yao. Droidcat: Effective android malware detec-
tion and categorization via app-level profiling. IEFEE Transactions on Information
Forensics and Security, 14(6):1455-1470, 2019.

M. W. Afridi, T. Ali, T. Alghamdi, T. Ali, and M. Yasar. Android application
behavioral analysis through intent monitoring. In 2018 6th International Symposium
on Digital Forensic and Security (ISDFS), pages 1-8, 2018.

Raimondas Sasnauskas and John Regehr. Intent fuzzer: Crafting intents of death. In
Proceedings of the 2014 Joint International Workshop on Dynamic Analysis (WODA)
and Software and System Performance Testing, Debugging, and Analytics (PERTEA),
WODA+PERTEA 2014, page 1-5, New York, NY, USA, 2014. Association for

Computing Machinery.

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
lio
nowledge

b

i
r

[46]

[47]

[48]

[57]

Daniele Gallingani, Rigel Gjomemo, V.N. Venkatakrishnan, and Stefano Zanero.
Static detection and automatic exploitation of intent message vulnerabilities in
android applications. 2015.

Bradley Schmerl, Jeffrey Gennari, Javier Camara, and David Garlan. Raindroid:
A system for run-time mitigation of android intent vulnerabilities [poster]. In
Proceedings of the Symposium and Bootcamp on the Science of Security, HotSos 16,
page 115-117, New York, NY, USA, 2016. Association for Computing Machinery.

B. F. Demissie, D. Ghio, M. Ceccato, and A. Avancini. Identifying android inter-
app communication vulnerabilities using static and dynamic analysis. In 2016
IEEE/ACM International Conference on Mobile Software Engineering and Systems
(MOBILESoft), pages 255-266, 2016.

Shahrooz Pooryousef and Morteza Amini. Enhancing accuracy of android malware
detection using intent instrumentation. In ICISSP, 2017.

B. Khadiranaikar, P. Zavarsky, and Y. Malik. Improving android application
security for intent based attacks. In 2017 8th IEEE Annual Information Technology,
Electronics and Mobile Communication Conference (IEMCON), pages 62-67, 2017.

J. Tang, X. Cui, Z. Zhao, S. Guo, X. Xu, C. Hu, T. Ban, and B. Mao. Nivanalyzer:
A tool for automatically detecting and verifying next-intent vulnerabilities in android
apps. In 2017 IEEFE International Conference on Software Testing, Verification and
Validation (ICST), pages 492499, 2017.

John Jenkins and Haipeng Cai. Icc-inspect: supporting runtime inspection of android
inter-component communications. pages 80-83, 05 2018.

Amr Amin, Amgad Eldessouki, Menna Magdy, Nouran Abdeen, Hanan Hindy, and
Islam Hegazy. Androshield: Automated android applications vulnerability detection,
a hybrid static and dynamic analysis approach. Information, 10, 10 2019.

Xposed module repository, https://repo.xposed.info/.

Mohamed El-Zawawy, Eleonora Losiouk, and Mauro Conti. Do not let next-intent
vulnerability be your next nightmare: type system-based approach to detect it in
android apps. International Journal of Information Security, 03 2020.

Machigar Ongtang, Stephen McLaughlin, William Enck, and Patrick McDaniel.
Semantically rich application-centric security in android. In Proceedings of the 2009
Annual Computer Security Applications Conference, ACSAC 09, page 340-349, USA,
2009. IEEE Computer Society.

Sven Bugiel, Lucas Davi, Alexandra Dmitrienko, Thomas Fischer, and Ahmad-Reza
Sadeghi. Xmandroid: A new android evolution to mitigate privilege escalation
attacks. 2011.

107

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
lio
nowledge

b

i
r

[58]

[59]

[66]

[67]
[68]
[69]
[70]

[71]

108

Sven Bugiel, Stephen Heuser, and Ahmad-Reza Sadeghi. Flexible and fine-grained
mandatory access control on android for diverse security and privacy policies. In 22nd
USENIX Security Symposium (USENIX Security 13), pages 131-146, Washington,
D.C., August 2013. USENIX Association.

H. Bagheri, A. Sadeghi, R. Jabbarvand, and S. Malek. Practical, formal synthesis
and automatic enforcement of security policies for android. In 2016 46th Annual
IEEE/IFIP International Conference on Dependable Systems and Networks (DSN),
pages 514-525, 2016.

Michael Backes, Sebastian Gerling, Christian Hammer, Matteo Maffei, and Philipp
Styp-Rekowsky. Appguard — fine-grained policy enforcement for untrusted android
applications. volume 8247, 09 2013.

Michael Backes, Sven Bugiel, Sebastian Gerling, and Philipp von Styp-Rekowsky.
Android security framework: extensible multi-layered access control on android. In
ACSAC 14, 2014.

Stephan Heuser, Adwait Nadkarni, William Enck, and Ahmad-Reza Sadeghi. Asm:
A programmable interface for extending android security. In Proceedings of the 23rd
USENIX Conference on Security Symposium, SEC’14, page 1005-1019, USA, 2014.
USENIX Association.

S. Rasthofer, S. Arzt, E. Lovat, and E. Bodden. Droidforce: Enforcing complex,
data-centric, system-wide policies in android. In 2014 Ninth International Conference
on Availability, Reliability and Security, pages 40-49, 2014.

Carter Yagemann. Intentio ex machina: Android intent access control via an
extensible application hook. 2016.

Youn Kyu Lee, Jae young Bang, Gholamreza Safi, Arman Shahbazian, Yixue Zhao,
and Nenad Medvidovic. A sealant for inter-app security holes in android. In
Proceedings of the 39th International Conference on Software Engineering, ICSE 17,
page 312-323. IEEE Press, 2017.

Android API documentation implict broadcasts exceptions.
https://developer.android.com/guide/components/broadcast-exceptions.

Argus cyber security lab, https://www.arguslab.org/.

Genymotion android emulator for desktop, https://www.genymotion.com/desktop/.
Super su root, https://supersuroot.org/.

Apktool - a tool for reverse engineering android apk files,

https://ibotpeaches.github.io/apktool/.

Argus cyber security lab, https://www.arguslab.org/.

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

w Sibliothek,
Your knowledge hub

[72] Fengguo Wei, Yuping Li, Sankardas Roy, Xinming Ou, and Wu Zhou. Deep ground
truth analysis of current android malware. In DIMVA, 2017.

[73] Yajin Zhou, Zhi Wang, Wu Zhou, and Xuxian Jiang. Hey, you, get off of my market:
Detecting malicious apps in official and alternative android markets. Proceedings of
the 19th Network and Distributed System Security Symposium NDSS 2012, 01 2012.

[74] Keeping Your App Responsive. Android developers, 2020
http://developer.android.com/training/articles /perf-anr.html.

109

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

	Contents
	Introduction
	State of the art
	Static analysis
	Dynamic analysis
	Hybrid analysis
	Policy-based security tools

	Background
	Android operating system
	Intent
	Intent filter
	Activity
	Service
	Broadcast
	Pending intent
	Resolving intents
	Android intent firewall
	Intent-based attacks

	Enhanced intent firewall
	Enhanced intent firewall
	Intent collector
	Data collection pipeline

	Evaluation
	Results of data collection
	Evaluation of activity intents
	Evaluation of broadcast intents
	Evaluation of service intents
	Countering attacks
	Screenlock attack detection module
	Firewall evaluation

	Conclusion
	List of Figures
	Bibliography

