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Kurzfassung

Mit Bitcoin wurde 2008 die erste Kryptowährung veröffentlicht. Mit ihr können Zahlungen
getätigt werden, ohne einer zentralen Stelle wie einer Bank vertrauen zu müssen. Dies wird
durch einen innovativen Konsensus-Mechanismus ermöglicht, der unter der Bezeichnung
Proof-of-Work bekannt ist. Bitcoin ist noch immer die bekannteste und wertvollste
Kryptowährung. Über die Jahre sind jedoch einige Probleme offenkundig geworden, wie
z.B. der hohe Energieverbrauch und der niedriger Transaktionsdurchsatz. Um das Jahr
2016 kam eine neue Art von Protokollen auf, welche versprach diese beiden Probleme
gleichzeitig zu lösen. Diese Protokolle basieren auf dem Proof-of-Stake (PoS) Mechanismus
und verwenden gerichtete azyklische Graphen als Datenstruktur. Da es sich hier ebenfalls
um Währungen handelt, spielt Sicherheit eine zentrale Rolle. Dies wirft die Frage auf,
wie sicher Protokolle dieser Art wirklich sind.

Diese Arbeit trägt zur Beantwortung bei, indem Hashgraph im Detail analysiert wird.
Hashgraph ist ein vielversprechender Vertreter dieser Protokollart. Die verschiedensten
Sicherheits- und Performanceangaben des Protokolls werden mithilfen eines im Zuge der
Arbeit entwickelten und veröffentlichten Simulators überprüft. Der Simulator ermöglicht
es, das Verhalten des Protokolls unter vier verschiedenen (Angriffs-)Szenarien zu unter-
suchen. Er bietet dazu umfangreiche Konfigurationsmöglichkeiten an, welche unzählige
verschiedene Verläufe ermöglichen. Akteure/Akteurinnen agieren zufällig basierend auf
einem veränderbaren Parameter, der Reproduzierbarkeit gewährleistet. Der Simulator
selbst verfügt außerdem über eine grafische Benutzerobefläche, wobei Ergebnisse auch als
Text-Dateien für weitere Analysen exportiert werden können.

In keiner einzigen von tausenden Simulationen wurde der Konsensus-Mechanismus von
Hashgraph gebrochen. Basierend auf der Tatsache das Nachrichten zur Synchronsiation
beliebig schnell und an beliebige andere Knoten gesendet werden können, kamen jedoch
Schwachstellen zu Tage. Diese Arbeit zeigt auf, dass es möglich ist eine widersprüchliche
Transaktion zu einer bereits existierenden zu veröffentlichen und diese schneller bestätigt
zu bekommen. Weiters wird belohnt, wer Synchronisationen zuerst mit ganz bestimmten
Knoten durchführt, was zu einer Überlastung dieser Knoten führen kann. Die präsentierten
Ergebnisse zeigen, dass diese Protokollklasse tatsächlich das Potential besitzt, zwei der
grundelegenden Probleme von traditionellen Kryptowährungen zu lösen. Die Möglichkeit
von Nachrichten-Spam im System kann dies jedoch zunichte machen und ist ein wichtiger
Punkt in der Bewertung solcher Protokolle.
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Abstract

Bitcoin, the first cryptocurrency was published in 2008 and featured a new way of reaching
consensus amongst a set of participants without the need to trust any central authority.
It achieved this by introducing a novel consensus mechanism based on Proof-of-Work.
Bitcoin is still the most valuable and famous cryptocurrency, but some limitations became
more and more noticeable over the years – two of the major ones being high energy
consumption and low transaction throughput. Emerging around 2016, a new class of
protocols based on Proof-of-Stake (PoS) and using a Directed Acyclic Graph (DAG) as
data structure, promises to solve both of these shortcomings at once. As security is
crucial, carefully looking at the security properties of any new protocol family before
adopting it, is necessary. This leads us to the following question: How secure are these
protocols really?

This thesis contributes to answering this question by reviewing existing designs in this
field and analysing Hashgraph, a promising protocol which combines a PoS mechanism
with a DAG structure, in detail. We developed and published a simulator which makes
it possible to look closely at the security and performance claims of the protocol under
different attack scenarios. It supports simulating adversarial behaviours which we call
fork, race and split attacks as well as an honest scenario for comparison. For all of them,
numerous configuration options and scenario specific settings are offered. All simulations
are executed in a reproducible way based on a configurable seed value. Results can be
examined either in a graphical user interface or exported for further analysis.

Hashgraph proved resilient against all attempts of breaking the protocol’s security over
thousands of simulation runs, featuring all supported attack scenarios. Nevertheless, some
weaknesses became apparent in regard to the protocol allowing everybody to perform
syncs as fast as possible. Publishing a conflicting transaction to an already existing
honest one and getting it finalized earlier could be shown. Additionally, the protocol
encourages flooding high stake participants with syncs, leading to the possible effects
of unintentional Distributed Denial of Service attacks. Our findings show that PoS
DAG protocols have the potential to solve two of the major limitations of traditional
blockchains, but before adopting them, one needs to specifically check for mechanisms to
prevent message spamming or a lack thereof.
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CHAPTER 1
Introduction

In 2008 a decentralized peer-to-peer currency system called Bitcoin [Nak08] was intro-
duced. It laid out how a distributed consensus can be reached by a varying amount
of participants without any central authority and without the need to trust any single
participant. This was possible through the introduction of a revolutionary consensus
algorithm which relies on the concept of Proof-of-Work (PoW).

In a nutshell, transactions are grouped into blocks and each block references its prede-
cessor, forming a blockchain. Miners extend this chain by publishing new blocks whose
creation requires solving a computational intensive hash puzzle. Everybody can verify the
hash puzzle result, thus a new block can be seen as a proof that work into the stability of
the system was performed (PoW). If forks appear, the chain with the highest accumulated
difficulty target is considered valid and provides a total order over transactions. The
underlying idea is, that as long as 50 percent of the hashing power are controlled by
honest nodes, one chain (the valid one) grows faster than any fork. This mechanism
enables the currency to stay fully decentralized but also introduces some limitations. Two
major ones are energy consumption and transaction throughput. In Bitcoin, the difficulty
of the hash puzzle is adapted so that one block is published roughly every 10 minutes.
Thus, adding more computing power to the network means more energy consumption
while transaction throughput remains constant. The exact energy consumption can only
be estimated, but a minimal value was determined by Li et al. [LLP+19] under the
assumption that everybody uses the most efficient hardware available for the job. They
found out that at least 23 Terawatt-Hours (TwH) were consumed to operate Bitcoin in
2018. Das and Dutta [DD20] reference an annual energy consumption of about 52 TwH
for 2018. To put that into perspective, this is more than the total energy consumption
of many nations worldwide. For example, Costa Rica (51,5 TwH) or Latvia (49,3 TwH)
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1. Introduction

consumed similar amounts of energy in 20181.

A very popular way to reduce energy consumption to a minimum is getting rid of
the PoW concept as a whole. Instead of working on hash puzzles, consensus can be
reached through a voting system based on stake (e.g. the amount of coins a participant
owns). Many new protocols evolved around that idea, like Algorand [GHM+17] or Snow
White [DPS16]. This systems are considered to be Proof-of-Stake (PoS) cryptocurrencies.
In PoS systems, time is often divided into slots and leaders are determined in every slot
who are allowed to publish a block. Then, consensus is reached on published blocks
over multiple voting rounds. Voting and leader selection usually happens randomly but
heavily depends on one’s stake.

Through their different structure, most PoS cryptocurrencies already improve trans-
action throughput, the second major problem we want to consider. However, there is still
a lot of room for improvement if we compare transaction throughput to fiat currency
systems. For example, VISA (one of the leading payment providers) processes more than
1700 transactions per second on average2. In contrast, if we look at bitcoin we not only
see a block creation limitation, but also limits to the block size itself. Since 2017, blocks
are measured in weight units, effectively limiting block size to around 2-4 MB depending
on the content. Also, work might be wasted on blocks which do not end on the main
chain and are thus discarded. One possibility for that to happen are two blocks mined
from different participants at nearly the same time as a result of the stochastic process.
This all together results in 3-7 transactions per second3.

Since about 2016, the idea of replacing the underlying chain/tree data structure with
Directed Acyclic Graphs (DAGs) emerged, as protocols like IOTA [Pop18], Nano [LeM17]
or Spectre [SLZ16] show us. Instead of referencing a single predecessor block in a chain
or tree, a newly mined block usually references multiple (or all known) tips of the current
graph. Then an algorithm must determine an ordering over all blocks in a decentralized
manner. If two conflicting transactions occur, only the first one is considered valid. One
of the underlying ideas is to allow the publication of multiple blocks at the same time,
which greatly increases transaction throughput if they are all eventually incorporated
into the (final) ledger.

Combining the concepts of PoS and DAGs in a cryptocurrency promises to solve two
major weaknesses of current systems. However, each new mechanism, algorithm and

1units converted from Quad British thermal units to TwH (1 Quad Btu = 293,07 TwH), data
obtained from the U.S. Energy Information Administration, accessed 13.10.2020: https://www.eia.
gov/international/overview/world

2calculated using the number of 150 million processed transactions per day published on the VISA
website, accessed 9.10.2020: https://usa.visa.com/run-your-business/small-business-
tools/retail.html

3Bitcoin Magazine, accessed 9.10.2020: https://bitcoinmagazine.com/what-is-bitcoin/
what-is-the-bitcoin-block-size-limit
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their combination in an own protocol leads to the appearance of new attack surfaces.
Additionally, there already exist many attacks on different types of blockchain systems,
which might also pose a threat to any new protocol. As we are talking about a currency
here, it is crucial to identify such possible weak points in these PoS DAG cryptocurrencies.
And exactly that is the main motivation behind this thesis. The goal is to pick one
of the most promising PoS DAG cryptocurrency and identify possible weak spots for
this specific protocol. For that to work, its resilience against attacks must be probed
in a structured way. Therefore, a simulator was developed which supports different
attack scenarios and executes the chosen protocol in a randomized but reproducible way.
Evaluating these simulations then points to possible weak spots.

The necessary steps to reach this goal are brought to paper in this thesis in the following
structure: In Chapter 2 we go into detail on our research questions and the approach to
answer them. Chapter 3 is about the current state of the art, where we analyze PoS DAG
protocols and find answers to questions like "What are the mechanisms in traditional PoS
protocols? Are there cryptocurrencies which already use DAG structures in any form
and what can we learn from them? What are the most common attack surfaces, which
might also be applicable to PoS DAG protocols?" by looking at related work. Chapter
4 then covers the details of how the simulator was implemented based on the chosen
protocol. It also gives an overview over the supported scenarios and settings. Chapter 5
is all about evaluating and discussing the results of our simulation runs. The thesis ends
with a conclusion and an outlook on possible future work in Chapter 6.

3





CHAPTER 2
Research Issues and Approach

Since 2008, thousands of cryptocurrencies were launched. The website CoinMarketCap
lists more than 7400 different ones and their accumulated value in US dollars lies around
362 billion dollars1. If we look at the top five cryptocurrencies ranked by price per unit
(namely Bitcoin, Ethereum, Bitcoin Cash, Bitcoin SV and Monero), we can see that
all five of them use a PoW consensus mechanisms. However, that will change in the
future as Ethereum (the second largest cryptocurrency) already announced that their
consensus model will be changed to PoS step by step2. There are multiple reasons for that
switch, two of the main ones being high energy consumption and the goal of increasing
transaction throughput. In regard to increasing transaction throughput, just switching
to PoS does not go far enough. Therefore, Ethereum adds sharding as another measure.
These changes have been in the works since 2015. All that underlines the relevance of
research about combining low energy consuming consensus methods like PoS and ways
to increase transaction throughput even further (e.g. by using DAG data structures).
Additionally, the net worth highlights how crucial the security of such systems is.

2.1 Research Issues
New blockchain protocols promising better security, higher transaction throughput or
novel features are presented on a regular basis. As we found out, already more than 7400
exist. Whenever a new cryptocurrency is launched or a paper describing a new concept
is published, one must always ask the same question: How secure is this new piece of
technology really? And that is the major research question of this thesis. How secure are
PoS DAG protocols really?

1data from 14.10.2020: https://coinmarketcap.com/
2CoinMarketCap website, accessed 14.10.2020: https://coinmarketcap.com/alexandria/

article/a-dive-into-ethereum-2-0
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2. Research Issues and Approach

We focus on PoS DAG protocols in this thesis, as they promise to solve the two major
problems of energy consumption and transaction throughput with one strike. Other
known measures (e.g. sharding) can additionally be applied on top, improving the
respective protocol even further. Another reason to focus on this type of solution is, that
it provides the potential to keep all transactions in the underlying data structure instead
of doing some work off-chain to reduce pressure on the protocol. Decentralization is one
of the defining characteristics of cryptocurrencies. We do not want to loose this property
while solving the open challenges.

There exist propoosals for DAG protocols using PoS which fulfill our requirements
and we discuss them in detail in Chapter 3. These papers promise better transaction
throughput than many other cryptocurrency protocols while claiming to be as stable and
secure as them. More nuanced questions arise around these claims:

• What are the conditions under which the claims are true? Protocols
usually define an adversarial model under which they claim to be secure. On the
one hand, crucial requirements are defined for the system like a known participant
size. On the other hand, there might not exist the information of how a specific
implementation of such requirements can look like. Sometimes there even exists an
implementation but the source code is not public. That is the reason why finding
out which conditions are necessary and how they can be reached in practice are so
important from a security perspective. Otherwise an actual implementation can
torpedo the underlying security guarantees, which leads us to the next question.

• Do the stated security claims hold under different attack scenarios? The
state of the art is evolving continuously and certain defence mechanisms against
known attacks could have been already incorporated into the protocol in its design
phase. There might also exist attacks which were not known or considered. To
be able to make a statement about the security guarantees of a system, it is
necessary to probe claims under different attack scenarios. Also, every combination
of mechanisms or the introduction of completely new algorithms leads to some new
and unique conditions. New attack surfaces might be opened up.

• Do the stated performance claims hold even on being under attack?
When performance tests are provided, they often only consider the system under
laboratory conditions without any malicious participants. These tests can provide
valuable measurements for best case scenarios. However, it is also necessary to
have a closer look at how the system performs during malicious activity. Protocols
specially prone to attempts of slowing them down might not be suitable for the
real world.

Last, it has to be mentioned that it is out of scope for this thesis to answer this questions
for all existing PoS DAG protocols. Instead, a more directed approach is followed. This

6



2.2. Methodology and Approach

thesis gives an overview over different protocols of that category and then focuses on a
deeper analysis of one of the most promising candidates.

2.2 Methodology and Approach
In order to address the stated research issues and to determine the protocol under test in
the first place, the following methodological approach was applied step by step:

• Identification and analysis of PoS DAG protocols: Identifying the PoS
cryptocurrency protocols that use DAGs as a data structure is the first step.
Candidates must be identified and compared based on how promising they are.
Thereby it has to be checked what implementations already exist or are planned.
Are certain protocols backed by multiple research institutions or companies of the
industry? Moreover, it has to be checked if there exist claims that were already
refuted by other research papers. The chosen candidate must be analysed in greater
detail.

• Literature Review: The literature review should provide the necessary context
to fully understand the PoS DAG protocols and the current state of the art around
them. It includes looking at how traditional PoS systems work as well as looking at
other non-PoS DAG protocols. Additionally, already existing simulators for testing
the security of cryptocurrency protocols must be identified. Another part of the
literature review is to identify typical attacks on PoS and PoS DAG systems or
derive new ones based on the existing research. This guarantees a good knowledge
foundation for a successful own development in the next step.

• Attack scenarios and simulator development: Through the last two steps, a
deep understanding of the chosen candidate and possible adversary scenarios are
given. Now, attacks must be chosen to assert the security claims of the candidate.
A simulator is developed that builds up the DAG data structure in a randomized
way in accordance to the protocol descriptions. The randomization must be based
on a seed for reproducibility reasons. This simulation must be possible for every
attack scenario.

• Evaluation and discussion: With the developed simulator it is now possible to
validate the security claims of the candidate protocols. Moreover, the simulator
helps to evaluate if other claims (e.g. regarding performance) can hold under the
different attack scenarios. As a final step, the results are discussed.

7





CHAPTER 3
State of the Art

This chapter discusses the current state of the art in terms of cryptocurrency protocols.
They are grouped together into different categories, based on their consensus mechanism
and underlying data structure. It has to be mentioned, that way too many protocols
exist to discuss all of them here. However, the ones here are carefully chosen to give
an overview over widely used mechanisms and under which conditions they work in a
secure way. This chapter also covers different attack scenarios and other already existing
simulators for cryptocurrencies.

3.1 PoS DAG protocols
This section contains different PoS DAG protocols which can be chosen as candidates
according to the criteria defined in Chapter 2.

3.1.1 Hashgraph
When we talk about Hashgraph we have to differentiate between The Swirlds Hashgraph
Consensus Algorithm [Bai16b, Bai16a] and Hedera Hashgraph [BHM19], the cryptocur-
rency which was built based on the consensus algorithm. This appears to be a very
promising candidate for detailed investigations as it is backed by very big and influential
companies like Google, IBM, LG and Boeing1.

The Swirlds Hashgraph Consensus Algorithm

The Swirlds Hashgraph Consensus Algorithm [Bai16b, Bai16a] (from now on just referred
to as Swirlds-Consensus) is a Byzantine fault tolerant algorithm which reaches consensus
on a topological ordering of blocks within a DAG. We will first look at how its base data

1Hedera Hashgraph website, accessed 3.9.2020: https://www.hedera.com/council
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3. State of the Art

structure looks like and how the algorithm works, before adding a PoS component to it.
The base structure of Swirlds-Consensus are single chains of events per node (every
participant is a node). These events also reference events on chains of other nodes and
thus connect these chains, forming a single DAG. A single event can be the result of a
node A telling another node B everything it knows so far. In general, an event represents
some information change in the chain of a single node, like submitting a new transaction
or getting new information from another node and is therefore also called gossip event.
Each edge between two events of different chains is the process of syncing the information.
Each of the nodes is performing this synchronization process continuously. It selects a
random other node and performs a gossip-sync with it. Afterwards, another random
node is chosen by both of them, leading to new information being spread exponentially
fast. The whole DAG is basically a history of how the members have communicated with
each other. An example for such a DAG can be examined in figure 3.1.

Figure 3.1: Hashgraph: gossip history as a directed graph [Bai16b]

Every edge is representing a gossip-sync, where one node is providing another node
its locally built DAG. For example, when node Alice is telling node Bob about a new
transaction, node Bob also gets the information when node Alice first learned about the
transaction and from whom. This ultimately leads to each node being able to see the
same DAG of events locally.

However, it is not enough for every node to have the same DAG locally, as it is also
necessary to agree on the same topological ordering of the events. Other Byzantine
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3.1. PoS DAG protocols

fault tolerance protocols solve that by nodes sending each other votes over potentially
multiple rounds and eventually agreeing on an order. Swirlds-Consensus does the same
but without sending the votes over the network. When each node sees the same base data
structure, everyone can calculate how the other participants would vote and therefore
reach consensus without communicating any further. It has to be noted however, that
the local DAGs of nodes are not completely equal at any given time. They mainly differ
in very recent events, or events that should be placed further down in the graph but
were emitted later to the other participants. Additionally, they differ if a malicious node
sends conflicting information to other nodes. For example, a malicious node can create
a fork and communicate different events to other nodes (events of other nodes cannot
be forged without their private key as all events are signed). The attack model of the
protocol states that an adversary can stop messages from getting to specific nodes but
eventually needs to let a message through. It is therefore only a matter of time, until a
node recognizes the fork. If there exists a fork, then all involved and later events of that
node are excluded from participating in the consensus mechanism. Swirlds-Consensus
itself does not impose any timeout for all of this to happen. Over time, every event gets
a final timestamp assigned which results in a total ordering of all events. The protocol is
built in a way, that once any honest node assigned such a final timestamp to an event
locally, all other honest nodes either have already assigned the same timestamp or will do
that in the future. The whole process happens in multiple steps and is always triggered
when a node creates or learns about new events.

Every node calculates the total order of events over multiple election rounds. First
of all, a round number is assigned to each event. Starting from the genesis events, all
events up each individual chain are included into the first round until events are reached
that can strongly see 2n/3 nodes, where n is the total number of participating nodes.
These events are not included in the same round anymore. An event sees all its ancestors.
An event strongly sees another event, if it can see 2n/3 different nodes which can also
see the event. This process is then repeated for the remaining nodes until every node
has a round assigned to it. Now, witnesses are chosen within every round. The event
created first of every node in the current round is considered to be a witness. Next, for
each witness it is decided if it is a famous witness. A witness of round r is considered
famous, if it can be strongly seen by 2n/3 witnesses of the round r + 1. If the vote is
too balanced, the voting procedure continues for as many rounds as necessary until a
consensus is reached if a witness is famous or not. Witnesses always look at the votes
of the witnesses of the round before and if they cannot decide famousness, set their
own vote according to the majority of votes they recognized. In theory the vote could
be too balanced forever. However, Swirlds-Consensus guarantees to come to a result
with probability 1. To achieve that, coin rounds are introduced. Every c rounds, if a
witness cannot decide famousness, it votes randomly instead of voting with the majority
of witnesses it can strongly see of the round before. Voting randomly means deriving the
vote from the middle bit of the event’s signature.

11
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Once this famous witnesses are decided, a round received value and a timestamp can
be calculated for every not yet decided older event. There is at most one famous wit-
ness per node chain in a round. (If there are more, both are not considered famous
witnesses.) The round received value is the lowest round number in which all of these
famous witnesses can see the event. To get the timestamp for an event x, every node
looks with which event y it has learned the first time about x within the ancestors of
the respective famous witness. The creation timestamp of y is then considered as the
receiving time for event x for the node with the famous witness. The global receiving time
for that event is simply the median of all that timestamps. Now, everything needed for a
topological ordering of all events is known. First, events are sorted after their assigned
round number. Events of the same round are then sorted by the receiving time we just
calculated. If there are still ties, events are sorted by a procedure based on their signature.

The security of the whole process is tied to the parameter n. Every node needs to
know this global value, as it enables each node to know when it sees enough of the graph
to decide on the final timestamp of an event and not earlier. This ensures that once a
decision about the final timestamp of an event is made by a node, all other honest nodes
will agree on that as well.

In its base form Swirlds-Consensus considers every node as equal and does not give any
information about how to handle changing node numbers. However, a change is proposed
by introducing some kind of stake and weighting votes proportional to the stake of voters.
This implies that median calculation must be adapted to calculate a weighted median of
all nodes. That means that every time the phrase "more than 2n/3 nodes" was used, it
should then be "nodes owning more than 2n/3 of the stake" instead, where n represents
the total number of involved stake tokens. Swirlds-Consensus gives multiple suggestions
what stake could be. One would be a node’s coins. Another one is stake assigned to
a group of members with mutual trust which can be delegated according to a specific
rule set. Anyway, the stake record can change and the protocol must be able to handle
that. Once it is decided for all witnesses of a round if they are famous or not, it is clear
which events of earlier rounds get a received round and a final timestamp assigned. If one
of this newly finalized events contains transactions which change the stake record, the
whole algorithm needs to be rerun for other events of the current and future rounds. This
might change round numbers and (famous) witness status of events. Swirlds-Consensus
only sketches out this handling of stake and does not provide any specific algorithm or
pseudo code for it.

Hedera Hashgraph

Hedera Hashgraph states in its whitepaper [BHM19] that it is a public network based
on Swirlds-Consensus, making it to a PoS cryptocurrency using the presented DAG
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structure. The mainnet went online in December 20182. Hedera Hashgraph is not fully
rolled out yet and still under development. It is also not open source and controlled by a
government council of up to 39 leading global enterprises. This council governs the code
base and should ensure stability as well as that the platform follows legal obligations and
regulations. It is planned that government members serve limited times and have equal
votes to avoid centralized control.
Hedera Hashgraph lies out multiple phases for scaling the cryptocurrency. First, there is
a permission based setting with the government council controlling all nodes participating
in the consensus algorithm and only a few coins are given out to other participants. Step
by step, more trusted nodes are included into the consensus algorithm and more coins
are distributed. In the end, coins should be widely distributed and everybody is able to
participate in the consensus algorithm, thus replacing the permission based setting with
open consensus.
The whitepaper presents mainly high level descriptions of how the protocol solves
the issues of converting the Byzantine agreement Swirlds-Consensus into a functional
cryptocurrency. The project itself will never be open source, but it was promised that
Version 1 of the source code will be published for reviewing within 2020. This promise
was kept when the source code was published in October 20203. Until it was extensively
reviewed, all the information must be taken with a grain of salt, as the whitepaper itself
contains the following lines:

It constitutes general information only and may be updated. It also contains
forward-looking statements that are based on the beliefs and intentions of the
authors, as well as certain assumptions made by and information available to
them. [BHM19]

PoS mechanism

Every node that actively participates in the consensus network can stake its own coins.
Every owner of coins who does not operate an own node can proxy stake coins to node
operators. All staked coins together are the total weight and every participating node
has a weight according to its staked and received proxy staked coins. Users pay three
different types of fees. First, they pay a node fee directly to the node which transmits
their transaction in an event to the network. A network fee must be payed for validating
the transaction and reaching consensus on it, which depends mostly on the transaction’s
file size and the number of involved signatures. Last, a service fee compensates nodes for
ongoing burden, for example for file storage transactions. The latter two are paid into a
special Hedera Treasury account and every 24 hours participating nodes receive a portion
of the collected amount as reward payments. Rewards are only distributed to nodes
which took part for the whole duration since the last reward payment and published an

2hedera website blog, accessed 7.9.2020: https://www.hedera.com/blog/hedera-hashgraph-
launches-mainnet-early-access-program

3source code on Github, accessed 8.1.2021: https://github.com/hashgraph/swirlds-open-
review

13

https://www.hedera.com/blog/hedera-hashgraph-launches-mainnet-early-access-program
https://www.hedera.com/blog/hedera-hashgraph-launches-mainnet-early-access-program
https://github.com/hashgraph/swirlds-open-review
https://github.com/hashgraph/swirlds-open-review


3. State of the Art

event in most rounds (there are hard limits implemented). Everybody can transfer own
coins which are staked at any time, but due to the reward mechanism looses a portion of
the own profit when doing that. That basically means that one can loose nothing while
getting rewarded when (proxy) staking coins for a long enough time period. The idea is
that most coins are staked, making it harder for an attacker to possess more than 1/3 of
the stake. Additionally, mining strategies that diverge from the norm do not increase
one’s income, as income is spread evenly over all nodes based on stake alone.

In the Swirlds-Consensus section we noted, that the security of the system depends on
the knowledge of how many participants exist in a round. Here, stake is based on coins
and can change at any time. This all results in the need of mechanism to know the exact
participant number at any time. This is ensured through signed state proofs. Every node
maintains a copy of the state (including public keys of all participants and their coins)
and updates it at the end of every round by processing all newly decided transactions.
This state can be seen as an address book, containing all participants. It also references a
history of former address books reaching back to the genesis address book, each signed by
enough nodes of the address book before. After updating, the state is signed and gossiped
to all the other nodes. Every node collects all the incoming signatures. Signatures of
nodes controlling more than 2/3 of the stake must be collected for this new address book
to be valid. Then, every node can prove to any client that their state is correct.

Performance

Due to always knowing the current state of all accounts, Hedera Hashgraph does not
need to consider older rounds of which all events already got a final timestamp assigned
and thus does not have to keep them in memory. This is a huge difference to most other
cryptocurrencies which often need to store the whole history back to the genesis event,
to be able to approve if a transaction is valid. Moreover, all published events get a final
timestamp assigned eventually and thus no events are discarded as it is the case in many
other cryptocurrencies. Additionally, publishing new transactions is only limited by the
actual network bandwith.
Performance tests were made which claim that Hedera Hashgraph can reach consensus
on every transaction under a load of 50 000 transactions per second in around 10
seconds, assuming 64 nodes are participating in 8 different regions spread all over the
world. However, these tests cannot be considered indicative enough because of multiple
reasons. First, all transactions were only 100 bytes big including no signatures at all. No
transactions were processed, only consensus calculation was tested. Hedera Hashgraph
even states, that including signatures would result in the need of processing power to
validate hundreds of thousands of digital signatures per second. Also, handling Smart
Contracts or file storage transactions would need way more bandwith. And last, it is
planned that the network should support millions of nodes and not just 64. However,
in June 2020 a company operating on the (at that time in terms of participants and
functionality limited) mainnet reports a transaction throughput of 1372 per second. So,
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throughputs unimaginable for other cryptocurrencies can be reached4. It has to be noted
though, that the scenario is still far from real world conditions that can be expected once
the last phase of the Hedera Hashgraph deployment is reached.

Functionality

Hedera Hashgraph provides four different types of functionality. First, it is a cryptocur-
rency with low transaction costs. Estimated fees for simple transactions lie below 1 cent
per transaction. Second, Smart Contracts can be published and executed on the platform.
For writing Smart Contracts the programming language Solidity is supported, which is
also used by the popular PoW cryptocurrency Ethereum [Eth]. Third, a file service is
included which allows users to store data for a specified amount of time and benefit from
a consensus timestamp on the data. Fees heavily depend on the size of the stored data.
The fourth functionality provided is a consensus service, which is not fully implemented
yet. It basically provides an ordering over events and can be used by external applications
to order anything. The whitepaper lists a decentralized stock market as an example,
where the consensus service ensures decentralization and fairness. Fairness means that
the transaction are ordered based on reaching nodes which posses more than 2/3 of the
total stake first. This cannot be influenced heavily, as the distribution happens based on
the gossip protocol. One can only invest in a better internet connection to transmit a
transaction to the initial node faster. One can also publish the transaction to multiple
nodes, but only the fastest spreading one is considered valid then. However, in that case
submission fees must be payed for all of them.
As nodes participating in the consensus do not store the history, so called mirror nodes
must step in for providing the results. Mirror nodes are nodes participating in the
gossiping part of the Swirlds-Consensus, but they never vote and they cannot publish
new transactions. Mirror nodes store either the whole graph or a filtered subset of
transactions based on a topic string which can be added to every transaction. Mirror
nodes can be configured/programmed individually in regard of how they handle that
data. For example, it can be forwarded automatically to another application or stored in
a database responding to requests from external systems via a web interface.

3.1.2 Nano
Nano [LeM17] is another cryptocurrency utilizing a DAG data structure. An implemen-
tation was launched in autumn 2015 and it focuses solely on being a fast and simple
payment system. It does not provide any Smart Contracts support. Regarding available
information, one must be careful here as the original whitepaper [LeM17] is outdated and
one has to look at the living whitepaper [lw20] to get up to date information. In Nano,
every account has its own blockchain where each block consists of only one transaction.
Every transaction references its predecessor on the respective chain and only the owner of

4Hedera Hashgraph website, accessed 7.9.2020: https://www.hedera.com/blog/adsdax-
achieves-1372-cryptocurrency-transactions-per-second-on-hedera-hashgraph-
with-zee-entertainment-enterprises-sets-new-industry-record
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Figure 3.2: Nano DAG data structure [LeM17]

the account can add more transactions to it. To send money from one account to another,
the sending account includes a send block into its own blockchain and broadcasts it to
the network. The transaction is now considered unsettled until the receiving account
adds a receive block to its own blockchain. The receiver thus has full control over the
order of transactions within its own blockchain. The result is the DAG data structure as
depicted in Figure 3.2.

Blocks are finalized by a procedure called Open Representative Voting (ORV). This is
where stake comes into play. Participants vote yes or no on a block they receive based
on if they consider it valid. Votes are weighted based on the stake (amount of coins) one
owns. Participants can freely delegate their voting power to other participants and change
their mind at any time (by issuing a special transaction). To speed up decisions, Nano
only allows nodes to vote which posses 0.1 percent of the total weight or more, effectively
limiting the maximum number of voting participants to 1000. Every participants finalizes
or rejects blocks once they see enough valid broadcasted votes. The value of "enough" is
specified locally on client side, but the default value is more than 50 percent of online
vote weight. There is no further explanation available within the whitepaper what online
specifically means and how one can determine this value. Once a transaction is finalized
(by each node on its own), it is irreversible (also called cemented). This definition leads
to some open questions, as the security of this protocol part stands and falls with how
online is defined and determined. Furthermore, by only looking at these whitepapers it
remains completely unclear how changing stake influences finalization. Remember, every
participant can delegate its voting weight at any time by issuing a specific transaction.
Furthermore, other transactions might also change the stake distribution before a vote
ends.
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So far we have examined the system under the assumption that everybody behaves
honestly. However, a participant can try to perform a double spend by issuing transac-
tions that reference the same parent and thus represent a fork. There exists an empty
subsection for fork handling on the page of the living whitepaper about the ORV me-
chanic5 which leads to more questions like "Does there exist a special fork handling or is
the normal ORV voting sufficient?".

A big advantage but also a potential problem is, that there exist no transaction fees
in Nano. This is an advantage for users, but leads to a lack of monetary incentive for
people to host full nodes to participate in the consensus algorithm. Second, transactions
can be issued without any cost, opening a huge potential for malicious activity in form
of spamming. To protect against spamming, Nano forces participants to solve a PoW
hash puzzle for issuing a transaction. This protection is not sufficient as hashes can be
pre-computed and a processor from the year 2014 like the Intel Core i7 4790K AVX2 can
compute such a hash every three seconds according to the original whitepaper [LeM17].
This transaction flooding attack is known and referenced in the living whitepaper, as well
as multiple attacks that enable an adversary to waste resources of other participants.

To sum up, supportive to the idea of considering Nano a valid candidate is that an
implementation exists and is actively used. On the other hand, many functional questions
with huge impact on the system’s security remain unaddressed after studying the available
information in the whitepapers. Furthermore, multiple unsolved security flaws are known.

3.1.3 Avalanche

The authors of Avalanche introduced a family of leaderless Byzantine fault tolerance
consensus protocols, each built atop of the former one, ultimately creating Avalanche
[RYS+20]. It is another DAG based consensus protocol for cryptocurrencies. The paper
itself lies out the consensus mechanism and although there exists a test system, it does
not describe the mechanics of a fully autonomous peer-to-peer payment system. It also
does not contain a specific PoS mechanism, but is still seen as a viable candidate as it
explicitly states that it recommends to adopt an already established PoS mechanism for
sibyl control, which it claims to be able to incorporate.

Avalanche builds upon the protocol Snowflake, whose core is the metastable voting
mechanism. It is a mechanism to decide between two conflicting states. On receiving a
transaction, a node asks a set of k (configurable protocol parameter) randomly chosen
other nodes about their opinion on the validity of the transaction. A node incorporates
its own yes or no vote into the request message. Other nodes that have no opinion about
this matter yet just accept whatever the querying node suggests, replying the accepted

5section accessed 20.12.2020: https://docs.nano.org/protocol-design/orv-consensus/
#fork-resolution
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Figure 3.3: Deciding validity of transactions based on the metastability [RYS+20]

value as their answer and start querying other nodes themselves. Nodes that already have
an opinion reply according to it. Every node decides on a final state based on the pseudo
code of the algorithm presented in Figure 3.3. Here, yes and no answers are outlined
as colours red and blue. Lines 1-3 initialize the system, while line 4 shows us that the
program logic of the lines below is executed in iterations until a final decisions is made.
Once a node has a vote assigned, it queries k other nodes for their opinion (lines 5-7).
The ultimate goal is to increase a finalization counter to a value bigger than β (the second
protocol parameter) to finalize the vote, as line 18 shows us. Whenever a node receives a
set of answers of which at least a fraction of α shows the same result, it has the chance of
increasing this finalization counter (line 10). If this does not happen, the counter is reset
to 0 (line 19). α is another protocol parameter, which must be chosen under the condition
α ≥ �k/2�. Line 19 presents, that if at least a fraction of α nodes reply with the same
vote, another counter for the respective colour is increased. This counter is never reset.
If the respective vote is different to the current opinion and its counter passes the value
of the current opinion’s vote counter, the opinion is updated an the finalization counter
set to the value 1 (line 12-16). In the other case, where the query result supports the
current opinion, the finalization counter is increased by one. The authors argue that you
can choose the parameters α, β and k in a way that gives you a highly secure instance of
the protocol with safety failure probabilities below a target value 
. The safety failure
probability defines the network still changing its decision after reaching a certain bias
for a specific voting result. In terms of liveness, the parameters must be chosen with a
specific maximum percentage of adversarial nodes in mind. The higher this percentage,
the slower the network finalizes transactions. However, an adversary controlling a bigger
proportion of the network can stall termination of the mechanism with high probability.
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The paper comments the transition from Snowball to Avalanche with the following words:

Avalanche consists of multiple single-decree Snowball instances instantiated
as a multi-decree protocol that maintains a dynamic, append-only directed
acyclic graph (DAG) of all known transactions. [RYS+20]

Instantiating a Snowball instance means, that Avalanche creates a conflict set for each
transaction (containing only one transaction, if the transaction is virtuous) and executes
the algorithm we discussed for each of these sets. It does however only query the opinion
of other nodes once for every conflict set. Instead of using multiple counters and question
rounds for final decisions, nodes maintain multiple conflicting branches and have an
opinion which of them they currently prefer. They only respond with a yes vote if the
queried transaction and all its predecessors lie within their preferred branch. If a node
gets a positive answer of a specific fraction of asked nodes, the transaction it asked for is
considered owning a chit. The confidence of a transaction being valid can be measured by
the amount of chits in its successor set. Votes on a transaction of the graph now count
as votes for all other transactions on the path back to the genesis transaction. Similar to
Bitocin, the deeper a transaction is inside this structure, the less likely it becomes for it
to be undone. Progress of the system thus depends on transactions being attached to the
tips of the DAG. However, it has to be noted here that termination is not guaranteed for
conflicting transactions. If a vote does not terminate, the coins which are part of this
double spend attempt are lost forever. This might yield a problem to transactions, which
have the not-terminating transaction in their parent set. Avalanche allows reissuing the
exact same transaction with a different parent set to solve that problem. These two
transactions are not seen as conflicting. The paper mentions that clients following an
adoptive parent selection strategy would be the best for the system. It does not describe
that strategy in detail, nor does it provide any incentive for users to follow that strategy.

The adversarial model of the protocol states that the distribution of message delay
for honest nodes must stay within the bound of the exponential distribution for the
system to guarantee security. An adversary knows the state of every honest node but
is not allowed to schedule or modify communication between them. Adversarial nodes
may behave arbitrarily. This is a way weaker model compared to e.g. Hashgraph. The
presented consensus mechanism does not impose a total order over all transactions, which
usually results in not being able to support Smart Contracts (although this topic was not
specifically mentioned in the paper). Moreover, transaction fees are listed as protection
against flooding attacks, but details are not specified. To sum up, Avalanche presents
some novel mechanisms of how consensus can be reached, but lacks details for many
questions that have to be considered for a fully operational payment system.
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3.2 PoW DAG protocols
The following subsections show how DAG data structures can also be used in PoW
cryptocurrencies to increase transaction throughput.

3.2.1 Phantom / Ghostdag
In conventional Proof of Work (PoW) cryptocurrencies like Bitcoin, every block references
a single predecessor and therefore the public consensus ledger is a chain. If an invalid
block (e.g. one containing a double spend) is added to the chain, honest miners will
ignore it and continue to mine a block for its predecessor. As only the longest chain is
considered valid, these invalid blocks will be completely ignored. [Nak08]
Phantom [SWZ18] on the other hand generalizes this protocol to increase transaction
throughput. In Phantom blocks are structured in a directed acyclic graph instead of a
chain. That means, that every block can contain hash references to multiple predecessors.
The protocol provides a total order over all these blocks. The order over these blocks
includes an order over all transactions, as transactions are considered ordered after their
appearance within the block. All this ordered transaction form the ledger and if there
are transactions invalidating each other (like double spends), only the one first in order
is valid and the other one is not considered part of the ledger. For such an algorithm
to work, transactions of blocks from honest nodes must appear before transactions of
malicious ones.
This is achieved by the following algorithm: First, the largest subset of well connected
blocks is recognized which we call the largest k-cluster. Blocks are added to this set by
comparing how many other existing blocks are referenced by the block and how many
are not (the set of not referenced blocks is called anticone). The anticone of honestly
mined blocks is usually small, as only blocks not known to the honest miner are not
referenced. As every honest node immediately publishes found blocks, only blocks mined
between the current time t and an upper bound of the network delay D are not known
to the honest miner. This creates an intervall [t − D, t + D] for which the proof-of-work
mechanism can guarantee that the maximum number of blocks created in that time
period is usually below a certain parameter k. Blocks which have an anticone smaller
than k are considered part of the well connected set. Now, a full topological order is
introduced where blocks within the well connected k-cluster go first and the other ones
are added last.
The underlying optimization problem is NP-hard. Therefore, there exist no efficient algo-
rithms for solving that problem in general. The Ghostdag protocol [SWZ18] circumvents
this inefficiency using a greedy algorithm for finding the k-cluster. Sompolinsky et al.
use two colors in their paper to differ between blocks in the k-cluster (blue) and outside
(red). The greedy algorithm constructs the blue set of the DAG by inheriting the blue set
of the best tip of the graph. The best tip is the tip with the largest blue set in its past.
This rule is applied recursively and therefore results in a chain through the k-cluster
back to the genesis block. The blocks within this chain are the first blocks of the total
global order. Afterwards, the other blocks of the k-cluster are added according to some
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Figure 3.4: Phantom algorithm [SWZ18]

topological ordering and in the end the blocks of the red set are appended. The original
paper provides the pseudo code depicted in Figure 3.4 and the following description for
the proposed algorithm.

The algorithm begins with the base case where the DAG consists of the genesis
block only (lines 2-3). Next, it performs a recursive call to compute the Blue
sets and ordering of the past of each of the DAG’s tips (lines 4-5), and inherits
those of the best tip (lines 6-8). Then, the selected tip is added to the Blue
set BlueSetG and to the last position in the current ordered list OrderedListG
(lines 9-10). Then we iterate over anticone(Bmax,G) in some topological way
which guarantees that a block is visited only after its predecessors are (lines
11-14). For every block we visit, we check if adding B to the Blue set will
preserve the k-cluster property, and if this condition is satisfied, we add B to
the Blue set (lines 9-13); either way, we add B to the current last position
in the list (line 14). Finally, we return the Blue set and the ordered list.
Note that the recursion in the algorithm (line 5) halts, because for any block
B ∈ G :| past(B) |<| G |. [SWZ18]

Ghostdag achieves a huge boost in terms of transaction throughput per second compared
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to classical PoW protocols like Bitcoin by increasing the block creation rate significantly
while maintaining the same security guarantees. However, values for the parameters
Dmax (the maximum network delay) and k (the anticone size) must be set. These values
stand in close relation to each other and the security guarantees of the whole protocol.
For the sake of maintaining a proper security level it is wise to use a safety margin which
is a bit larger than necessary for the parameters. And that is exactly why the protocol
cannot reach optimal performance based on the current network conditions as these
parameters are hard coded and are not adapted during execution.

3.2.2 Spectre

Spectre [SLZ16] is similar to Phantom in terms of how the ledger looks like. Again, a
DAG is formed instead of a single chain, where each new block references all blocks on the
tip of the graph known to the honest miner. It is assumed that an honest miner always
publishes a block immediately and the order of transactions within a block corresponds to
their appearance. All blocks are part oft the ledger, but when a conflict occurs between
two transactions of different blocks, Spectre determines which one is valid and which
one is considered invalid and therefore not part of the ledger. This is done through a
pairwise voting procedure that delivers which block is considered to precede the other
one. Transactions of the preceding block are considered valid.
However, a major distinction is that there exists no global order for all blocks here. The
algorithm only yields a pairwise ordering and thus this ordering relation is not transitive.
Also, the term voting procedure might be a bit misleading as no actual voting by nodes
happens. Instead, each block in the graph is considered voting for one of the two blocks
based on the structure of the DAG. To which block in question the vote goes is determined
by a static rule set. Whichever of the two compared blocks gains more votes is considered
a predecessor of the other one and therefore its transactions are considered valid.
To assign the vote of a block z to one of two conflicting blocks x and y, where all these
blocks are part of the same DAG, the rules below are followed. It has to be mentioned
that predecessor and successor within this rules includes blocks in a transitive relationship.
Moreover, a virtual block of G is introduced, which has no successors and all blocks are
its (transitive) predecessors. This block represents the aggregated vote of the entire block
DAG.

1. If z is a successor of x but not y, z votes in favour of x.

2. If z is a successor of x as well as y, all votes of predecessors of z are counted and z
votes together with the majority. If a tie occurs, there must be some rule to break
the tie (e.g. header information, lexicographical ordering of the hashes of x and y,
...)

3. If z is not a successor of x or y, it votes the same way as the majority of its
predecessors.

22



3.2. PoW DAG protocols

Figure 3.5: Spectre example [SLZ16]

4. If z = x or z = y, then z votes for itself to succeed any of its predecessors and to
precede any block outside of that set.

5. If z is the virtual block G, it votes like the majority of blocks in the graph and
therefore aggregates all votes to a single final one.

Spectre also provides an example of a voting procedure (see Figure 3.5) including the
following detailed description:

Block x and blocks 6-8 vote x ≺ y as they only see x in their past, and not
y. Similarly, block y and blocks 9-11 vote y ≺ x. Block 12 votes according
to a recursive call on the DAG that does not contain blocks 10,11,12. Any
block from 1-5 votes x ≺ y, because it sees more x ≺ y voters in its future
than y ≺ x voters. [SLZ16]

On comparing Spectre to Ghostdag, many similarities can be found between these two
protocols. Nevertheless, it sticks out that Spectre features no parameters that need to
be set upfront. Therefore, Spectre can adapt to the real network conditions and thus
achieves higher transaction rates. This is mainly possible because Spectre does not need
to create a total order over all transactions to work. Conflicting transactions are resolved
by just voting on the conflicting blocks. However, some features we know from other
blockchain protocols like Smart Contracts need a total order to work in all cases. Spectre
does not provide that and therefore does not support such features, which is a huge
drawback.
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3.2.3 Prism

Prism [BKT+18] is a PoW based blockchain protocol, which goes a new way. Instead
of having just a single block type and ordering every block in an unstructured DAG,
Prism looks at what functionalities a block stands for within a cryptocurrency protocol
like e.g. Bitcoin [Nak08]. Prism identifies three atomic functionalities. Before looking at
them, a specific view of how the main chain (e.g. longest chain) is determined must be
established. We view the process of it as being all about how a leader block is elected
among all the blocks at each level (distance in number of blocks to the genesis block) of
the block tree. These leader blocks then form the main chain from the last one all the
way to the genesis block.

With that in mind, we can have a look at the three purposes that every block serves.
First, each block adds transactions to the main chain. Second, each block stands for
election to become a leader block and therefore be part of the main chain. And third,
every block adds a vote to all its ancestors to become leader blocks. Prism separates
this functionalities and introduces an own block type for each of them. There are stand
alone transaction blocks, which only contain transactions and no references to any other
block at all. Then there are proposer blocks, which include a reference to the last valid
proposer block known to the miner. They form the classical chain (or tree in case of
forks) and each of them also references one or multiple transaction blocks. Multiple
proposer blocks are considered being a group if they are on the same level. And last,
there are voter blocks, which form their own chain (or again a tree in case of forks).
These voter blocks reference a single proposer block per level, making it the leader of its
group. The referenced transaction blocks of the leader are used to form the final ledger.
As the longest voter chain decides which transactions are included into the final ledger,
the security of the system is based on the voter chain. This deconstructing process is also
visualized in Figure 3.6, taken from the original Prism paper [BKT+18]. On the left side
you can see how a typical PoW block structure looks like (e.g. in Bitcoin) and on the
right side you can see how the same structure would look like under the Prism protocol.
You can also see, that the new structure is no tree anymore. Instead it is a DAG.
It is also important to note, that there exist multiple voter chains instead of a single one.
Each valid voter chain can contain only one vote per proposer chain level. The proposer
block of a level which has the most votes is considered the leader block. That means,
that a block being chosen as leader of its level is still pretty unstable after the first vote
(the first block on any voting chain referencing the proposal block). However, as more
votes are added to different voting chains or as more blocks are appended to the blocks
on the voting chains referencing our proposal block, the less likely it becomes that a
leader block changes. If we look at each chain on its own, the vote stabilizes at the same
rate as Bitcoin (e.g. for the likelihood that a leader block changes to be below 10-3 in
the face of an adversary controlling 30 percent of the hashing power, the vote has to be
24 blocks deep). However, due to the fact that there are more voter trees which have an
aggregate opinion, the vote stabilizes way quicker. In Prism it is enough that each voting
block has two successors in its voting chain to achieve the 10-3 security guarantee under
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Figure 3.6: Representation of a classical PoW block structure in Prism [BKT+18]

the same adversary strength if there exist 1000 voting chains. It has to be noted here,
that the PoW challenge of the protocol is designed, that there are only few proposal
blocks created on the same level by honest miners.
Talking about mining, an adversary cannot target a specific voting chain directly. In
general, miners mine on a transaction, a proposal and a voting block for each voting chain
at the same time. First, they create a so called superblock, which contains information
about all potentially mined blocks. Then they try to find the right nonce to solve the
hash puzzle. Once a valid solution is found, the solution hash itself defines which type of
block (and in case of a voting block, to which chain it belongs) a miner just successfully
created.
Based on the structure described above, Prism can construct a totally ordered list of
all valid transactions. This is done by just ordering all transaction blocks based on
references in the lead proposal blocks of each level. It has to be noted here, that proposal
blocks can also reference other proposal blocks, which are not part of the leader chain.
The transactions they refer to are also included in the ordered transaction list. If two
conflicting transactions occur, the one which comes first in the ordered list is considered
valid and the other one will not be part of the final transaction list. The discussed
procedure can be examined in Figure 3.7.
Prism has not much in common with Ghostdag and Spectre. Instead of changing the block
tree structure into an DAG, it introduces different types of blocks which are structured
in their own individual tree structures. Cross references between this tree structures
lead to a big DAG. So, a main difference is that the DAG can be called structured to
the nature of its components compared to the arbitrary growing DAGs of the other two
protocols. It does however provide a total order like Ghostag does and therefore supports
Smart Contracts. It is also worth mentioning, that the decoupling of functionality into
different block types allows multiple ways of scaling up the transaction throughput. For
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Figure 3.7: From proposal blocks to a totally ordered list of transactions [BKT+18]

example, the number of voting chains or the number of transaction blocks each proposer
block is allowed to reference are levers to influence the throughput.

3.2.4 IOTA
IOTA is a cryptocurrency specifically designed for the Internet-of-Things (IoT) industry.
It is based on the Tangle, a DAG structure for storing transactions [Pop18]. In IOTA
there exist no transaction fees at all. Furthermore, every participant is equal in contrast
to other cryptocurrencies which differentiate between users participating in the consensus
mechanism (like miners) and others who are just using the provided services.
It all starts with a genesis transaction which sends all available tokens to a set of founder
addresses. Every node can then publish transactions by approving and referencing two
already existing transactions (the first transaction after the genesis transaction can only
reference one). Every transaction represents a node in the Tangle and every reference
is a directed edge. There are no strict rules on which former transactions have to be
referenced, but there exists a reference rule set that should be followed. However, not
following this rule set does not lead to any direct punishment. The system is designed in
a way that following it should result in more nodes referencing one’s own transaction and
thus a higher chance that it will end up in the valid Tangle and not on some abandoned
orphan branch. Every published transaction has a weight assigned to it and these
weights play a role in determining which transactions should be referenced. Publishing
transactions in IOTA is currently PoW based and weights vary based on the found hash
puzzle result, as you can see in the Tangle presented in Figure 3.8. The rule set defining
which former transactions should be referenced is called the tip selection algorithm,
as always transactions on the tip of the graph are selected. First, a reasonably large
interval of transaction somewhat away from the tips is chosen. Within this interval a
number of N transactions are chosen as starting point for random walkers. Each random
walker just moves in direction of the current tips, always selecting a random incoming

26



3.2. PoW DAG protocols

Figure 3.8: Tangle example [Pop18]

edge. The probability of taking an incoming edge over others is dependent on a chosen
constant and the cumulative weight of the transaction on the other end, which ensures
that tips of heavier Sub-Tangles are more likely to be reached in case of two conflicting
Sub-Tangles. It has to be noted here, that the tip selection algorithm also randomly
backtracks for a step. This will become important when we look at the security aspects
of the system. The two tips that are reached first are chosen for the validation and
referencing process. However, tips that were reached too fast should be ignored, as it is
very likely that they are lazy tips. These are tips further back in the graph, which are not
further extended. They can be created by nodes not executing the suggested algorithm,
which instead just extend any transaction. Choosing such lazy tips is not a good idea,
as transactions are becoming more and more final based on their own weight and the
weight of the transactions that reference them directly or indirectly. As honest nodes also
check transactions for validity before approving them, only valid parts of the Tangle get
extended. If a conflict arises, only one Sub-Tangle gets more cumulative weight and thus
the other one is abandoned. Extending a lazy tip means not getting referenced by many
other nodes and is thus bringing one’s own transaction in a weak position for getting
strong approval.

The security of the system is based on a few factors. First, spamming transaction
should be prevented by a PoW puzzle that has to be solved. This hash puzzle is imple-
mented in the same way as in Bitcoin [Nak08], where a nonce has to be found that the
hash reaches a predefined number of leading zeros. However, it has to be highlighted that
the hash puzzle of IOTA is way easier to solve, as on average only 38 different nounces
need to be tried. Such an easy difficulty might be necessary for IoT devices with limited
computational resources to participate, but it also jeopardizes the security of the system.
This becomes clearer when we look at the fact, that transactions are able to have different
weights assigned to them. This weight is also dependent on the hash produced by the
found nonce. An malicious actor now might either use his/her own hashing power to find
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high-weight nonces or just flood the network with many blocks with advantageous refer-
ences. To limit the influence of finding better nonces, a rather low cap on the maximum
weight is set. This should ensure that a few heavy transactions do not outweigh a large
number of other transactions. However, if we look at an adversary that controls a lot of
hashing power, this measures are just not enough. Vries [dV19] shows that an adversary
can just publish a double-spend transaction with high weight and mine new blocks to ref-
erence it with the goal to outpace the main tangle. At the moment it is the job of a central
component called Coordinator to defend against such attacks. Each transaction must be
finalized by a Coordinator to be valid completely destroying the decentralization property.

Quentin Bramas shows in his work about the stability and security of the Tangle
[Bra18] that with this PoW setup, the hashing power of all honest nodes must be bigger
than that of an attacker. Otherwise the attacker can just create a conflicting Sub-Tangle
(e.g. in private) which will be seen as the new main Tangle. He shows, that this happens
independent of the tip selection algorithm. Also the underlying network (sparse vs. fully
connected) makes no real difference for an attacker. Different alternative solutions are
proposed by multiple papers [Pop18, Bra18]. The first approach is to ensure that the
honest hashing power is as high as possible by bringing nodes to also approve transactions,
even if they have no own transactions to publish. This can be achieved by adapting
the tip selection algorithm to consider how active a specific node is. Thus, to get own
transactions approved fast in the future, a node must always be actively approving other
transactions. Therefore, empty transactions are added to the Tangle. Another suggestions
is using trusted nodes. If a trusted node confirms a transaction, it is considered final.
Final transactions can be seen as checkpoints as well, protecting against adversaries
who control enough hashing power to rebuild large older parts of the Tangle. This
solution is currently employed by IOTA (trusted nodes are the Coordinators) effectively
destroying decentralization. The last proposed solution is to consider both Sub-Tangles
valid in the case of a conflict. To achieve that a new transaction type named decider
transaction must be introduced, which states which of the two transactions is considered
valid. This would also ensure, that no hashing power is wasted on transactions follow-
ing two conflicting transactions, as all of them will be part of the main Tangle in the future.

For the system to work it is furthermore important, that most nodes follow the suggested
tip selection algorithm which is only reasonable to assume, if there exists no selfish
strategy that would benefit nodes following it. Popov et al. analyzed the tip selection
algorithm on exactly that matter [PSF19]. They concluded that nodes can adapt their
tip selection algorithm to reference tips that the normal algorithm chooses most likely.
Successfully doing that would result in one’s own transactions being in the main tangle
faster and more reliable. Popov et al. show in a simulation that selfish nodes outperform
others by up to 25 percent on that regard. However, their calculation, proofs and
simulation is based on a series of (reasonable) assumptions. They conclude that selfish
strategies also implicate a higher computational cost because predicting the backtracking
of honest nodes is very costly. The idea is that this additional computation cost slows
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adversaries down enough, so that honest nodes are not harmed in a meaningful way.
However, the question if this is enough remains unanswered.

What we have investigated so far are the basics of IOTA. IOTA is still evolving and
mechanisms are changed and new ones proposed or introduced. The newest evolutionary
step is called the Coordicide [PMC+20] and focuses on removing the Coordinator to
achieve the decentralization of the system. For that to work numerous other mechanisms
are introduced and described in detail. The paper covers topics like node identities, Sybil
protection and automated peering via a reputation system (mana). This system is then
further used to limit transaction rates of nodes to prevent spamming by adapting the
PoW difficulty based on their transaction rate and mana value. Also, an idea is put
forward that in the future the PoW puzzles (which are currently the reason of many
vulnerabilities due to their low difficulty) can be replaced with verifiable delay functions
(VDFs). However, research in that area is not advanced enough to answer the question,
if they can ever replace the PoW puzzles while maintaining the properties and security
guarantees needed.
For replacing the coordinator itself, two possible consensus algorithms are proposed.
They are similar to each other in their basic idea but differ in details. The idea is
to have no orphaned Sub-Tangles in case of a conflict anymore. Both branches are
considered valid and nodes only vote on conflicting transaction to determine which one
should be abandoned. Nodes build their own opinion on which transaction they favour
by communicating with a subset of other nodes (mostly their neighbours) about their
opinion over a conflict. They run a probabilistic consensus algorithm over multiple rounds
to come to the same opinion over the conflict. This result spreads over the network
by setting or flipping the opinion of further nodes and may collide with another result
reached somewhere else locally in the graph. Opinions compete against each other until
only a single opinion survives and consensus is reached.

To sum up, IOTA is a transaction fee free, DAG based, currently centralized cryp-
tocurrency with a lot of known flaws in terms of security. Many ideas are put forward to
get rid of these flaws, but one cannot say with certainty if this attempts will succeed.

3.3 PoS protocols
The following subsections discusses different PoS protocols which are based on other data
structures than DAGs.

3.3.1 Ouroboros Praos

Ouroboros Praos [DGKR17] is an independent protocol based on the Ouroboros [KRDO17]
PoS protocol. Therefore, knowledge about the Ouroboros protocol is needed to reason
about the properties of Ouroboros Praos.
In a nutshell the Ouroboros protocol consists of epochs. Each epoch is a certain amount of
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time divided into slots. For each slot there exists a participant of the protocol who acts as
slot leader. This participant publishes a new block to all other participants via broadcast
within his slot time. Therefore, all participants must have access to a synchronized clock
to determine which slot is the current one (20s slot length is suggested). That also means
that every participant gets the new block within the duration of a slot (synchronous
communication setting). Honest slot leaders always extend the longest valid chain. The
schedule containing the assignment of the slots to participants is publicly available at
the start of each epoch. This schedule is determined by a multi-party protocol and takes
the stake of the participants into account. If you have more stake (e.g. coins) you have a
higher chance to become a slot leader in the next epoch. Stake is always determined at
the start of an epoch and does not change until the next epoch starts.
The authors also proof their protocol secure under the following model. An adversary
can spoof, inject and reorder messages (blocks it creates). That means and adversary can
produce different blocks at no cost and send them to different participants when he or
she is slot leader. As everybody knows who are the slot leaders of the current epoch, an
adversary can try to create a fork by revealing different blocks to different upcoming slot
leaders. However, the authors proof mathematically that the probability that the chain
can be forked over a length of n blocks drops exponentially within at least the square
root of n. Of course an attacker who controls the majority of the stake can break the
system.

Ouroboros Praos [DGKR17] is even stronger as the protocol remains secure under
the circumstances that an adversary has full control over message delays within a delay
of Δ slots. Δ is unknown to the protocol but all messages of honest participants reach all
other honest participants within at most these Δ slots. Security of the system degrades
with the increase of Δ. The adversary can fully corrupt and control any participant
immediately with the restriction to still have a minority of the stake.
This is achieved by exchanging the slot leader determination of Ouroboros through a
kind of lottery which can be executed by every participant locally. It is based on the
cryptographic concept of verifiable random functions (VRFs). A participant puts in its
key and the slot number and gets an output and a proof value. Other participants can
use this proof value to verify if somebody is really the slot leader. To become slot leader,
the output value of the function needs to be smaller than a certain value calculated from
a function which takes the own stake value as input. That change results in empty and
multi-leader slots. Additionally, there is no public slot leader schedule available anymore,
so an adversary does not know who the next slot leaders are. Moreover, not everybody
needs to know the new block immediately in the same slot as it was published. Therefore,
the protocol setting became a semi-synchronized one, resulting in shorter slot times.
Combined with the use of key evolving signature, it allows the protocol to be secure
even when an adversary can corrupt any participant immediately. The term key evolving
signature means that there exists only one public key, but several private keys (one is
generated for each time one is a slot leader). If this generated key is deleted before
broadcasting the created block, an adversary cannot publish another block for the same
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slot if he succeeds in corrupting the current slot leader.
Last, the problem of bias-resistant randomness on the blockchain must be mentioned.
Ouroboros Praos needs a random nonce for ensuring a stable stake distribution through-
out an epoch. If data of blocks are taken to calculate that random nonce, an adversary
can try to bias the function by publishing data that fits his needs if he becomes slot
leader (e.g. publish a different set of transactions). Ouroboros Praos strengthens its
resilience against this threat by forcing every slot leader to publish its VRF value within
his created block. Just this random values are hashed to generate a new nonce.

To conclude Ouroboros Praos is a PoS protocol which is provable secure within the
bounds of a model which grants an adversary a lot of power. Thus said, new blocks can
be created fast without weakening the security of the blockchain. However, there can
still exist only a single valid block per slot duration determined by the longest chain rule
and work on the others is wasted.

3.3.2 Algorand
Algorand [GHM+17] is a PoS protocol based on Byzantine agreement. The general
concept includes, that one or more participants are chosen to compute and publish
a block to all other participants. Then a group of other participants is chosen as a
committee to come to an agreement which of the published blocks will be the next valid
one appended to the chain. The participants can chose themselves for the described
tasks by running a local algorithm containing VRFs to determine if they are allowed to
publish a block or if they are a member of the committee. Publishers are sorted by a
priority value to determine which block should be chosen by the committee. If really
every published block is invalid (published by a malicious user) the committee can come
to the consensus to approve an empty block as chosen one. The mechanism determining
who takes part in the block proposal algorithm is rather similar to Ouroboros Praos
[DGKR17]. In the paper of Ouroboros Praos the authors even state Algorand as related
work which they took into account before improving their own Ouroboros protocol. As
in many PoS protocols, the amount of coins you own determines your stake and improves
your chance to be selected for the block proposal algorithm.
If the network is quite synchronized, the committee will need about 4 rounds to come
to a consensus. As the committee is not getting bigger if more participants join the
protocol, the block proposal mechanism will not slow down even if millions of participants
join in. However, if an adversary is involved who controls wide areas of the network
and tries to split it into different synchronized chunks by delaying messages, it can take
significantly more rounds to meet consensus. It has to be noted here, that there exist
two types of consensus (named final and tentative in the paper). Final consensus means
there cannot be a fork that invalidates the block and is usually reached if an adversary
controls only a small portion of the committee and the network is strongly synchronous.
Tentative consensus means that honest participants agreed on a block, but they cannot
guarantee that there exists no other block in the same slot due to malicious behaviour
or the network being only weakly synchronous. This can also lead to multi-block forks.
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A tentative block or multi-block fork can become final in two different ways. First, if
Algorand reaches final consensus on an successor block with an overwhelming probability,
the predecessors are also confirmed. If that does not happen, a recovery mechanism is
started periodically based on loosely synchronized clocks of the participants. Instead of
proposing a block, a participant has to propose a fork which all users decide upon.
The protocol remains secure under a model of an adversary being able to immediately
corrupt any participant while not excelling an amount of stake greater than a third of
all existing coins. Like in nearly all Byzantine agreement protocols, a majority of two
thirds of honest participants (regarding stake) are required to keep the protocol stable.
If there are more rounds necessary to meet a state of consensus, every round has its
own committee. That prevents an attacker from corrupting all members of the actual
committee and taking control over the protocol. Even the number of committee members
between each step can vary because of participants selecting themselves by computing
local functions and publishing just the proof. Each committee member has to delete its
key used for signing before publishing a message to ensure that a second message cannot
be forged later on. Forks are very unlikely to appear within this protocol and may only
occur to the activity of an adversary. That means normally there is only a single chain
existing and not a tree like in other blockchain protocols like Ouroboros (Praos) or Bitcoin.

To sum up, Algorand is a cryptocurrency protocol based on the Byzantine agreement
problem and it is enough to control a third of the stake to completely crash it. On
the other hand nobody has to deposit coins anywhere, enabling everybody with coins
to participate in the consensus process without reducing the liquidity of anyone. The
speed of reaching consensus strongly depends on the underlying network. If the network
is strongly synchronous (and no adversary is interfering), consensus is usually reached
withing 4 voting rounds, making the protocol very fast compared to the ones we have
discussed so far. If this is not the case, fast consensus cannot be guaranteed. Algorand
copes with scaling by having a small committee independent of the number of participants.

3.3.3 Snow White
Snow White [DPS16] is another PoS blockchain protocol which focuses more on posterior
corruption which has not been handled in depth in the other presented protocols. Never-
theless, the protocol is fundamentally similar to the others we have already covered.
Snow White also consists of epochs and within an epoch of slots (they are named time
steps in the paper). There exists a nonce and a committee for each epoch. The nonce
is calculated based on former blocks (every time somebody publishes a new block, a
random nonce is added). The members of the committee are determined by a specific
elect function of the blockchain protocol itself, taking into regard the coins (stake) of
each participant. Stake values are updated at the start of each epoch and Snow White
limits the amount of currency that can be transferred during the epoch to protect against
attacks from slot leaders. Again, the committee members can calculate for themselves if
they are the leader of a specific timeslot. Leaders publish new blocks for their slot, also
adding a timestamp to it. A leader always extends the longest chain but never extends a
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branch if it contains future timestamps.
The whole security model is based on an attacker who cannot corrupt nodes immedi-
ately. The model says that an adversary can take over every node but needs time for it.
Therefore, the protocol stays secure as long as less than 50 percent of the committee and
thereby slot leaders are honest at the time of publishing blocks. That also means that
you have to wait till your payment transaction is in a block followed by some more blocks
to be relatively sure that there will not be a fork. That is similar to Bitcoin [Nak08]
and differs to protocols like Algorand [GHM+17]. It has to be mentioned that you need
significant more blocks appended to a Snow White block compared to Bitcoin. We are
talking about 34 to 43 percent more blocks (depending on the controlled stake/hash
power of an adversary) for the same consistency failure probability. However, this is
negligible in comparison to Bitcoin because of the faster block creation rate but stays
relevant in comparison to the other PoS protocols.
The biggest problem identified by the authors are adversaries trying to start forks from
some place back in the chain. Therefore, some safety mechanisms got implemented. First
of all, every new participant has to go through a special part of the protocol where
it has to contact several other participants to ensure getting the right blockchain and
not a simulated one from an adversary. The same applies to participants who sleep
for a longer period. Moreover, active participants do not accept blocks with too old
timestamps and therefore no new whole branches, if they reach too far back in the
blockchain. Also, just histories/blocks with strict increasing timestamps are accepted.
Furthermore, for the committee and nonce selection an interval of old blocks are taken
which are considered stable by the protocol (this is connected to the fact that older
timestamps are not accepted).

All in all, it seems that each discussed PoS protocol focuses mostly on a specific thread.
Snow White differs to Ouroboros Praos in terms of the adversary model. It cannot
withstand an adversary who can corrupt participants immediately but on the other hand
it is much more robust against posterior corruption. One major advantage of Snow White
is that it works even if major parts of the committee do not respond because there is no
consensus needed as it carries out the well known idea of always extending the longest
chain. Snow White also sees older parts of the main chain as a kind of finalized. However,
if an adversary controls more than 50 percent of the stake/committee for a long enough
time, also that part of the history can be rewritten.

3.3.4 Hybrid Protocols

There also exist hybrid protocols which use PoS to introduce some more functionality to
existing PoW cryptocurrencies or increase the security of the system. They show that
the PoS concept can be used as non stand-alone functionality as well.
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Casper the Friendly Finality Gadget

Casper the Friendly Finality Gadget [BG17] is a protocol which can be used on top of
current PoW blockchains. A PoW blockchain using Casper becomes a hybrid blockchain
using PoW and PoS at the same time. This also offers an idea of how to switch a
blockchain from a PoW setup to a PoS setup step by step. However, that would still
mean to apply one or multiple hard forks to the blockchain.
Casper is not changing the block proposal mechanism of a cryptocurrency, instead it adds
more functionality. A canonical chain is formed out of the existing tree created by the
proposal mechanism. This is done by finalizing blocks through a set of validators. Each
validator sends out votes for links containing an already justified checkpoint and a new
target checkpoint. A checkpoint is justified if at least two thirds of validators (regarding
their assigned weight) have published votes with the same source and target. The link
from the source to the target is then called a supermajority link. If there is another
supermajority link heading from the former target to a new block, the checkpoint is
considered final. For performance reasons just every hundreth block becomes a checkpoint.
This still means that all participants of the protocol know now, that the branch with the
finalized checkpoint is the valid chain and all other forks are invalid. That implies that
honest miners have to extend the longest valid chain containing the finalized checkpoint
with the greatest height. The height of a block is its number if you start counting from
the genesis block whereas blocks on the same layer of the tree get the same number.
Everybody can become a validator by depositing some of their coins. The proportion
of one’s deposited coins of all deposits of all participants is the weight of one’s votes
mentioned above. There are rules a validator must follow and violations can be reported
by others resulting in a finders reward and the complete loss of the cheating validator’s
deposit. Furthermore, withdrawing deposited coins takes time (e.g. some month) to
prevent validators from avoiding punishment by money withdrawal.
There are certain rules you have to follow when being a validator. You are not allowed
to vote for different blocks on the same height in different branches. Moreover, you
are not allowed to vote within the span of your other votes. As you have to add your
signature to every of your votes, other participants can recognize violations and trigger
the punishment. Furthermore, if you withdraw your deposited coins you will not get
them back immediately. You have to wait a long time (e.g. some months) to prevent
validators from avoiding the punishment by withdrawing all their money.

Casper introduces the idea of finalizing parts of the blockchain which we have also
seen implemented in some pure PoS protocols. An attacker controlling 51 percent of the
hash power can also prevent Casper from finalizing new block but cannot rewrite older
validated blocks. Moreover, an attacker controlling enough stake can finalize any blocks,
so attacking the system works via stake and hashing power now. The authors themselves
state: "Casper remains imperfect". [BG17]
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TwinsCoin

TwinsCoin [CDFZ17] is a stand-alone protocol combining PoW and PoS to create a
more secure system. Every via PoW published block additonally has to be confirmed
by participants selected in regard of their stake, so that an adversary must control a lot
of hashing power and also own a huge amount of coins to be able to cause significant
damage to the protocol.
The concept and implementation of the hybrid blockchain is based on the 2-hop protocol
[DFZ16]. The result is a protocol with a PoW mechanism like bitcoin but with PoW
blocks having 2 different states. They can be attempting or successful. If a miner finds a
new block, the block’s state is attempting. Other miners do not try to append new blocks
to it but instead create other attempting blocks (forks).
Every participant who holds some coins owns a verification key depending on his stake
[DFZ16]. A participant who wants to publish a PoS block needs to hash this verification
key together with one of the PoW blocks and get a value smaller than a specific target
value to be allowed to publish a PoS block. This PoS block is linked with the PoW block
which immediately changes its status to successful (this happens implicit). Now the
mining race for the next PoW block starts again. Always the longest chain is valid and
forks are ignored. The difficulty of the PoW and PoS challenge are both adapted similar
to Bitcoin [Nak08].
The resulting ledger structure can be seen in Figure 3.9, with the original paper providing
the following explanation:

A modified 2-hop blockchain structure. Here, dot arrows (that link to the
previous successful block and attempting blocks) denote the first hops, and
solid arrows denote the second hops. Green blocks Bi

j ‘s denote the successful
proof-of-work blocks, Bi

j ‘s denote the attempting proof-of-work blocks, and
red blocks B̃i‘s denote the corresponding proof-of-stake blocks. Note that the
blue blocks are from the "mature blockchain". [CDFZ17]

Interesting for our purpose here is, that the resulting data structure is no tree anymore,
but instead a DAG. So, this data structure can successfully be used to achieve more
security instead of higher transaction throughput as well.
TwinCoins really makes it harder for adversaries to break a protocol. However, this
comes at the cost of transaction throughput as the system is even slower through the
additional PoS confirmation step.

3.4 Attack Scenarios
This section is about different types of possible attacks on blockchain systems. We will
look at how they work in a general matter. As there exist so many different blockchain
systems, we have to examine if the presented attacks are applicable to our PoS DAG
simulation scenario. Moreover, this list cannot consist of all possible attacks through the
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Figure 3.9: TwinsCoin ledger structure [CDFZ17]

novelty of PoS DAG systems. For each chosen candidate protocol, attacks specifically
targeting the protocol must be considered. Understanding the attack scenarios in this
section is crucial for being able to do that.

3.4.1 Double-Spend

Already the first cryptocurrency Bitcoin sees preventing a double-spend as the root
problem for a working system [Nak08]. It can be best explained by the scenario of an
adversary issuing a payment to buy some goods from a vendor. Once the vendor confirms
the transaction and sends the goods, the adversary issues a payment to another vendor
(for example on a different branch of the blockchain structure), although the funds for
it are not in his/her possession anymore. That is a conflict on the blockchain, which
is often resolved in PoW systems like Bitcoin or Ethereum by the longest chain rule.
The adversary now needs to somehow manage that the new transaction ends up on the
longest chain, effectively invalidating the old one.
A double-spend can be also seen as the goal of another attack instead of being an attack
on its own. This attack type might also not be feasible, for example if a cryptocurrency
guarantees final consensus for transactions, as Swirlds-Consensus [Bai16b] does.

3.4.2 Holding the majority

Every cryptocurrency we have looked upon so far works only if a specific proportion of the
involved nodes acts honest. In the PoW protocols, 51 percent of the hashing power needs
to be controlled by them and depending on the PoS system less than a third or less than
50 percent of staked coins must be controlled by an adversary. Otherwise the adversary
controls the network. Depending on the protocol, this enables an adversary to perform
unlimited double-spends, rewrite large parts of the history or halt the progress of the
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cryptocurrency completely. Cryptocurrencies thus usually incentivize honest behaviour
and/or punish malicious nodes.

3.4.3 Distributed Denial of Service
A Distributed Denial of Service attack occurs if a component gets flooded by messages
from other hosts till it breaks down. Such an attack against a cryptocurrency can be
effective if there exist a small set of nodes which is more important for the stability of the
system [CELR17, RCa+20, Bai16b]. One of the simplest examples is that bringing down
the leaders of mining pools destabilizes PoW currencies. And bringing down slot leaders
in PoS systems also jeopardizes the system. The best defence is building a protocol in a
way, that the stability of the system is not dependent on single nodes. PoS systems can
also protect themselves by not publishing slot leaders upfront, but rather include prove
mechanisms for them to show that they are indeed leaders [GHM+17, DGKR17, DPS16].

3.4.4 Nothing at stake
In PoS systems nodes usually get rewards based on their staked coins and their par-
ticipation in the consensus algorithm. Now, think of a situation where two conflicting
paths in the ledger exist. If the rewards of a node are coupled to approving transactions,
a rational node has to approve both paths to be sure to get its rewards. The node
can only win by following this approach, as it has nothing to loose (nothing-at-stake)
[RCa+20, GHM+17, DPS16]. This attack can be countered by punishing misbehaving
nodes, e.g. by burning their staked coins. The question why nodes should behave honest
is valid in every cryptocurrency. Thus this attack must be considered for every PoS
cryptocurrency, as there issuing blocks is possible nearly effortless.

3.4.5 Long-range attack
Another similar attack category on PoS protocols is the long-range attack [RCa+20,
DPP19, LABK17, GKR18, DPS16], also known under the name (alternative) history
attack. The general idea is to create an alternative chain containing blocks favouring
oneself. An adversary can benefit by performing double-spends or creating the alternative
chain in a way, which results in more fees payed to the adversary.
A very simple attack is to create an alternative branch and try to outpace the main
branch. As a node’s influence on block approval and creation depends on its stake, one
cannot simply outpace the main chain. However, if no timestamp checks are made, an
adversary can just create blocks ahead of time to create a longer chain accepted by other
nodes by forging timestamps.
Another possibility (called posterior corruption) is to just start a fork somewhere back in
the current main chain. Therefore, an adversary must have access to the private keys of
nodes which together possessed enough stake at the moment when the fork starts. Nodes
that possessed significant amount of stake in the past but none anymore have nothing to
loose by joining such an attack. Also, users might not keep up enough security measures
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to protect their private keys, when no coins are associated to their account anymore. An
adversary can pick any point in time from the publication of the genesis block until now
and try to control enough stake for that specific point in time. From there on, all other
blocks can be rewritten easily, as generating blocks is cheap in PoS systems (this fact is
known as costless simulation).
Another case is called stake bleeding. An adversary secretly prepares a fork and while
doing that slows the main chain down as much as possible using his/her stake. On
the secret fork, transactions from the main chain are included in a way that the stake
shifts to the adversary through transaction fees. The secret fork is published once the
adversary gained enough stake to outpace the main chain. This attack is very slow (we are
talking about multiple years here), but can be combined with changing parts of the history.

Different countermeasures are proposed or already exist to defend against such at-
tacks. A basic approach is to burn staked coin if misbehaviour is proven. However, this
only increases the risk of an adversary in the case an attack fails. The introduction of
finalization is also very common. Protocols either do not allow conflicting transactions
once a block is considered final or introduce checkpoints which ensure that appearing
blocks with a height lower than the checkpoint are considered invalid. Another measure
are key-evolving mechanisms where for the same public key, multiple private keys are
used and afterwards deleted. This ensures that alternative blocks cannot be created
later on by somebody who corrupted a node and has access to its private key. A defence
specifically created to counter stake bleeding, are context-aware transactions. Here,
transactions reference previously mined blocks, effectively preventing them from being
copied to another branch and being still considered valid. It is also possible to determine
the validity of a branch based on statistics. For example, branches of attackers can
be recognized by looking at the density of blocks or the amount of blocks published
compared to the respective stake of the participants. Also, some radical solutions were
proposed, like forcing participants of the consensus process to provide their real identity,
which is automatically revealed if malicious behaviour can be proven. Another suggestion
is to force participants of the consensus process to use special hardware, so called Trusted
Execution Environments (TTEs) to enforce security.

3.4.6 Joining the network
Weak subjectivity is a name for the problem which arises when new nodes or nodes that
have been offline for a while (re-)join the network [DPP19, DPS16]. These nodes need to
get the current status from other nodes in the network. In that phase, malicious nodes
can just present an alternative chain to them, because these new nodes have not enough
information to differentiate between the real main chain and an alternative one. Snow
White [DPS16] states that an additional trust assumption must be made to counter that.
It assumes that a list of active nodes exist which can be queried by newly joining nodes.
Then, the new node just asks the nodes on the list to vote if they agree on the state it
received. Assuming the majority of them is honest, the new node cannot be tricked into
accepting a forged chain. Another approach is presented by Coordicide [PMC+20]. Here,
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peer selection happens provable randomly and every node connects to multiple others.
Exploiting this situation can be considered an attack on the underlying network, as
an adversary needs to make sure that newly joining nodes establish connections with
him/her. However, simulating network attacks is out of scope for this work.

3.4.7 Eclipse attack
Another network layer vulnerability is the Eclipse attack, which was mainly studied for
PoW blockchains like Bitcoin or Ethereum [HKZG15, CELR17, MHG18]. In a nutshell,
the underlying peer-to-peer network mechanisms of the respective protocol are used to
make a node aware of as many nodes as possible of a node set the adversary controls. Then,
once the targeted node restarts (or is forced to restart) it connects to adversary controlled
nodes with a high probability (exact number depending on the scale of the attack). The
adversary then has successfully split the node from the network and can launch follow
up attacks, like letting the node mine on a fork or not forwarding published transactions.
This attack is also possible for non PoW protocols. Possible countermeasures minimizing
the risk are adapting the mechanisms of how clients overwrite and choose their known
peers locally, reducing the attack window after reboots, disabling of incoming connections,
whitelisting, anomaly detection or anchoring connections so that they are not erased on
a restart.
For our purpose it is important to consider if an Eclipse attack is possible and if the
answer is yes, what effects it has on the whole protocol if an adversary can control what
messages single nodes receive.

3.4.8 Selfish mining
Selfish mining is another way for an adversary to increase gains on the blockchain
[ES13, RCa+20, DPP19, CELR17]. Selfish mining can have different forms with the
simplest one being to hide found blocks as long as possible and privately mine appending
blocks in a PoW system. Once the danger of loosing rewards for the privately mined
blocks becomes imminent, the blocks are published. In a more general way, selfish mining
just means a deviation from the protocol to increase one’s own gains. That can also
happen in PoS protocols as it mainly depends on the incentive structure of the protocol.
Once such a vulnerability in a protocol is found, it can usually only be fixed by changing
or extending the mechanisms of the protocol itself.

3.4.9 Grinding attack
Grinding attacks are possible whenever a source of randomness is needed. In several PoS
protocols it is the case that some source of randomness is needed to e.g. determine slot
leaders [KRDO17, DGKR17, DPS16]. If this randomness is taken from the blockchain
itself, an adversary can bias it in a way that benefits herself/himself when publishing
blocks. Snow White [DPS16] counters that by using randomness from an older block
interval where nothing is known about future block leaders. Another tactic is to use
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hashes produced by VRFs when determining block leaders as source of randomness. This
decreases the possibility to inflict bias.

3.5 Simulators
DAGsim [ZWH18] is a simulator for DAG protocols focusing mainly on performance and
scalability. It does not support malicious nodes and only provides a working implemen-
tation for IOTA and an incomplete version of SPECTRE. The source code is publicly
accessible on GitHub 6.
SimBlock [AOK+19] focuses on the network side of a blockchain. It is a general simulator
for blockchains using the PoW system and not designed in a way to simulate a specific
implementation. Network metrics like block propagation time can be examined under
different configuration settings. The source code is availabe on GitHub 7.
There exist two similar frameworks called BlockSim [AvM20, FC19] which are based
on models for different blockchain layers. One needs to programmatically define the
models for each layer. For example, it has to be defined how the network behaves, which
incentive structure exists and how consensus is reached. Then simulations are executed
based on these models. Both frameworks focus on PoW blockchains and there exist
models for Bitcoin and Ethereum only.

To the best of our knowledge, there exist no simulators which can be used or easily
extended to evaluate attacks on (PoS based) DAG systems.

6DAGsim on GitHub, accessed 14.9.2020: https://github.com/IC3RE/DAGsim
7SimBlock on GitHub, accessed 14.9.2020: https://github.com/dsg-titech/simblock
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CHAPTER 4
Simulator

In the course of this thesis, a simulator for Hashgraph (one of the most promising PoS
DAG protocols) was created. Hashgraph was chosen because of a multitude of reasons.
First of all, it defines its security under a very powerful asynchronous adversarial model.
Moreover, to the best of our knowledge no major security issues are known yet. A test
network of an actual implementation already exists, as well as a plan of how to convert
that into a fully functional cryptocurrency. It is furthermore backed by various influential
companies worldwide. The other candidates on the other hand state their security claims
under weaker adversarial models or a series of relevant security flaws are already known.

This chapter goes into detail on how the developed simulator is structured and what
functionality it offers. We will also discuss what assumptions have been made in cases,
where the underlying consensus protocol does not provide enough information necessary
for simulating real world attack scenarios.

The source code of the simulator, developed during the work on this thesis, is pub-
lished on Github1. Feel free to extend it and use it for your simulations.

4.1 Simulation modes
Our simulator offers a wide range of different configuration possibilities for every simula-
tion run via parameters. Additionally, the simulator supports two different simulation
modes for all attack scenarios. Some configuration parameters apply to every mode and
some only affect a specific one. Furthermore, the modes greatly affect how many actions
every participant performs and in which order they are executed as well. The simulator
has its own internal clock and time progresses differently between these modes. One

1source code of the simulator, published under MIT license on Github: https://github.com/
BSchachenhofer/dagsim
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must therefore first understand the difference between these two modes before having a
closer look at the implementational details of the consensus mechanism and configuration
parameters of the simulator.

The first mode is called Equal Sync-Times. Here, every participant performs a sin-
gle action before its the next participant’s turn. The turn order is permuted randomly
after every round. Once every participant performed an action, the time of the simulator
progresses by a configurable value resulting in every action taking the same amount of
time. This mode enables perfect control about the maximum actions of participants and
limits what action sequences are possible (e.g. honest participants cannot act multiple
times in a row). This enables better evaluation for attack scenarios where certain mea-
surable conditions need to be enforced, like an adversary being able to perform an action
multiple times compared to honest nodes.

The Random Sync-Times mode is the other option offered by the simulator. Here,
every action takes a random amount of time based on the exponential distribution around
configurable mean values. Every participant plans one action ahead and the action’s
finish time is calculated. Then, whatever action has the lowest finish time is executed first.
The simulator’s internal clock is set to the finish time of the action and the participant
plans its next action. The action patterns of this mode are more unpredictable. For
example, it can happen that one participant performs five smaller gossip-syncs in a row
before any other participant acts, provided that their actions take longer. The advantage
of this mode is that it represents real world conditions better and is thus more suitable
for performance comparisons between different scenarios (e.g. looking at confirmation
times).

4.2 Structure of the Simulator
The simulator itself is configurable via a graphical user interface which can be examined
in Figure 4.1. One can alter general simulation settings at the top of the window as
well as mode specific configurations of the current sync mode. Modes can be changed
by ticking the respective radio box on the top left of Figure 4.1. The following general
parameters can be configured independently of the chosen mode:

• Participants Defines the number of nodes present in the simulation. Every node
takes part in the consensus algorithm.

• Seed Many actions performed during a simulation scenario need some sort of
randomness (like execution order permutation or choosing an action). To ensure
reproducibility of simulation runs, every random action is based on the configured
seed. This determinism is not only important for being able to verify the results by
reproducing them, but also for other purposes like debugging. It is hardly possible
to locate and fix implementational bugs, if the simulator yields different results
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Figure 4.1: User-Interface of the simulator

for the same input parameters. Having a deterministic simulator made it possible
that bugs can be found, reproduced and fixed. Any positive integer number can be
chosen as seed.

• Idleness and Create event probabilities Whenever it is a participant’s turn
to act, one of three actions is performed. A participant can either perform a
gossip-sync, create an event or remain idle. Actions are chosen randomly with
a certain probability. These probability values can be configured. One can set
an integer value defining the probability of idleness and creating an event. The
remaining difference to one hundred percent gets assigned to the gossip-sync action.
Be aware that probabilities are checked in the following order: idleness, create
event, gossip-sync. If one enters a value greater than a hundred in the idleness text
field, all actions the simulator will perform will be idleness actions.

Performing a gossip-sync is the default action a participant performs most of
the time according to Swirlds-Consensus [Bai16b]. Thus, the probability of choos-
ing that action should be high. A participant picking this action chooses another
participant and syncs all known events to the other participant, creating a new
event at the receivers end during this process.
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Creating a new event locally enables a participant to incorporate transactions
into the hashgraph and communicate them to other participants when initiating its
next gossip-sync. Transactions can always be incorporated into the event created
when receiving a gossip-sync. This action makes sense when a node has not received
such gossip-syncs in a while, but wants to communicate new transactions. Therefore,
it makes sense to set the probability level for this action to a lower value.

The idleness action represent a node that involuntarily does not participate in the
protocol for a short period of time. Reasons for that can be manifold and range
from simple network failures to gossip-syncs that were discarded by the recipient.
That such things happen should not be the norm and if they do they sometimes
justify creating a new event locally (e.g. in case of a network failure). Therefore, it
is appropriate to assign the lowest probability value to this type of action.

In addition to these general parameters, one must also specify some mode dependent
parameters. The necessary settings for the Equal Sync-Times mode can be examined
below.

• Actions per participant This parameter sets the duration of the simulation
run by defining how many actions each participant performs. Every participant
performs one of the three actions (gossip-sync, create event or idleness) before the
procedure is repeated with permuted execution order.

• Sync-Time (in ms) This value defines the duration of performing one action
(like a gossip-sync). The internal clock of the simulator starts at this value and is
incremented after each round of performed actions. It has to be noted here, that
every node deviates from this clock randomly by up to plus or minus a third of the
defined value. The idea behind this mechanic is to bring the simulator more into
line with real world conditions, where clocks might not be exactly synchronous.
Moreover, this is also a necessary step to ensure different timestamps on events
within the same round of actions. In general, if any final consensus timestamp
values are still the same, the simulator orders events based on their event number,
as no signatures for resolving ties exist.

Also, the Random Sync-Times mode operates based on some user provided parameters.
The following values must be set:

• Simulation time (in s) Sets the internal simulation time. Participants perform
actions (and therefore progress the internal simulation clock) until an action exceeds
this time limit. This will be the last action that is executed and the simulator stops
and shows the results then.

• Mean event creation time (in ms) One can influence the duration of the action
where an event is created locally via this parameter. The duration is acquired by
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picking a random value from an exponential distribution with this parameter as
mean value. It also influences gossip-sync durations because of the gossip-sync
receive event creation.

• Mean Sync-Time per event (in ms) We discussed that participants can per-
form one out of three actions. This parameter influences the duration of two of
them. First, it influences the duration of gossip-syncs. For every gossip-sync a ran-
dom value of an exponential distribution is calculated. This parameter represents
the mean value of this exponential distribution. The resulting duration is then
multiplied with the number of events that the receiver did not know before this sync.
This ensures that syncing times scale with the transmitted amount of data, just
as in the real world. An event creation time is calculated next and added (repre-
senting the creation of the gossip-sync receive event), resulting in the total sync time.

Second, the idleness action is also influenced by this value. We discussed be-
fore that idleness can occur when a gossip-sync gets abandoned by the receiver.
However, there might exist other reasons for idleness as well. Thus, the simulator
calculates idleness the same way as it calculates the gossip-sync durations, but
instead of using the unknown node count as factor, a random number from an
exponential distribution with a constant mean value is taken. Also, no event
creation is included into the calculation of the final duration value. This calculation
changes reflect that idleness represents not only failed gossip-syncs, but also other
events like e.g. network connection problems. Nevertheless, using the mean sync
time of an event as a factor in the calculation ensures that on average the values
do not deviate in an unrealistic way (e.g. it prevents extreme cases like the average
gossip-sync duration for ten nodes being one hundred milliseconds but the average
idleness time being five seconds). To prevent such an unrealistic deviation, one
must also choose the right constant mean value for the node count factor. It makes
sense to choose a smaller double-digit value, to keep the probability of extreme
cases low. For example, we set this value to fifteen for our simulations. If one
argues that this mean count value limits the idleness duration too much in any
direction, one can still change the idleness action probability to increase or decrease
the overall idleness time of a simulation run.

With these values defined, a simulation run can be started. Once such a run is completed,
one can immediately see if the underlying consensus protocol was broken by looking at
the coloured label next to the Configure button. This automatic check compares the
internal graph representations of all participants and reports inconsistencies. It does not
only focus on final consensus timestamps, but also on inconsistencies of not yet decided
events. For example, it also considers different rounds assigned to the same event as
breaking, as such states can lead to different final consensus timestamps once more events
are added to the data structure. More detailed results are displayed in the area below
that label.
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Figure 4.2: Simulator attack scenario configuration

On the left side of Figure 4.1, a graphical representation of the DAG structure can
be examined. By clicking on any point of the graph view with the mouse, one centers
the view on this point. Zooming in and out using the mouse wheel is possible as well. It
has to be noted here, that this is mainly useful for low participant and action numbers.
In the right part of the user interface, information about the consensus algorithm is
displayed in a table. One can see to which round every event belongs to, if it is a witness
or even a famous one, as well as the witnesses for which famousness is not yet decided.
Exactly below that table, a final consensus order for all decided events is displayed. If
one is interested in the duration between event creation and reaching final consensus,
one can examine these values by clicking on the Confirmation Time tab of the consensus
result table. This tab also contains the round received and final consensus timestamp
values for all finalized events. All results are displayed from the point of view of a specific
node. This node can be changed using the dropdown above the result area.

The simulator supports four different scenarios, which can be chosen and customized by
clicking on the Configure button. The configuration options can be seen in Figure 4.2.
The following attack modes are available:

• None Every participant acts honestly and follows the consensus protocol.

• Fork Attack Participant A creates a fork after everybody performed two actions
(Equal Sync-Times mode) or one second of the total simulation time passed (Random
Sync-Times mode). From that point on, the malicious participant communicates
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only the left side of the fork to the first half of other participants and only the right
side to the other half on performing a gossip-sync. Also, on incoming gossip-syncs
only the respective side that would usually be transmitted to the sender is extended.
The malicious node is excluded from the automatic consistency check.

• Race Attack In this mode, participant A behaves differently and performs only
gossip-syncs instead of random actions, once the attack was triggered. This scenario
simulates an adversary observing a specific transaction in the last event of participant
B (like a transaction closing a lucrative stock trade) and issuing the same one with
the goal to get it incorporated into the final ledger before the original transaction.
Both of these transactions are highlighted in the graph view by their shape being
a square instead of a circle. Once the adversary issues the copied transaction,
it does not accept any gossip-syncs from participant B to slow down the spread
of the original event. In the Equal Sync-Times mode the attack gets triggered
after 3 action rounds passed and participant A starts syncing to as many other
participants during one time period as configured in the text field. Sync targets are
not chosen randomly. Instead, others are contacted in an ordered manner based on
their name. The attack starts after one second in the Random Sync-Times mode.
Here, the duration acquired for every gossip-sync action is reduced by dividing it
with the provided value in the text field. It has to be noted here, that gossip-syncs
not providing the receiver with any new information are never performed by the
simulator independent of the scenario, as they bring no benefit to anybody (neither
honest nodes nor the attacker).

• Split Attack No participant acts malicious, as this attack simulates the impact
of attacks on the underlying network. The network is split into two parts and
gossip-syncs are only possible between nodes within the same part. The amount of
participants per part can be configured via the total participant number and the
split size text field. There are also checkboxes which determine if the network split
occurs during the whole simulation run or if it starts and ends earlier.

What you can also see at the bottom of Figure 4.2 is the configuration for the automation
mode. Here, a range of seeds can be defined and a simulation run is performed for every
seed value without displaying any results in the user interface. Instead, the configuration
and the information if consensus was reached or if the protocol broke is written to a
text file. Also, both result tables (including scenario related extra information like event
numbers of race victims and malicious events) are saved as text files for every participant
in the CSV format with semicolons as delimiters.

4.3 Technical Details
The source code of the simulator is written in Kotlin, using Maven as dependency
management tool. The most important libraries are graphstream for handling and
visualizing the DAG data structures and JavaFX for building the frontend.

47



4. Simulator

The simulator was programmed using Java SDK 12.0.2 and Apache Maven 3.6.2, which
are necessary to compile and run it. All dependency versions can be looked up in the
pom file of the published source code.
The simulator supports logging of very detailed information during simulation runs. By
default, logging is configured only for warning or error messages. This can be extended to
debug and info messages by setting the respective value in the log4j.properties file in the
resources directory of the source code. Be aware that the performance of the simulator
can decrease when changing this setting.

4.4 Implementation of the Consensus Algorithm
In Chapter 3 we have stated, that Hashgraph consists of the Hedera Hashgraph cryp-
tocurrency [BHM19] and the underlying Swirlds-Consensus algorithm [Bai16b]. The
simulator is an implementation of Swirlds-Consensus, directly following the description
and pseudo code provided in the paper. As the simulator is about specific attack scenarios
applicable in the real world, it was sometimes necessary to take parts of the whitepaper
into account. Additionally, own assumptions had to be made in certain other cases. A
general overview of all assumptions and the resulting implementational details is given
below. Serious implications on specific simulation scenarios are discussed directly in the
respective evalutation part in Chapter 5.

4.4.1 Gossip-Syncs
Swirlds-Consensus presents a simple gossip-sync mechanism, where one participant tells
another one everything it knows. The receiver records that by creating a new event and a
directed edge to its own and the senders last event. The paper states that optimizations
or deviations are possible (e.g. syncing back immediately or syncing with multiple
participants at the same time) but explicitly states that the simple version is sufficient.
Therefore, the simulator sticks to this version.

4.4.2 Number of participants
Swirlds-Consensus assumes that the current number of participants is known by every
node which is taking part in the consensus algorithm. Hedera Hashgraph suggests an
address book in form of signed state proofs to achieve this. The simulator just assumes
that such a secure mechanism exists. At simulation start, all participants know the total
number of other participants. This number never changes during a single simulation run,
as Swirlds-Consensus provides no mechanism of how to add or remove participants.

When talking about Hedera Hashgraph, we are talking about a PoS protocol. However,
there exists no variable stake in Swirlds-Consensus, there is only a list of necessary
modifications for supporting variable stake available. Thus, there is no stake in our
simulator. Every participant is considered equal and possesses the same stake. No new
participants can emerge, which also eradicates the need for recalculations of event states
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(like round numbers or (famous) witness assignments). If an event gets a value assigned
during the course of a simulation run, the value can be consider final immediately.

4.4.3 Coin Rounds
The frequency of coin rounds for voting must be decided in any implementation of
Swirlds-Consensus and the paper itself does only offer an example value of 10 in the
functional form of the consensus algorithm in the appendix. No arguments about suitable
values are brought forward, so this value of 10 was also used for the simulator.

4.4.4 Simplifications
Swirlds-Consensus presupposes that there exist cryptographical hash functions as well as
secure digital signatures. They must be used to prevent any adversary from modifying
messages undetected or pretending to be another participant. The simulator itself does not
use any hashing or digital signature algorithms, but acts in a way as if these mechanisms
are implemented. So, no messages are tampered or sent in the name of another participant.

Additionaly, the simulator does not represent individual transactions. The smallest
data entity is an event and this is sufficient, as an order over all events implies an order
over single transactions anyway.

4.4.5 Performance
Swirlds-Consensus makes no assumptions about the speed gossip spreads or how fast
progress in terms of finalized events is made. However, the Hedera Hashgraph whitepaper
does state the following:

Initially, we anticipate that the Hedera network will be able to process 10,000
cryptocurrency transactions per second. Consensus latency is measured in
seconds, not minutes, hours, or days. [BHM19]

Therefore, the simulator supports the measurement of confirmation times over all execu-
tion scenarios and modes based on individually configurable parameters. It has its own
simulation clock, which is incremented depending on the chosen mode.

However, the simulation runs are not optimized in terms of performance. Thus, execution
times vary greatly from seconds to minutes or hours, depending on the configured partic-
ipant numbers and simulation time or action per participant parameter. The consensus
algorithm always operates on the full DAG structure and does not throw away the events
of already decided rounds, as suggested by the Hedera Hashgraph whitepaper. Therefore,
during each gossip-sync the whole data structure is handed over from one to another
participants. Although Swirlds-Consensus presents ideas of what to transmit during
gossip-syncs to reduce the required bandwith as much as possible, these optimizations
are not necessary as there is no real network communication.
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4.4.6 Forks
Swirlds-Consensus states that a participant can misbehave by creating a new event, which
does not reference one’s own last event as parent, but one that already has another child.
This leads to a fork and the two branches that result from it can now be independently
communicated to other participants. This can lead to inconsistencies in the view of other
participants onto the total DAG structure. As no votes are sent over the network and
every node can provide a proof for all finalized events themselves, it must be ensured that
the different views do not result in confirmation of events of both branches. Otherwise
double spends are possible. Swirlds-Consensus mitigates that possibility through the
following definitions:

Definition 5.6. An event x can see event y if y is an ancestor of x, and the
ancestors of x do not include a fork by the creator of y.
Definition 5.7. An event x can strongly see event y if x can see y and there
is a set S of events by more than 2/3 of the members such that x can see
every event in S, and every event in S can see y. [Bai16b]

Swirlds-Consensus does not define any further consequences for participants which
misbehave. Participants which caused a fork can still continue performing gossip-syncs
and due to cryptographic hash functions and signatures, their gossip-syncs can still be
valuable. Figure 4.3 shows such a case, where participant B learns about event 1 via
attacker M during the gossip-sync that creates event 7 although M created a fork through
events 4 and 5. Thus, the simulator displays all received events for every participant no
matter if they represent a fork or not. These events are also included in future gossip-
syncs. On receiving events via gossip-sync, the simulator checks if a fork occurred. From

Figure 4.3: Example of a forking participant’s gossip-syncs being still valuable

that moment on, all events which have both fork roots in their ancestor set cannot see
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them and all their successor events in regard to the consensus algorithm. This influences
event confirmation, as final timestamps are only assigned after all famous witnesses of a
round have an event in their ancestor set. To decide if witnesses of a round are famous,
the concept of strongly seeing is used which also implies seeing as definition 5.7 shows
us. The node producing the fork still follows these definition in the simulator. However,
in theory it could also completely deviate and thus its consensus and confirmation time
data in the respective tables can be seen as irrelevant.
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CHAPTER 5
Discussion

This chapter covers the evaluation and discussion of the simulation results. The simulator
itself offers a wide range of possible settings for every simulation scenario and operational
mode. However, to make the impact of attacks comparable even across different attacks,
we define the following set of base configurations first.

Equal Sync-Times:

• 4-EST: 4 participants; Actions per participant: 30; Sync-Time: 100ms;
Idleness: 5%; Create event: 8%

• 10-EST: 10 participants; Actions per participant: 30; Sync-Time: 100ms;
Idleness: 5%; Create event: 8%

• 20-EST: 20 participants; Actions per participant: 30; Sync-Time: 100ms;
Idleness: 5%; Create event: 8%

Random Sync-Times mode:

• 4-RST: 4 participants; Simulation time: 10s; Mean Sync-Time per event: 30ms;
Mean event creation time: 10ms; Idleness: 5%; Create event: 8%

• 10-RST: 10 participants; Simulation time: 20s; Mean Sync-Time per event: 30ms;
Mean event creation time: 10ms; Idleness: 5%; Create event: 8%

• 20-RST: 20 participants; Simulation time: 40s; Mean Sync-Time per event: 30ms;
Mean event creation time: 10ms; Idleness: 5%; Create event: 8%
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Each configuration has its own short name for direct reference in the following sections.
The short name indicates the Sync-Times mode and how many participants are involved.
The participant numbers were chosen to be 4 (to represent the minimal number of par-
ticipants necessary, so that the system can proceed if one participant acts malicious), 10
and 20 (to see how malicious actions impact the system if the proportion of participants
acting honest gets bigger and bigger). Keep in mind that Swirlds-Consensus [Bai16b]
considers each participant equal in terms of consensus voting weight (like everybody
possessing the same amount of stake) and that more than two thirds of the participants
must be honest for the system to work properly. In terms of action probabilities, 5% were
chosen for idleness and 8% for event creation for all configurations. Optimally, events
should not be created too often, as there should be enough incoming gossip-syncs which
include event creation anyway. Therefore, values below 10% make sense, which includes
the chosen value of 8%. Idleness should occur even less often, as idleness can sometimes
be seen as a reason for creating an event locally (e.g. in case of a network outage one
might want to immediately communicate own transactions before waiting for incoming
gossip-syncs). Therefore, 5% was chosen which together with the idleness probability
results in gossip-syncs being chosen as an action with a probability of 87%.

The parameters Actions per participant and Simulation time influence the amount
of created events during a simulation and were chosen high enough, that events get
actually confirmed. Otherwise, consensus cannot be broken as it was not reached. As
you can see, the number of actions remains stable for the Equal Sync-Times setting as
it was chosen high enough to lead to confirmed events. It has to be noted here, that in
this mode performing a gossip-sync takes the same time no matter how many events are
synced. However, the simulation time of the Random Sync-Times setting increases with
higher participant numbers. This is necessary as the total number of actions in this mode
depends on the duration of each action. More participants means more events which leads
to bigger gossip-syncs (the most time consuming operation) resulting in less actions over-
all. By increasing the simulation time one can ensure that events get actually confirmed.
The next parameters are the respective action times. For the Equal-Sync-Times mode
the given duration only affects total confirmation times. 100ms were chosen because of
simplicity reasons (every participant can perform up to 10 actions per second). The Mean
Sync-Time per event value for the Random Sync-Times mode was configured at 30ms to
prevent the sync-time difference between gossip-syncs from getting too big. For example,
a mean value of 100ms for the random value of the exponential distribution would lead
to bigger differences in values one can expect, especially as the value gets multiplied
with the amount of events that are synced. The Mean event creation time value was
set to 10ms to fullfil the assumption that a local action (creating an event with signa-
tures) takes less time than sending the same event over the network to another participant.

All of these configurations were executed for the seeds 1 to 1000 for every attack scenario.
This results in thousands of simulation runs for every attack scenario, which provides
a good data basis for evaluations. Whenever additional or divergent simulations were
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performed for a specific attack scenario it is explicitly mentioned. The simulated results
of the attack scenarios (like confirmation times) are often compared to the honest case.
The following sections often compare aggregated confirmation time values to show the
impact of an attack scenario on the overall performance. These values are always acquired
in the same way. First, a mean confirmation time is calculated over all existing events
independently for every participant. These values differ between participants, depending
on the structure of the underlying DAG of the simulation run. This is done for every
seed, leaving us with a thousand confirmation times per participant. Again, the mean
value of these thousand confirmation times is calculated for every participant. Now, we
can set these values in comparison to assess what impacts one can expect.

5.1 Fork attack
A fork attack in our context means, that an adversary creates two blocks referencing
the same parent block instead of one. From that moment on till the end of the attack,
the adversary communicates one block (and any successor blocks) to a subset of all
participants. The other block (and any successor blocks) is only communicated to the
remaining participants. There is no interference in the communication between honest
participants.

For that behaviour to be an actual attack on a protocol, it must be the case that
participants are only allowed to create one block in a time period or per parent block. In
classical PoW chains, this is not necessarily an attack as the same can happen as a result
of the stochastic process.

The goal of this attack is to trick different participants into accepting conflicting transac-
tions, so that a successful double spend can be performed. However, if this is not possible
by protocol design another goal of this attack can be to break the protocol completely,
impair other participants or slow progress down.

5.1.1 Attacking Hashgraph
Swirlds-Consensus describes how a malicious user can create a fork and defines how the
protocol works under this scenario. However, it does not provide any details on what
this means for the malicious as well as the honest participants. We can gain some insight
in that topic when simulating multiple fork attack scenarios.

On choosing the fork attack, participant A acts malicious and creates a fork after
every participant performed two actions or one second of total simulation time passed
(dependent on the configured mode). Participant A still acts randomly, but its actions
differ. When transmitting a gossip-sync to the first half (rounded up) of other partici-
pants, only the left side of the fork is communicated. The event created on receiving a
gossip-sync from these participants is also only attached to the left branch. The same
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goes for the other participants and the right branch. When the malicious participant
creates an event, one is created on both branches.

One can now look at what happens to events of the forking participant as well as
the honest ones. Then, answers for the following questions can be derived: How are
events of different branches finalized and what does excluding them from the seeing
mechanic of the consensus algorithm imply? Does this observed behaviour have any
impact on posterior corruption scenarios, where adversaries take over private keys of
former participants? Are there any impacts on other participants recognizable (e.g. Do
confirmation time values change? Does the consensus mechanism break at any point?)

5.1.2 Evaluation
First, look if the consensus mechanism of the protocol can be broken using a fork attack.
Therefore, each of the default configuration was simulated under the fork attack mode a
thousand times with seed values from 1 to 1000.

The consensus mechanism did not break in any of these 6000 simulation runs and
the protocol remained stable. On investigating some of them in more detail, one can
observe that the forking participant usually has two witnesses per round in our simulation
scenarios. An event becomes a witness if it got a higher round number assigned than
its self parent (that happens if it strongly sees more than two thirds of the current
round’s witnesses). As events on the two fork branches have two different self parents,
having two witnesses can happen (and does happen regularly if both branches are equally
active). It has to be noted here, that the following definition of Swirlds-Consensus is
thus misleading:

Definition 5.8. A witness is the first event created by a member in a round.
[Bai16b]

It is possible that there are two "first" events in case of a participant forking. However,
that has no impact on the correctness of the protocol as the consensus mechanism
specifically depends on unique famous witnesses, meaning a famous witnesses for which
no other witness exists in that round. This is also explicitly stated in the respective
definitions and the pseudo code in Swirlds-Consensus. As discussed in Chapter 4, once an
event has a fork in its ancestor set, it cannot see the forking events and their self-children
in regard to the consensus mechanism. This results in none of the forking participant’s
witnesses becoming famous and thus banning it from the consensus mechanism. This
can be examined starting with round three in the consensus table of the simulation run
with four participants depicted in Figure 5.1. Nevertheless, consensus can be reached as
the other three participants act honest. The coins of the malicious participant are not
lost and all transactions it issues are still incorporated into the ledger the same ways as
before. It just does not participate in the consensus mechanism and thus gains no share

56



5.1. Fork attack

Figure 5.1: Witnesses of forking participant excluded from consensus mechanism

of paid transaction fees. However, it is no problem to transfer all funds to a different
account and participate in the consensus mechanism again.

It is however also possible that a forking participant still has famous witnesses as
long as the fork is not known to most other participants and there exists no other witness
of the same participant in the current round. Just imagine a nothing-at-stake scenario
where an adversary gets control over the private key of an honest participant once the
honest one does not posses any stake anymore. The adversary could then start a fork
somewhere back in time. Once the forking event is communicated to other participants,
the respective gossip-sync event gets the current round assigned. Thus it is not possible
that conflicting witnesses pop up in the past. Furthermore, conflicting transactions are
resolved by considering the one with the lower confirmation timestamp as valid. As
long as more than two thirds of the participants act honest, later appearing forking
events cannot achieve a lower timestamp as already confirmed events on the former
existing branch. It might even be impossible to start forks for too old events if we
look at the Hedera Hashgraph whitepaper [BHM19], which allows participants to drop
already decided older rounds to save resources. These mechanics are also effective defence
mechanisms against any posterior corruption attacks.

To see if a fork attack has any impact on the confirmation times of events, we compare
the average confirmation times of the honest executions with the fork scenario times. As
the Random Sync-Times mode represents real world conditions better than the Equal
Sync-Times mode, we use its configurations for the comparison. Table 5.1 covering the
four participant case shows us, that every participant needs on average 20 to 25 percent
more time to confirm an event. This high increase makes sense, as a quarter of the
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A B C D
Honest 4-RST (ms) 4519 4498 4512 4503
Fork 4-RST (ms) 5421 5595 5576 5546
Difference (%) 19.96 24.39 23.58 23.16

Table 5.1: Average confirmation times 4-RST honest vs. fork

A B C D E F G
Honest 10-RST (ms) 14439 14459 14443 14526 14458 14492 14468
Fork 10-RST (ms) 15259 15170 15213 15201 15191 15233 15196
Difference (%) 5.68 4.92 5.33 4.65 5.07 5.11 5.03

Table 5.2: Average confirmation times 10-RST honest vs. fork

A B C D E F G
Honest 20-RST (ms) 34795 34718 34834 34804 34773 34779 34831
Fork 20-RST (ms) 35571 35399 35288 35479 35303 35357 35454
Difference (%) 2.23 1.96 1.30 1.94 1.52 1.66 1.79

Table 5.3: Average confirmation times 20-RST honest vs. fork

participants (and thus stake) is excluded from the consensus mechanism, which slows
it down. When we look at tables 5.2 and 5.3, we can see that this slowdown decreases
based on the number of participants. It hast to be noted here, that tables 5.2 and 5.3
only show values for the first seven participants for the sake of readability. Anyway, for
ten participants confirmation times are slowed down by around 5 to 6 percent on average.
Looking at the values for 20 participants one can observe that the confirmation time
increase there lie around 1.3 to 2.3 percent on average. This leads us to the conclusion,
that the impact of a fork attack on the overall performance of other participants in
terms of confirmation times is significant for very low numbers. Nevertheless, it becomes
more and more negligible the more the ratio of malicious nodes to honest nodes shifts
in the favour of the honest ones. Comparing all three tables shows us that the average
confirmation times also increase based on the total number of participants. One can thus
conclude that the system acts faster the fewer participants there are, while at the same
time getting more vulnerable to attacks in regard to performance numbers.

5.2 Race attack

What we understand by a race attack in the context of cryptocurrencies is an adversary
being able to get transactions faster confirmed/finalized than honest users. We see that
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such an attack can become an issue when we look at Ethereum’s ERC-20 token standard1.
This standard enables the creation of tokens representing financial assets (e.g. shares of
a company, a fiat currency, or a new currency on top of Ethereum). These tokens can be
traded via decentalized exchanges2. Users can freely place sell or buy orders which can
lead to scenarios where you can buy a certain token at a low price and immediately sell it
for a higher one, leading to profit without any risk. Whoever finds a (possibly malicious
way) to boost one’s own transactions, profits at the cost of honest users. It even becomes
worse, as the necessary transactions can be publicly seen once they are published. This
leads to the possibility of an adversary publishing a conflicting transaction to get the
profit instead. As Ethereum is still PoW based, the transaction landing on the chain
with the highest accumulated difficulty target will be considered valid. However, an
adversary starts the race behind the honest user in such a scenario. If there exists a
way for an adversary to increase the chance of outpacing the honest user in either case,
race attacks are possible. Daian et al. [DGK+19] published a paper on what possibilities
exist to do exactly that on decentralized exchanges for Ethereum. They show that there
exist various bots that even compete against each other to close arbitrage deals found
directly on decentralized exchanges (normal race) or received through transactions of
other participants (frontrunning).

This topic is highly relevant, as Hedera Hashgraph explicitly references stock markets as
an use case for their ordering service.

5.2.1 Attacking Hashgraph
The fairness model of Swirlds-Consensus states, that events are ordered based on the
mean timestamp of participants first hearing about the transaction, once it reached
a significant fraction of the community. The protocol defines no restrictions on how
many gossip-syncs one is allowed to perform in a certain time period and there exists
no punishment for flooding the network with gossip-syncs to other participants. On the
contrary, the protocol actually states the following in regard to participants trying to do
exactly this:

Similarly, Bob could gain an advantage over Alice by buying more bandwidth,
so that his gossips reach more people, faster. If he has 8 times the bandwidth
of Alice, so that he can send his transaction initially to 8 members in the
time Alice sends to 1, then he can gain an advantage of the time of about 3
gossip syncs. This is not considered a failure. If his message actually reaches
the world before hers, then he should have the credit for it. This is similar to
the current stock markets, where companies spend large sums of money for
slightly faster connections, in order to reach the central server faster. [Bai16b]

1ethereum website, accessed 20.11.2020: https://ethereum.org/en/developers/docs/
standards/tokens/erc-20/

2there exist multiple different exchanges which handle such trades via Smart Contracts, one example
being EtherDelta (accessed 20.11.2020): https://etherdelta.com/
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Considering that Hedera Hashgraph introduces stake and everybody knows how stake is
distributed (because for the protocol to work, everybody needs to know the total partici-
pant/stake count), this can become a problem. Just imagine participants with different
processing capabilities and everybody is flooding the network with as many gossip-syncs
as possible to get own transactions confirmed faster. Weaker participants (or participants
with less bandwith) might have problems to process all incoming gossip-syncs. But worse,
why would any participant choose gossip-sync partners randomly as intended? A better
strategy would be to always contact participants with higher stake first, increasing the
load for them even more.

However, if we look at how network fees are spread, we see that faster confirmation times
or publishing more transactions does not influence one’s earnings. As long as participants
exceed the minimum activity treshhold, they get coins based on their proportion of stake.
They do however get directly payed for including transactions into the DAG structure. It
is imaginable, that users prefer to publish their transactions to participants who ensure
faster confirmation times. This might provide more incentive for participants to perform
as many gossip-syncs as fast as possible. However, to argue about that, one needs to
know what confirmation time differences can be expected.

This data can be acquired using our simulator. We need to compare confirmation
times between faster and slower participants under different scenario configurations
(changing participant numbers or gossip-sync times) to look at how effective race attacks
are, as well as finding out if the difference is relevant enough to be able to influence
users decision to whom they publish their transactions. Additionally, the very relevant
question, if an adversary is able to outpace an event issued shortly before by another
participant, needs to be evaluated as well. This can be done by comparing the round
received and final consensus timestamp values of the two competing events, which the
simulator provides.

5.2.2 Evaluation
We first evaluate how realistic it is for an adversary to win a race based on how many more
gossip-syncs it is able to perform in comparison to an honest participant. We use the Equal
Sync-Times mode (configurations 4-EST, 10-EST and 20-EST) for that, as it enables us
to exactly configure the amount of gossip-syncs the adversary performs compared to the
honest participants. Additionally, the adversary does not accept any gossip-syncs from
the victim once the attack started, to slow down the spread of the original transaction.
That and the fact that the adversary creates an event at the start of the attack result in a
difference between an honest run and a race attack with gossip-sync value 1. Again, partic-
ipant A takes on the role of the adversary. We do not simulate the scenario with multiple
adversarial participants, as this would make the scenario more complex without increasing
its meaningfulness. Having two adversary for example would only increase the amounts
of gossip-syncs with malicious intent that are performed at the same time. However, our
simulator already enables a scenario configuration where the adversary is syncing to all
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other participants at once (or an equivalent reduction of gossip-sync durations). This
already represents the scenario where the adversary possesses the maximum advantage
and adding further adversarial participants does not increase that. It only increases the
amount of malicious stake, which can already be varied indirectly via participant numbers.

Figure 5.2 shows how likely it is for an adversary to win a race, when its event is
published shortly after the original event was published. Although simulation runs were
executed for all seeds, some of the runs do not result in the competing events being
finalized when the simulation ends. For example, EST-20 with gossip-sync value 9 results
in 993 races from which 851 were won by the adversary. No bars are displayed for EST-4
starting with gossip-sync value 4 and EST-10 for gossip-sync value 19, as the maximum
number of unique gossip-sync targets is lower. The best case for an adversary is already
reached when syncing to all other participants at once. Further gossip-syncs do not
provide any advantage for the adversary and are thus not performed by the simulator. As
expected, syncing to more participants than an honest participant increases the chance
of winning a race independent of the number of participants. This is not surprising due
to the exponential nature of events spreading as receivers forward them within their
own gossip-syncs. This mechanic amplifies any advantage a single participant might
have. We can also examine the trend, that the impact of being able to perform more
gossip-syncs turns out higher the more participants exist. The reason being, that it is
not enough that all participants can see your event. In the best case at least two more
rounds of famous witnesses must be present for your event to get finalized. Sure, if
both events have the same round received value, the median timestamp of reaching the
participants is taken, which puts the adversary at an advantage. We also assume, that
the adversary wins all ties which are broken by a mechanism based on the signature
to give him even more power. However, if there are only four participants, an honest
participant needs only two gossip-syncs, so that more than two thirds of the participants
know about its event. It is very realistic that this happens before two more rounds of
famous witnesses occur. The evaluation results of Figure 5.2 also reflect that so far, as
that the highest success rates occur under the EST-20 simulation. Syncing to three out
of ten/twenty participants is more effective than syncing to all out of four participants.
Interesting is also, that massively increasing the number of syncs leads to only a small rise
in success probability, as the EST-20 numbers show us. Syncing to all other participants
instead of only half of them (gossip-sync value 19 instead of 9) only increases the success
probability by 1%. Success probabilities for only ignoring gossip-syncs from the victim
lie between 35 to 50 percent. That means that even if you cannot outperform your
victim in terms of gossip-syncs, you still have a reasonable chance of success. It has to
be noted though, that the adversary in the simulation runs does not take any idleness
or create event actions anymore and that Figure 5.2 shows that the chance of success
decrease by fifteen percent between the EST-4 and EST-20 scenario even under these
advantageous circumstances. One can assume from the data we have, that this number
decreases even further if more participants join. The question how low it would be in
the end for thousands of participants as intended by Hedera Hashgraph remains open
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Figure 5.2: Probability of adversary winning a race based on number of gossip-syncs and
number of participants

for future work. All in all, we can clearly see that already syncing twice as often sets
the chance of successfully frontrunning another transaction to around 60% which makes
Hashgraph vulnerable to such attacks.

Next, we look on the effects of this attack on the overall confirmation times. Ta-
ble 5.4 shows us that average confirmation times for different race speeds decrease only
slowly. Syncing to all participants is 285ms (or 15.4%) faster for the EST-10 setting
and 305ms (or 12.7%) faster for the EST-20 setting compared to the honest values. The
race attack with gossip-sync value 1 being slower than the honest case for EST-4 can
be explained by the different behaviour of the racing participant. It does not accept
gossip-syncs from the victim, which leads to a little slowdown in confirmation times.
On the other hand, the adversarial participant does not perform any idleness or event
creation actions anymore, which leads to a decrease in average confirmation times. As
one can see in Table 5.4, the combination of these two effects turns out in favour of
the adversarial participant with rising participant numbers. You can see all that data
visualized in Figure 5.3. Also, we examined the average confirmation times for the racing
participant, as its confirmation times profit the least from its own speed. The racing
participant must still wait for gossip-syncs of other participants to confirm all events and
it does not accept gossip-syncs of its victim. So, this performance increases in average
confirmation time are also valid for all the other participants. Looking at the data, the
confirmation times between participants vary in a range of around 20ms (EST-20), 10ms
(EST-10) and 5ms (EST-4).
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Figure 5.3: Average confirmation times for racing participant visualized

Honest 1 2 3 4 9 19
EST-4 (ms) 899 1006 944 906
EST-10 (ms) 1851 1850 1748 1682 1647 1566
EST-20 (ms) 2387 2386 2318 2271 2244 2146 2083

Table 5.4: Average confirmation times for participant A under different race speeds

All in all, we can conclude that a single participant can have an impact on total con-
firmation times. The percentage rate of this influence decreases with rising participant
numbers. This can be traced back to the fact that a certain entanglement between
the other honest participants must be given to fulfill the criteria of strongly seeing.
However, the adversary cannot influence how fast the other participants perform their
gossip-syncs. A more significant decrease in confirmation times only occurs, if more partici-
pants sync faster, as one can verify by decreasing the parameter affecting gossip-sync time.

Our results state that race attacks are possible and thus there exists an incentive
for users to send their transactions to the participants which spread their transactions
faster over the network. This incentive however only applies for transactions where
order is important, as total confirmation times vary insignificantly. When we introduce
stake, spreading over the network faster means reaching as much stake as fast as possible.
Thus, for transactions where order is important, participants have a strong incentive
to first (or only) sync to other participants possessing more stake, effectively excluding
participants with lower stake partially from the consensus mechanism by not sending
them gossip-syncs. High stake participants might receive more requests than they can
process, which can be compared with a DDoS attack on them, rendering them useless.
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The possibility of this attack thus endangers the functionality of the whole protocol, as
taking out stake slows down the protocol until it cannot achieve progress at all, as we
will see in the next attack we discuss.

5.3 Split attack

A split attack partitions the nodes of a cryptocurrency in (at least) two parts, resulting in
nodes only being able to communicate with other nodes of the same part. Cross-sectional
communication is prevented.

To achieve this, the attack targets the underlying network of the cryptocurrency. Because
decentralization is a major property of most cryptocurrencies, the protocols usually rely
on a peer-to-peer network structure. Nodes know a few other nodes and communicate
directly with them. This peer-to-peer structure is built on top of the Internet, leading to
more attack surfaces. Apostolaki et al. [AZV17] describe that the Internet consists of
multiple networks called Autonomous Systems and that there is de-facto only the Border
Gateway Protocol (BGP) used to regulate the packet flow between them. Adversaries
can perform BGP hijacks by forging BGP routing information to isolate a certain amount
of nodes of a cryptocurrency. This effectively splits the peer-to-peer network into two
disjoint components. Looking at attacks on different systems in the past, Apostolaki et
al. state, that it can take hours of work to resolve such attacks once they are detected.
It has to be noted here, that network partitioning like that can also happen without
any malicious intent behind it, which makes it even more important to study its impact
on cryptocurrencies. The threat was analyzed in depth for Bitcoin, but it was also
mentioned that the research carries important lessons for other peer-to-peer network
based cryptocurrencies operated atop of the Internet. Thus, such attacks must also be
considered for Hashgraph.

5.3.1 Attacking Hashgraph

Our simulator enables us to simulate split attacks where all participants are divided into
one of two different groups. The split size can be configured and thus we have to consider
two different scenarios. First, we can have a look at the case where the split results in
none of the two parts having more than two thirds of the total stake. This results in no
progress in terms of event finalization. Nevertheless, we can investigate if and how the
DAG data structure changes under such an attack.

The more interesting case is when the split does not prevent progress, as one of the
parts possesses more than two thirds of the stake. Here, one can find out how event
confirmation numbers are influenced based on a combination of split size and total
participant count.
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5.3.2 Evaluation

For Swirlds-Consensus to confirm events it is per definition necessary that more than two
thirds of the participants can communicate with each other. If just some participants
cannot communicate with each other for a certain amount of time (e.g. through a split
attack), the DAG data structure grows slower. That is because less gossip-syncs can be
performed. This then leads to the creation of less gossip-sync receive events. Moreover,
we have two distinct graphs in the different split parts if the two third mark is not
exceeded in any part and the split condition holds since the start of the simulation. Once
the split is resolved (simulatable by ticking the configuration checkbox that the partition
ends after three quarters of total actions/simulation time), gossip-sync time increases for
the first syncs after the split is resolved. Again, we use the Random Sync-Times mode for
our evaluation to be closer to real world conditions. It always calculates gossip-sync times
based on the amount of unknown events which would have to be transferred. However,
calculating it that way when a gossip-sync cannot be performed would seriously distort
the simulation results. Gossip-sync times would increase the longer the split lasts, which
would lead to less overall actions. To mitigate that distortion, a participant performs an
idle action whenever its random action would have been a gossip-sync to an unreachable
participant.

To evaluate the effects of a split attack, we will look at the amount of confirmed events
instead of average confirmation times. We prefer that over average confirmation time, as
the latter would not account for events not confirmed through the split situation. Not
confirmed events are not taken into account for that value, because the last events of every
simulation cannot have a confirmation time assigned. This holds true independent of the
simulation scenario, simply because there exist no future famous witnesses that could
decide their final consensus timestamps. Figure 5.4 presents the number of confirmed
events based on split sizes. That data was derived from simulations where the split
condition ended after three quarters of the simulation time, to give the participants the
chance to confirm more events before the simulation time is over. The diagram shows
us, that for RST-20 no events are confirmed even one value before the critical split size
is reached. Please keep in mind, that for RST-4 at least three participants, for RST-10
at least 7 participants and for RST-20 at least 14 participants need to be in the same
part to confirm events. If the split size is increased high enough, this condition will be
given again (e.g. split size 1 and 3 are equivalent for RST-4). Figure 5.4 only presents
split sizes until no confirmation is possible. It also shows us that confirmation numbers
decrease slower on runs with more participants. Nevertheless, we see that nearly no
events are confirmed once the split size approaches one third of the participants. That
implies, that a split attack severely slows down confirmation even in the part that can
still confirm events. Progress is completely halted in the other one. For RST-20 at split
size 2 (representing 10% of the total participant count), confirmed events dropped by 23%.

This is not optimal, but not critical to the security of the system. In comparison,
in PoW cryptocurrencies like Bitcoin [Nak08] or Ethereum [Eth] a split would mean that
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Figure 5.4: Confirmed events based on split sizes

a fork occurs and the different split parts mine on different branches. An adversary that
controls how the network is split might have enough hashing power in one of the parts
to dominate it. Other protocols like Ouroboros Praos [DGKR17] explicitly state that
they stay secure as long as an adversary has control over message delays until a certain
upper limit. So, security problems may occur due to a split attack if it lasts for long
enough. On the other hand, cryptocurrencies like Algorand [GHM+17] might also be
mainly delayed in finalizing blocks.

5.4 Balancing attack based on split attack
The split attack enables an adversary to stall event confirmations completely for a limited
amount of time (as long as the split prolongs). The split in this attack is rather static.
The network is partitioned and participants in different parts cannot communicate with
each other until it is resolved. Swirlds-Consensus states, that it stays secure under a
scenario where an adversary can delete or delay messages, as long as it is given that if
honest members repeatedly send messages to one another, the adversary must eventually
let one through. One can see this scenario as an advanced split attack, where the
adversary dynamically defines which participants are cut off from each other and which
ones can communicate. But what about liveness under this scenario? As the adversary
can delay messages without any bounds, he or she can effectively define exactly how
the DAG structure looks like. Is it possible to generate it in a way, so that events are
never confirmed (given that an adversary must continuously extend the DAG structure)?
In Swirlds-Consensus events are finalized if they are seen by all famous witnesses of a
round. So, the ultimate goal is to stall the process of deciding which witnesses are going
to be famous. This voting process is based on what the witnesses of the respective fol-
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lowing round can see. So, lets look at the possibilities to sabotage this process step by step.

First, we have to discuss if an adversary can connect events in a way that a next
round is never reached. An event only gets a higher round number assigned if it can
strongly see more than two thirds of the witnesses in the current round. This can be
written mathematically as �2n/3+1� with n being the total participant count. �2n/3+1�
also denotes the minimum number of honest participants (by assumption). An adversary
cannot prevent reaching the next round by definition, as messages between honest partic-
ipants must be eventually let through. Witnesses then vote for the famousness of the
witnesses of the round before based on if they can see it or not. An adversary with the
described power can define the outcome of every vote by building the DAG structure
accordingly. Now, every witnesses of the next round has the power to finalize the decision
if it strongly sees more than two thirds of the witnesses of the round before. However,
this condition is always true for every witness because of the way round numbers are
assigned. The first event getting a higher round number assigned certainly fulfills this
condition, as we established above. Other events in this round either go through the
same process if they have two parents of the round before, or are themselves children of
an event that already fulfills this criteria. Thus, all witnesses strongly see the witnesses
of the round before.

We established that an adversary cannot prevent this votes from happening, but can
completely control the outcome. Witnesses see votes from at least �2n/3+1� participants
and only finalize a famousness vote based on the majority vote if it is mathematically
impossible to flip their decision with the votes they cannot see. If they cannot finalize
their decision, they just vote with the majority and hand over to the witnesses of the next
round. So, an adversary can prevent finalization of famous witnesses by building the DAG
in a way that votes are too balanced to ever decide. For that case, Swirlds-Consensus
introduced coin rounds. Basically, all c rounds voting is not done based on previous
votes that a witness can see, but instead on the middle bit of the deciding witnesses’
signature. These votes are thus out of the control of the adversary, as these events are
created by the honest participants themselves. An adversary can however set the votes
for stake controlled by him or her. The adversary can still determine which �2n/3 + 1�
votes each witness of the next round can strongly see, enabling him or her to include
his own votes in every of these decisions. If we assume that the adversary controls the
maximum number of participants (or stake) possible so that �2n/3 + 1� participants
are still honest, in the worst case all random honest votes must be equal to tip the
balance in one direction. Looking at the example of n = 10 participants, we can see that
�2n/3 + 1� = 7 nodes are honest and that is the same number of equal votes an witness
must see to decide famousness. The adversary controls the remaining 3 votes and can
include them in any way in the votes that witnesses see. No matter if just one or all three
votes are included, witnesses strongly seeing only 7 witnesses of the former round cannot
finalize famousness. Remember, if they cannot decide famousness, they vote themselves
based on the majority of votes they see and leave the decision to the witnesses of the next
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round. As the adversary controls only three of the seven votes taken into account, all
witnesses of the coin round (even the one’s of the malicious participants) are considered
to vote with the honest majority. Next round the adversary has nothing to balance, as
all votes are the same and the famousness of the witnesses in question is decided. It has
to be noted here, that progress in terms of event confirmation is only made if witnesses
become famous and thus only one coin round result ensures progress.

The probability for a coin round to cause the confirmation of events is thus 0.5�2n/3+1�.
The probability of that happening is pretty low as the numbers for ten participants
(0.57 = 0.0078) and a thousand participants (0.5667 = 1.63e − 201) show us. In theory,
progress is guaranteed with probability one even for that case. In practice, the low
probabilities render the protocol useless under this attack scenario.

5.5 Findings relevant to PoS DAG protocols in general
If we look at the PoS DAG protocols we have discussed and the findings of the simulation
runs (especially the ones of the race attack), we can see that one problem appears over
and over again. Participants which spam certain types of messages can cause trouble in
most of the protocols. Therefore, one lesson learned is, that having no mechanism in place
to prevent uncontrolled spamming of messages can lead to security of liveness weaknesses,
potentially endangering the whole system. Thus, whenever designing or looking at such
protocols from a security perspective, one should specifically pay attention to mechanisms
preventing spamming or a lack thereof.
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CHAPTER 6
Summary and Future Work

Traditional PoW cryptocurrencies like Bitcoin can be seen as decentralized payment sys-
tems. Their potential is however limited by some challenges, two of the major ones being
high energy consumption and low transaction throughput. Over the years, solutions for
these problems were proposed, like PoS systems for reducing the energy consumption our
exchanging the underlying data structure with DAGs to increase transaction throughput.
Some protocols emerged which combined these two principles to solve both problems at
once.

In this thesis we investigated Hashgraph, one of the most promising of these PoS
DAG protocols. We tested its resilience against multiple different attacks by creating a
simulator and evaluating the protocol over thousands of simulation runs. A learning was,
that a fork attack does not compromise its security. To be more concrete, not a single
one of thousands of simulation runs broke the protocol, independent of the simulation
scenario. So, the major security claims hold true although the protocol allows for very
powerful adversaries. Adversaries are allowed to delete or delay all messages as long
as they eventually let one through if it was repeatedly sent by an honest participant.
However, an adversary with these powers can balance votes of participants in a way,
that there is only a very, very small chance of the protocol to progress every few rounds.
Although progress is guaranteed with probability 1, this causes a liveness problem for all
practical purposes.

That being said, some additional weaknesses became apparent when performing race
attacks. Hashgraph states that the protocol only benefits from all participants performing
many gossip-syncs as fast as possible, but the test results point to a different conclusion.
The protocol’s design allows for frontrunning other transactions, meaning publishing the
same transaction after having seen a transaction of another participant to e.g. close a
lucrative deal. The simulation results show, that frontrunning attacks are possible and
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depending on the speed advantage are successful in about 57 to 82 percent of the time
(dependent on the set configurations of the simulation scenario). This possibilities result
in some cases in an incentive structure for for users to send their transactions to the
fastest participants. Participants are (as intended) encouraged to perform gossip-syncs as
fast as possible. While the latter decreases overall transaction times, it can also endanger
the system. Considering that communicating first with higher stake owning participants
increases the chance of lower final consensus timestamps, there exists an encouragement
to mainly perform gossip-syncs to them. That can result in participants which own less
stake being ignored and partially excluded from the consensus mechanism, as well as
participants possessing more stake being flooded with messages. The latter can have
similar effects to a DDoS attack on the main contributing participants if these cannot
handle the amount of messages.

Evaluating split attacks also showed us, that one can expect less events getting confirmed
when the network is partitioned. This ultimately increases average confirmation times
and lowers transaction throughput. So far, Hashgraph only provided performance metrics
under conditions that are not representative for the planned end stage of the system.
Nevertheless, goals of thousands of confirmed transactions per second were presented.
What we learned examining the split attack results is, that performance numbers will
be way lower if the network is partitioned independent of how the actual performance
numbers of the final system will look like. Additionally, progress may be temporarily
stalled completely if the network partitioning happens in a way that no single part
contains more than two thirds of the total stake.

In addition to these findings, the simulator itself is another major contribution of
this thesis. Its source code is published under an open source licence to enable everybody
to perform their own simulations. The simulator operates in two modes that differ
greatly in how actions are performed. It also offers a wide range of different configuration
possibilities like participant numbers, simulation time, action probabilities and the re-
spective action durations as well as specific attack scenario details. Results can either be
investigated in a graphical user interface or exported in the CSV format for automated
analysis. All simulation runs are randomized in a reproducible way by a configurable
seed value.

The simulator supports investigating further aspects of Hashgraph or even functions as a
template for similar programs for other cryptocurrencies. It can be extended, so that
additional attack scenarios can be explored in future work. It would also be interesting to
look at the results of the same scenarios for thousands of participants, by increasing the
simulators performance to enable such simulations within reasonable timespans. Apart
from extending the simulator, further research is necessary around frontrunning attacks.
Daian et al. [DGK+19] categorized frontrunning as a security threat to Ethereum because
of additional income sources for miners (in which Smart Contracts played a big role)
through certain behaviour like transaction order optimization. Hashgraph also supports
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Smart Contracts, but is built on top of a very different consensus mechanism. The
question remains open if frontrunning poses a similar threat to PoS DAG systems like
it does to PoW chains like Ethereum. Another interesting question for future work is,
if some sort of rate limiting or punishment is necessary to prevent gossip-syncs from
turning into DDoS attacks on the participants which possess the most stake.

All in all, our simulation scenarios showed that Hashgraph’s consensus protocol is
very resilient against attempts of breaking it. We have however found some weaknesses
that incentivize undesirable behaviour or enable exploitation by an adversary. We can
conclude this thesis by stating that Hashgraph clearly shows that PoS DAG protocols
can solve two of the major problems of traditional cryptocurrencies. Nevertheless, it is
not a perfect protocol yet and further investigations and improvements are advisable.
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