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Kurzfassung

Mit steigender Beliebtheit von höheren Sprachen für Malware-Entwicklung, wie C# un-
ter Windows, oder Go für Plattform-übergreifende Malware, steigt auch deren Komple-
xität und Funktionsumfang. Zusätzlich wird Obfuscation eingesetzt, um die bösartigen
Absichten vor Virus-Scannern zu verbergen und den nötigen Reverse Engineering Auf-
wand für menschliche Analysten zu erhöhen. Eine Möglichkeit, diesen Aufwand gering
zu halten, ist Function Clone Detection.

Wie bei jedem anderen Software Projekt wird auch von Malware Code wiederverwendet
und bestehender Code leicht abgeändert. Kann eine Binärfunktion als bereits bekannt,
oder ähnlich zu bereits bekannten Funktionen betrachtet werden, verringert das die
Zeit, die für die Analyse benötigt wird. Abseits von Malware kann derselbe Function
Clone Detection Mechanismus dazu verwendet werden, Varianten von Funktionen zu
finden, die bereits bekannte Sicherheitslücken aufweisen, wodurch sich diese Technik
als besonders nützlich erweist. In dieser Arbeit wird ein Ansatz für das auffinden von
Obfuscated Function Clones unter dem Namen Ofci vorgestellt. Dieser baut auf jüngsten
Erkenntnissen im Bereich von Function Clone Detection, mithilfe von Machine Learning,
auf.

Mit Hilfe des Albert Transformers, einer auf Sparsamkeit optimierten Variante des
Bert Sprachverarbeitungs-Modells, kann die Assembler-Sprache wie natürliche Spra-
che behandelt werden. Das führt dazu, dass Ofci trotz einer Reduktion der Modell-
Parameter um 83% nur einen durchschnittlichen Abfall von 7% in Bezug auf ROC-AUC
Scores hinnehmen muss. Um sich speziell dem Problem von Obfuscation anzunehmen,
analysiert Ofci die Effekte von Funktionsaufrufen auf die Funktions-Suche und wagt
sich an Code, der mittels Virtualisierung verschleiert wurde, heran. Dazu verfolgt Of-
ci einen dynamischen Ansatz, der mittels Instruction Traces versucht Funktionen in
virtuellem Code zu erkennen. Allerdings muss Ofci auch Rückschläge im Hinblick auf
die Präzision der Funktions-Suche hinnehmen und erörtert systematisch die Gründe da-
für. Unabhängig vom Machine Learning Ansatz stellt Ofci auch ein eigenes Framework
zur Extraktion und Verarbeitung von Binärfunktionen dar. Durch die Implementierung
dieser Funktionen als Plug-In für Ghidra, einer frei verfügbaren Reverse Engineering
Umgebung, kann Ofci einen durchgehenden Ansatz für die Analyse von Binärfunktio-
nen anbieten, der an jeder Stelle nur Open-Source Software benützt. Durch den Headless
Analyse-Modus kann dieses Framework Massen an Binärdateien parallel verarbeiten.
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Abstract

With widespread use of higher-level languages for malware, such as C# on Windows
or Go for cross-platform malware, the complexity and functionality of malware is ever-
increasing. Additionally, obfuscation is used to hide the malicious intent from virus
scanners and increase the time it takes for a human analyst to reverse engineer the
binary file. One way to minimize this effort is function clone detection.

Like any other software engineering project, malware reuses code and modifies already
existing code. Detecting whether a binary function is already known, or similar to an
existing function, can reduce the time needed to analyze it. Outside of malware, the same
function clone detection mechanism can be used to find vulnerable versions of functions
in binaries, making it a powerful technique. This thesis introduces an approach for
the detection of obfuscated function clones, called Ofci, building on recent advances in
machine learning based function clone detection.

Using the Albert transformer, a size-optimized version of the Bert natural language
processing model, on textual disassembly instead of language, Ofci can achieve an 83%
model size reduction in comparison to state-of-the-art approaches, while only causing
an average 7% decrease in the ROC-AUC scores of function pair similarity classifica-
tion. To additionally tackle the issue of obfuscation, Ofci analyzes the effect of known
function calls on function similarity and applies function similarity classification on code
obfuscated through virtualization. Instead of trying to match virtualized function pairs
statically, Ofci tries to perform function clone detection based on traces of the virtu-
alized function, as a cheap form of dynamic analysis. However, the reduced model size
comes at the cost of precision for function clone search and the evaluation of Ofci dis-
cusses the reasons for this and other pitfalls of building function similarity detection
tooling.

Besides evaluating the machine learning approach, Ofci also establishes a new frame-
work for the extraction and processing of binary functions. By implementing this func-
tionality as a Ghidra plugin, Ofci offers an end-to-end approach for binary function
analysis where every part of the pipeline is open-source. Through headless analysis, this
framework can scale to analyzing large quantities of binary executables in parallel.

xiii





Contents

Kurzfassung xi

Abstract xiii

Contents xv

1 Introduction 1
1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.2 Problem Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.3 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2 Background 9
2.1 Function Clone Identification . . . . . . . . . . . . . . . . . . . . . . . 9
2.2 Obfuscation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.3 Machine Learning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

3 Related Work 21
3.1 Classical Approaches to Binary Similarity . . . . . . . . . . . . . . . . . 21
3.2 Approaches Based on Machine Learning . . . . . . . . . . . . . . . . . 24
3.3 Deobfuscation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

4 Obfuscated Function Clone Identification 35
4.1 Assumptions and Threat Model . . . . . . . . . . . . . . . . . . . . . . 35
4.2 Architecture Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
4.3 Feature Modelling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
4.4 Neural Network Architecture . . . . . . . . . . . . . . . . . . . . . . . 42
4.5 Virtual Machine Analysis . . . . . . . . . . . . . . . . . . . . . . . . . 45
4.6 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
4.7 Inference and Application . . . . . . . . . . . . . . . . . . . . . . . . . 47

5 Implementation 49
5.1 Technology Stack Overview . . . . . . . . . . . . . . . . . . . . . . . . 49
5.2 Feature Extraction via Ghidra . . . . . . . . . . . . . . . . . . . . . . . 51
5.3 Processing Exported Feature Data . . . . . . . . . . . . . . . . . . . . 55

xv



5.4 Model Training . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
5.5 Trace Generation and Analysis . . . . . . . . . . . . . . . . . . . . . . 65

6 Evaluation 67
6.1 Metrics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
6.2 Experiment Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
6.3 Processing and Exploration of the Dataset . . . . . . . . . . . . . . . . 70
6.4 Feature Extraction and Training Performance . . . . . . . . . . . . . . 72
6.5 Comparison of Model Size . . . . . . . . . . . . . . . . . . . . . . . . . 74
6.6 Performance on Unobfuscated Data . . . . . . . . . . . . . . . . . . . . 76
6.7 Performance on O-LLVM Obfuscated Binaries . . . . . . . . . . . . . . 82
6.8 Performance of Fragmented Functions . . . . . . . . . . . . . . . . . . 85
6.9 Ablation Study . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88
6.10 Performance on Tigress Virtualized Examples . . . . . . . . . . . . . . . 91

7 Conclusion 95
7.1 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

List of Figures 97

List of Tables 99

Bibliography 103



CHAPTER 1
Introduction

In order for any programming language to be executed by a CPU, it has to be translated,
through possibly multiple steps of compilers and interpreters, into the machine code of
the respective CPU architecture. This ranges from high-level languages, like JavaScript
or Haskell, to low-level languages like C, and the more layers of abstractions are involved,
the less information from the original code is preserved in machine code. However,
sometimes it can become necessary to traverse this translation in the other direction,
through reverse engineering, to determine the original intention of the programmer. An
example for such an occasion would be a domain name generation algorithm in a malware
binary; in order to stop the malware from spreading, the algorithm has to be reverse
engineered.

1 void hello() {
2 printf("Hello World!\n");
3 }
4
5 int main() {
6 hello();
7 return 0;
8 }

Listing 1: A basic "Hello World" example in C.

But reverse engineering is not a simple task and the time to success depends on just
how much information about the program has been preserved in its machine code form.
Luckily, operating systems do not directly execute native machine code from a file, but
have their own file formats for containing code, such as ELF on Linux, which can store
additional meta-information needed for the code to run, or needed for a developer to
efficiently debug the program. Listing 1 contains a simple "Hello World" program written

1



1. Introduction

in C. Just how much information from this program is retained in the executable binary
file? During development or for finding issues in production a programmer would usually
compile the C source code to binary using debug information. The result of the generated
binary can be seen in Listing 2.

1 sym.hello ();
2 /*55 */ push rbp ; main.c:4 void print_hello() {
3 /*4889e5 */ mov rbp, rsp
4 /*488d3dc00e00.*/ lea rdi, str.Hello_World ; main.c:5 printf("Hello World!");
5 /*e8e7feffff */ call sym.imp.puts ; int puts(const char *s)
6 /*90 */ nop ; main.c:6 }
7 /*5d */ pop rbp
8 /*c3 */ ret

Listing 2: Disassembled ELF file with debug information.

The listing shows how the C code has been translated into x86_64 assembly code, and the
corresponding raw bytes in hexadecimal. The debug information adds some additional
hints to the disassembly: The name of the function, hello(), is preserved and comments
on the side point the disassembler to the source code file, allowing the matching between
generated instructions and original source code.

1 sym.hello ();
2 /*55 */ push rbp
3 /*4889e5 */ mov rbp, rsp
4 /*488d3dc00e00.*/ lea rdi, str.Hello_World
5 /*e8e7feffff */ call sym.imp.puts
6 /*90 */ nop
7 /*5d */ pop rbp
8 /*c3 */ ret

Listing 3: Disassembled ELF file without debug information.

Realistically, no production binary will be distributed with debug information and it
will be missing in any task that requires reverse engineering to begin with (using debug
information when working with malicious binaries can even be harmful [2]). In the best
realistic case, a program will look like Listing 4 when disassembled. There is no more
reference to the original source file, but the functions and global variables/constants,
like the "Hello World!" string, will still be named. Proprietary binaries will not have this
information, as a minimum effort to protect intellectual property. Through the process
of stripping, as much information regarding names is removed from the executable file
format, to the point where the program is still able to function. Besides function and
global variable names, a lot of information regarding the memory mapped sections can
be stripped from an ELF file and still have it function as a working executable. The
resulting disassembly after the binary file has been stripped can be seen in Listing 4.

2



The disassembler now no longer knows the function name and has to generate or infer
a name, usually based on the address where the function is located. The name of the
global string constant has been removed as well, and only the address remains; it is now
no longer visible what the behavior of the program is at first glance.

1 fcn.00001139 ();
2 /*55 */ push rbp
3 /*4889e5 */ mov rbp, rsp
4 /*488d3dc00e00.*/ lea rdi, [0x00002004]
5 /*e8e7feffff */ call sym.imp.puts
6 /*90 */ nop
7 /*5d */ pop rbp
8 /*c3 */ ret

Listing 4: Disassembled stripped ELF file.

This is the least amount of information left in a normal binary, and what most deployed
binary programs look like. To take this one step further, the program has been modified
in Listing 5. To make it harder to reverse engineer, a simple obfuscation technique to
thwart linear disassemblers has been added.

1 fcn.00001139 ();
2 /*55 */ push rbp
3 /*4889e5 */ mov rbp, rsp
4 /*488d3dc00e00. */ lea rdi, [0x00002004]
5 /*eb02 */ jmp 0x1148

6 /*4889 e8 */ mov rax, rbp

7 /* e7fe */ out 0xfe, eax

8 /* ff */ invalid

9 /* ff */ invalid
10 /*90 */ nop
11 /*5d */ pop rbp
12 /*c3 */ ret

Listing 5: Disassembled ELF file, obfuscated to confuse linear disassemblers.

The output in the listing is what a linear disassembler would produce, but does not mirror
what is actually executed during runtime. The bytes highlighted in green correspond
to the original call sym.imp.puts() instruction, but the disassembler can’t see this,
because garbage bytes have been inserted to make the disassembler assume a different
instruction. The inserted yellow highlighted jump causes the execution to jump into the
middle of the garbage instruction, which will execute the original call again. This is only a
simple obfuscation trick, but it already takes a bit of thinking to see the original program
when not using the correct disassembler. If the number of obfuscation is increased and
the complexity of these obfuscations rises, so will the time it takes to analyze it and find
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1. Introduction

the original program. This brings up the question of how a program with thousands
of heavily obfuscated functions can still be reverse engineered in a reasonable amount
of time and one of many answers to this is Function Clone Detection, the topic of this
thesis.

1.1 Motivation
The amount of Go [3] malware in active use by advanced persistent threats and other
online crime groups has increased by a staggering amount. [4] Go allows straightforward
cross-compilation and is significantly harder to reverse engineer than, e.g., C programs
by default, while still providing low-level access to the system and a versatile ecosystem.
The greatest factor in what makes Go hard to reverse engineer is the default static
compilation; instead of relying on system libraries to be installed, every dependency in
Go is compiled into one large binary. A version of the "Hello, World!" example from
earlier in Go can be seen in Listing 6.

1 package main
2
3 import "fmt"
4
5 func hello() {
6 fmt.Println("Hello World!")
7 }
8
9 func main() {

10 hello()
11 }

Listing 6: Same version of the "Hello, World!" program in Go.

While the corresponding C program produces, without any minification, an executable
binary with a size of 16KB, the Go program produces a 1.6MB binary, due to static
linking. Analyzing the generated binary with Ghidra [5] shows 1471 function symbols
listed in the binary. Go allows generating stripped binaries with a compiler switch; the
difference between the function listings of the unstripped and stripped version can be
seen in Figure 1.1. Not only is Ghidra not able to assign any function names, because
there are no names in the binary, it is also not able to even detect all the functions, only
reporting 1099 identified functions. If only one of these functions performed malicious
actions and all functions have been obfuscated, finding the function in question becomes
a seemingly impossible task.

To reduce the manual analysis load for reverse engineers, parts of an executable binary,
which have already been identified or analysed in previous iterations, or are known from
different binaries, should ideally be excluded from analysis. This is made possible by the
practice of code reuse for similar tasks, which is also prevalent among malware. [6, 7]
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1.2. Problem Statement

Figure 1.1: Function listing of Go "Hello, World!" in Ghidra, before and after stripping.

Additionally, as in the case of Go, large parts of an application are part of a standard
library or are utility functions. These can already be analyzed before analyzing the
malware itself, because standard library functions are freely available in different binary
formats, versions and in source code. Ideally, a classifier would be trained on this data
and then just be able to detect the standard library functions in malware.

1.2 Problem Statement
Methods for finding sections of code reuse in binaries can be distinguished by granularity,
with one approach being function level granularity. This approach is called the function
clone identification problem, which can be defined as such: Given a binary without
symbol/debug information and a repository of extracted functions with symbol/debug
information, identify similar functions in the binary and assign symbols to them.

In its simplest form, function clone identification assigns names to functions in a binary
without symbol information, thus allowing a reverse engineer to recognize certain func-
tions as e.g. library functions that have been statically linked into the binary. However,
predicting debug information in stripped binaries has also been shown to be feasible. [8]

The function clone identification problem can further be split into subproblems. The
detection of function boundaries in a binary is a hard problem on current binary archi-
tectures and is as such a prerequisite for identification. As promising solutions for this
exist, e.g. [9], the focus of function clone identification lies on the following subproblems:

• Generate/maintain a database of function signatures.

• Looking up unidentified functions in the database, to find likely candidates.

Numerous approaches for this exist, with machine learning techniques gaining popularity
in more recent approaches. [10, 11, 12] Machine learning based on binary features is well
suited for this task, as it is inherently fuzzy in its nature. As function clone identification
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1. Introduction

is intended to find functions that are not exact matches, learning similarity of functions
allows matching functions that share certain features. This is backed up by a recent
survey on binary similarity [13], showing that approaches based on machine learning
perform well in comparison to others. The same survey also discusses the shortcomings
of current function clone identification approaches when dealing with obfuscation. The
goal of this thesis is therefore to focus on improving function clone identification in the
presence of obfuscation.

1.3 Contributions
The aim of this work is to improve upon the existing capabilities of function clone
detection when dealing with heavily obfuscated executable binaries. The focus is solely
on function clone detection and algorithms for extracting the function data itself are
not explored. Extracting the function data and the data processing pipeline requires a
significant engineering effort, and the needed tools are built as part of this thesis. The
main contributions of this thesis are:

• Development of an end-to-end function clone identification framework.
Existing approaches have not published their whole data processing pipeline, or
rely on commercial tools, like IDA Pro [14], for feature extraction. This thesis
presents Ofci, an end-to-end framework, built from publicly accessible and open
source tools. Data is exported from Ghidra [5], processed in the machine learning
pipeline and finally imported again.

• A reduced and improved machine learning model for function clone iden-
tification. As recent related models come with high computational complexity,
Ofci aims to reproduce similar performance at a student budget. In addition,
Ofci uses API calls, like system or library calls, as an additional feature vector
that can be applied iteratively, i.e. detection of a function clone can improve the
identification of other functions calling this clone.

• Matching state-of-the-art performance of function similarity in the pres-
ence of basic obfuscation. Ofci can match state-of-the-art solutions for func-
tion similarity classification when obfuscations like bogus control-flow, control-flow
flattening, instruction substitution etc. are present.

• Analysis of identifying functions in the presence of virtual machine ob-
fuscation Ofci presents the first approach to function clone detection, when
functions are obfuscated using virtualized code. This is implemented by detect-
ing the function clones in recorded execution traces of the VM. While the results
themselves are not adequate, a detailed analysis of possible pitfalls and research
directions is given. This helps future work from repeating the same mistakes and
tackle the underlying issues.

6



1.3. Contributions

• Analysis of reduced function clone search performance. While the ROC-
AUC scores reported by Ofci are comparable to the state of the art, the function
clone search shows reduced performance. This thesis gives an analysis into possible
issues and the consequences for other function clone search implementations.
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CHAPTER 2
Background

In order to understand contributions to the field of binary code similarity or function
clone detection, background knowledge of different fields is required. In the context
of this thesis, obfuscation and modern machine learning techniques play a crucial role
as well. This chapter will cover the basic concepts of these fields and introduces some
terminology that will be required in the following chapters.

2.1 Function Clone Identification
The central part of this thesis discusses a contribution to the field of binary code similar-
ity, i.e. finding similarities between different segments of executable binary code, usually
machine code instructions. To find such similarities, a definition of what constitutes
similarity between two segments of binary code is required. However, there is no one
specific definition for binary code similarity, as this definition might change in relation
to the problem to be solved. For example, a program might be syntactically similar, but
might show different semantic behavior during runtime and vice-versa. For the purpose
of this thesis, as is also the case in related works, [10, 11, 1, 15] we define executable
binary code to be similar if it is semantically similar, i.e.

Bi ∼ Bj

means Bi is similar to Bj , if the code segments show similar runtime behavior. It is
worth noting that similarity is still somewhat vague: In general the problem of proving
two binary code segments to be semantically equivalent is undecidable, and equivalence
might not be desirable. One use case of binary similarity is to find known vulnerable
code in programs, but as the code directly surrounding the vulnerability might have
changed, the segment used to compare against might not be semantically equivalent
anymore. Therefore, the similarity relation should be fine-grained enough to distinguish
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2. Background

two segments of binary code, but coarse enough to capture a property of interest. To
address this issue, the binary similarity problem can be constrained to what is called
function clone identification. In virtually all modern instruction set architectures, seg-
ments of binary code can be grouped into functions to allow code reuse. These functions
have input/output parameters and a context containing local variables, usually on the
call stack, making them a prime target for studying execution semantics in a restricted
segment of binary code. Function clone identification is the binary similarity problem
applied to functions:

L = Domain of possible labels
B = Domain of arbitrary length executable binary code
F = {(l, b)|l ∈ L, b ∈ B}

∀Fi, Fj : bi ∼ bj =⇒ Fi ∼ Fj

∀Fi, Fj : Fi ∼ Fj =⇒ li = lj

∀Fi, Fj : Fi ∼ Fj =⇒ Fj is a clone of ∼ Fj

Given the functions Fi and Fj , determine whether these are similar, i.e. Fi similar to
Fj . As per the formula above, functions are defined as similar if their binary code is
similar, i.e. semantically equivalent. If this condition holds, Fi is called a clone of Fj ,
and the functions have the same label/name. Besides providing a natural code boundary
for comparison, restricting binary similarity to the scope of functions reduces it to an
information retrieval problem: Given a repository RF , find an ordered range of functions
Fi to Fj that are similar to a query function Fq. Treating binary code as a language
then opens the possibility of applying modern information retrieval algorithms, which
have been designed for, e.g., full text search and machine translation.

While concentrating on function clone detection offers some simplifications to the binary
code similarity problem, it also comes with the pitfall of detecting the existence of
functions in the first place. Detecting the boundaries of a function in stripped binaries
is in general undecidable, but recent research [9, 16] has shown that in practice, a large
portion of function boundaries can be recovered. As the detection of function boundaries
is a separate research topic only marginally related to function clone detection, this thesis
will not discuss it and assume knowledge of all relevant function boundaries.

2.2 Obfuscation
In terms of binary code, obfuscation means transforming code in such a manner that it
becomes hard to analyze, while still preserving the intended execution semantics. There
are many possible use cases, benevolent or malicious: Companies can deploy obfuscation
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2.2. Obfuscation

as an additional layer of security (i.e. security through obscurity), or to protect intellec-
tual property, or it can be used in malware to make analysis/attribution harder for an
analyst. Especially in the latter case, finding ways to improve on deobfuscation mani-
fests as an important task. As obfuscation increases the code size and the runtime of
the code, it not only poses a challenge to human analysts, but also slows down analysis
algorithms. As program analysis problems have a tendency to be undecidable as soon
as the analysis concerns non-trivial program properties, it is easy for an obfuscation
method to trick program analysis heuristics, while it is hard for new heuristics to take
obfuscation methods into account.

With obfuscation techniques being an active research field in itself, there are countless
obfuscation methods to choose from. To restrict the scope of this thesis, the obfuscators
being used to evaluate the presented techniques are Tigress [17], Obfuscator-LLVM [18],
and by extension Hikari [19], which is a port of Obfuscator-LLVM. The last two have
been chosen due to references in recent works, allowing the comparison of evaluation
results. [10, 1] Tigress has been chosen due to it being a well-known academic project,
referenced by a large number of publications. The following sections give an overview of
these tools and the obfuscations used in this thesis.

Figure 2.1: Minimal example of a Control-Flow Graph (CFG).

2.2.1 Obfuscator-LLVM

Built on top of LLVM, Obfuscator-LLVM can be used as a drop-in replacement for other
compilers, without having to adjust the build process. This allows studying obfuscation
of full software projects instead of hand-crafted examples. Unfortunately, Obfuscator-
LLVM has been last updated 2017 on LLVM 4.0; to modernize the project, Hikari has
been forked off Obfuscator-LLVM and added additional obfuscation passes, while also
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2. Background

improving the existing obfuscation passes. In accordance with related work [10, 1] a
number of passes has been selected for evaluation. To highlight the changes to the
program made by these passes, Figure 2.1 shows a minimal example of a control flow
graph (CFG) for a simple function. The nodes of a CFG are called basic blocks: It
contains all instructions up to the first instruction that initiates a control-flow transfer,
e.g. a conditional jump instruction, with the exception of function calls. In the figure,
the top basic block transfers control through a true and a false branch, indicated by the
green and red arrow, as it would be created by a simple condition check. The following
two basic blocks both return to the bottom block, where control-flow is transferred either
through fall-through or unconditional jumps.

Figure 2.2: A CFG with inserted bogus control flow.

When applying Bogus Control Flow (BCF), the CFG is changed by inserting new
basic blocks and constructs that make it harder to find the relevant basic blocks of
the original function. This can be seen in Figure 2.2, where the added control flow is
highlighted with dotted lines. In this case, the added construct is a simple loop with one
path leading back to the original control flow. As pictured in the example it could also be
introduced by a compiler optimization or a minor code change, therefore the BCF pass
has to produce larger and more complex constructs in order to obfuscate the original
control flow. To keep the runtime overhead of this obfuscation minimal, the added control
flow is ideally not executed and the full graph is only visible to static analysis tools. This
is achieved by hiding the jump conditions of the BCF behind opaque predicates, complex
expressions that always evaluate to the same outcome during runtime, but are hard to
analyze statically. Basic Block Splitting (BBS) works in a similar manner to BCF,
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but while BCF leaves the original CFG intact and only adds new control flow, BBS
breaks apart larger basic blocks. The goal of BBS is to create a large number of new
basic blocks, which can then be separated using bogus control flow again, slowing down
analysis.

Figure 2.3: A CFG with flattened control flow.

Obfuscation methods like BCF or BBS expand the base CFG, but leave the ordering of
the original basic blocks intact, i.e. if the CFG has no loops and can be sorted using
topological sort, the ordering of the original basic blocks in the output will be the same.
This is also necessary to preserve program semantics, as basic blocks cannot be reordered
without performing analysis on whether the reordering of contained instructions is pos-
sible. However, the order and structure of the original CFG can be obfuscated from
static analysis by abstracting the control flow of the CFG into data flow. This method
of obfuscation is called Control Flow Flattening (CFF), as it flattens the control
flow into a structure that is just a case distinction on a single variable. In the first
step, every basic block or subsection of a basic block is assigned a random number. One
variable is declared in the function and used to store the random number assigned to a
basic block. In the case of CFF, usually a chain of conditional jumps is used to select
the correct basic block based on the assigned random number, turning the original CFG
into something looking like Figure 2.3. As seen in the figure, the chain repeats until it
either loops back to the starting block or leaves the function at the exit block. Original
control flow transitions are not visible: Instead of performing jumps at the end of a basic
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block, the actual transition is made by assigning the random number of the next basic
block to the function variable. The static CFG is now no longer useful for heuristics or
human analysts, as the CFG of every function will have the same structure, with the
length of the main condition chain varying.

Figure 2.4: A CFG showing register-Based indirect branching.

With the original control flow completely obfuscated, CFF is already a potent obfuscation
method on its own. However, the original basic blocks and code is still discovered and
present in the CFG, and the long condition chains are not ideal for performance, as it
takes O(n) to find the target block in the worst case. So far, the depicted CFGs have
only shown basic blocks with one, i.e. the fallthrough or unconditional jump, or two,
i.e. a conditional jump, outgoing edges. Additionally it is possible to have an arbitrary
number of outgoing edges: The target address for a jump can be stored in a lookup table
and loaded into a register at runtime, with the Register-Based Indirect Branching
(RBIB) obfuscation pass making use of this. Instead of assigning random numbers to
basic blocks, the addresses of the blocks are stored in a potentially randomized lookup
table. Then, control-flow is transferred by passing the index into the lookup table and
loading the basic block address into a register, performing an indirect branch using the
register value. This obfuscation method is not part of the original Obfuscator-LLVM
and has been added as an improvement in Hikari. [19] If a static analysis program is able
to determine the jump targets, it will look like the CFG shown in Figure 2.4, with one
basic block as dispatcher passing control to the others. Due to Hikari jumping back to
the dispatcher through pushing the address and performing a return, e.g. Ghidra [5] is
not able to show the basic blocks as part of the CFG, but will only show the dispatcher
block; it can however still locate and disassemble the basic blocks. Within the context
of this thesis, files obfuscated with the Instruction Substitution pass are used as well.
This pass is different from the others, as it does not change the underlying CFG, but only
performs changes on the instruction level. Instead of loading constants or performing
simple operations directly, the instructions are replaced with a more complex chain of
instructions. The newly generated expression does not necessarily have to follow the
same semantics as the original version, it only has to produce the same output for all
expected inputs. It is also possible to use vector registers, e.g. AVX registers, since
analysis tools as well as human analysts struggle with simplifying vector operations.
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2.2.2 Tigress

Tigress [17] is a source-to-source obfuscator originally created by Christian Collberg
at the University of Arizona. It is widely used in academic publications to evaluate
the effectiveness of binary analysis techniques on obfuscated code, and comes with a
variety of different obfuscation passes. Unfortunately, compared to Obfuscator-LLVM,
Tigress cannot be used as a drop-in replacement, making it difficult to apply on larger
projects. Tigress supports all of the less potent obfuscations, which are already covered
by Obfuscator-LLVM, e.g. bogus control flow, and these are therefore not used again in
Tigress obfuscation experiments. Additionally, obfuscations that split or merge entire
functions are avoided, as the focus of this thesis is on function similarity, and self-
modifying code is avoided, due to requiring extensive dynamic analysis.

1 uint64_t fn(uint64_t a, uint64_t b, uint64_t c) {
2 return a + 2 * b + 3 * c;
3 }

Listing 7: A simple C function before virtualization.

Current commercially viable obfuscators [20, 21] rely on multiple levels of virtualized
code. Instead of running the originally intended assembly code, code is transformed
into bytecode that is run in a virtual machine (VM). This form of obfuscation has
been proven robust against analysis, as nothing of the original code remains and find-
ing/understanding the generated bytecode requires analysis of the virtual machine first.
However, obfuscation techniques can be combined, allowing the operation handlers of
the virtual machine to be obfuscated as well. While there exist different approaches to
VM deobfuscation, there appears to be no prior work regarding binary code similarity of
code executed in the VM; a discussion of related work can be found in section 3.3. As an
example for how invasive code virtualization is, Listing 7 shows a very simple C function
taking three parameters and performing arithmetic operations. There is no pre-existing
control-flow, meaning O-LLVM will have a hard time inserting bogus control flow or
performing CFF; a small function like this will likely not trigger an obfuscation heuristic
or is going to be inlined. Tigress takes a list of functions to be obfuscated and when
specifying this toy function, it will generate the code shown in Listing 8. Looking at
the generated code, there is no trace of the original toy function, with the exception of
the function signature. In place of the formerly simple arithmetic expression there is
now a while loop with a series of switch statements, a characteristic construct of code
obfuscated through virtualization. This code is a small virtual machine (hence the term
virtualized code): It contains a stack, a stack pointer, storage for local variables, a pro-
gram counter and a number of different opcodes. The opcodes are random and generated
in a way that tries to hide the original intention of the code. The code that actually
controls this function, i.e. the bytecode, is stored at a different location in memory and
the control-flow of the virtual machine cannot be observed from static analysis.
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1 uint64_t fn(uint64_t a , uint64_t b , uint64_t c )
2 {
3 char _1_fn_$locals[32] ;
4 union _1_fn_$node _1_fn_$stack[1][32] ;
5 union _1_fn_$node *_1_fn_$sp[1] ;
6 unsigned char *_1_fn_$pc[1] ;
7
8 {
9 _1_fn_$sp[0] = _1_fn_$stack[0];

10 _1_fn_$pc[0] = _1_fn_$array[0];
11 while (1) {
12 switch (*(_1_fn_$pc[0])) {
13 case _1_fn__store_unsigned_long$left_STA_0$right_STA_1:
14 (_1_fn_$pc[0]) ++;
15 *((unsigned long *)(_1_fn_$sp[0] + 0)->_void_star) = (_1_fn_$sp[0] + -1)->_unsigned_long;
16 _1_fn_$sp[0] += -2;
17 break;
18 case _1_fn__constant_unsigned_long$result_STA_0$value_LIT_0:
19 (_1_fn_$pc[0]) ++;
20 (_1_fn_$sp[0] + 1)->_unsigned_long = *((unsigned long *)_1_fn_$pc[0]);
21 (_1_fn_$sp[0]) ++;
22 _1_fn_$pc[0] += 8;
23 break;
24 /* ... */
25 }
26 }
27 }

Listing 8: C function after virtualization.

Another form of potent obfuscation provided by Tigress is EncodeArithmetic. This
obfuscation mode strengthens arithmetic expressions by generating what is known as
a mixed boolean-arithmetic (MBA) expression. The code in Listing 9 shows how the
previous toy example has been transformed into a complex MBA expression. While this
does appear to be simpler than virtualized code, it is far from trivial to derive the original
intent and expression from the MBA expression. Deciphering MBA expressions is an
active field of research, with approaches like MBA-Blast [22] claiming the analysis of
MBA expression to still only be at the starting point.

2.3 Machine Learning
In many cases of hard or undecidable problems, machine learning is often leveraged to
achieve approximate solutions. As shown in section 2.1, function clone identification
can be formulated as an information retrieval problem and modern information retrieval
techniques rely on complex machine learning model architectures, such as Bert. [23]
Variations of Bert have been used in related work [1, 16] and are adopted for the so-
lution presented in this thesis as well. As machine learning is its own discipline, this
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1 uint64_t fn(uint64_t a , uint64_t b , uint64_t c ) {
2 return ((((a ^ ((2UL & b) * (2UL | b) + (2UL & ~ b)
3 * (~ 2UL & b))) + ((a & ((2UL & b) * (2UL | b)
4 + (2UL & ~ b) * (~ 2UL & b))) + (a & ((2UL & b)
5 * (2UL | b) + (2UL & ~ b) * (~ 2UL & b)))))
6 - ~ ((3UL & c) * (3UL | c) + (3UL & ~ c)
7 * (~ 3UL & c))) - 1UL);
8 }

Listing 9: MBA expression produced by EncodeArithmetic.

background section focuses on the models and advancements that lead up to the cur-
rent state of the art of natural language processing (NLP). While classical feed-forward
neural networks and a large number of applications for modern deep neural networks
derive outputs from one or multiple independent inputs, this has limited applicability to
language processing. When dealing with languages, text is a sequence of sentences, and
sentences are a sequence of words. Depending on the language, the ordering of words
within a sentence can be important, and the ordering of sentences in a text is needed
to convey meaning. These traits make natural language processing a driver for more
sequence-oriented concepts in machine learning.

One approach to working with sequences is to focus on one element, and calculate a value
based on the surrounding elements, similar to how downsampling works in convolutional
neural networks. [24] In the context of language processing, words are distributed across
a text in a specific manner, and certain words are more likely to appear in certain parts
of a sentence or surrounded by other specific words, making the distribution of words
across contexts one possible filter mechanism to work with sequences. This idea has been
brought up in the 1950s under the name of distributional structure [25], contemplating
whether the distribution of a word is linked with its semantics. Over the years, this has
been refined and became known as word embeddings, where words are "embedded" in all
their contexts and the aforementioned distribution represented as a vector. The release
of word2vec [26] was a milestone that caused a plethora of research to be published
using embeddings. This is due to the impressive results of word2vec, showcasing what
seems to be a semantic understanding between words, allowing simple semantic concepts
to be represented by arithmetic operations on vectors. [27] The success of word2vec
caused the embedding procedure to be expanded onto other fields and other objects, and
embeddings are now a fixed concept in modern models such as Bert. For the intents and
purposes of this thesis, another aspect of embeddings is important: Since embeddings
are vectors, the cosine similarity shows how similar the embeddings are in vector space,
making it possible to implement a search algorithm where the cosine similarity of the
vector is calculated and the most similar vector is chosen. Due to cosine similarity
being an efficient operation, even a brute-force k-nearest neighbour search can perform
reasonably well.
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The word2vec embedding vectors can be used as representation that is further pro-
cessed in another model, e.g. when using IR models like Conv-KNRM [24], or models
can integrate the embedding training and inference directly. While embeddings already
map simple semantic concepts, they still only concern single words and their contexts,
but not actual sequences. In order to process sequences, a neural network model needs
to incorporate some sort of memory, keeping state from, e.g. the previous word or words
in a sentence, and letting that influence the training pass for the current word. To model
such processes, recurrent neural networks (RNNs) came up relatively early in the history
of neural networks. Generally, when compared to feed-forward neural networks, recur-
rent neural networks have weights connecting outputs of neurons back to their input or
to the input of neurons in a layer before them, allowing the modelling of historical state.
In theory, RNNs can be built with an arbitrary amount of layers and feedback loops, in
practice however, this causes the training error in Backpropagation Through Time to
either go towards zero in a way that prevents learning progress, or towards infinity. [28]
To prevent this from happening, the Long Short-Term Memory (LSTM) [28] architecture
was introduced. While the original model has been updated over time, the main idea is
to induce a special structure onto the repeating elements of an RNN, giving more fine
grained control to stop the exponential effects on error propagation. This is achieved by
constructing an LSTM in such a way that each cell guarantees a constant error in itself.

Being able to process sequences, as compared to static inputs, opens up the possibility
of generating an output sequence from an input sequence, i.e. a sequence-to-sequence
model, or seq2seq model. A seq2seq model consists of an encoder, converting an input se-
quence into an internal representation, and a decoder, using that internal representation
and transforming it into a sequence in the domain of the output vocabulary. Therefore,
seq2seq models are the preferred design for neural machine translations, and language
processing revolves around improving these architectures. When working with seq2seq
models, these will have to store hidden state per element in the input sequence, and this
combined hidden state is then passed along to the decoder. It has been shown that this
context vector is prohibiting RNN and LSTM seq2seq models from performing on large
sequences or long sentences in the specific context of neural machine translation. [29]
To work around this limitation, the concept of attention [29, 30] has been introduced:
When analyzing a sentence, not all words carry the same weight of conveying meaning
and certain parts of a sentence might need more care/state to analyze than others. To
take this into account, the hidden states for a sequence can be given scores, depending
on their importance in the sequence. When aggregating the hidden states, the states
with higher scores are weighted higher, paying more attention to these inputs.

Due to the inherent sequential nature of RNNs and LSTM models, training cannot
make effective use of modern architectures heavily relying on parallel computing and
GPU processing, culminating in the introduction of the Transformer architectures. [31]
A transformer is a seq2seq model that has been designed to work with a fixed maximum
input length in order to optimize the training and inference on modern GPU hardware.
It consists of a stack of encoders and decoders, which consist of a self-attention layer
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and a feed-forward network, with the decoder containing an additional attention layer.
Self-attention works in a similar manner to the previously described attention through
hidden states and uses efficient matrix operations and the softmax function to score the
influence other words have on a certain word. The transformer additionally introduces
the concept of multiple attention heads: Instead of shifting the focus of attention to one
position, multiple attention heads allow the attention training of multiple positions at
the same time.

BERT BERT

E[CLS] E1  E[SEP]... EN E1’ ... EM’

C T1 T[SEP]... TN T1’ ... TM’

[CLS] Tok 1  [SEP]... Tok N Tok 1 ... TokM

Question Paragraph

Start/End Span
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Pre-training Fine-Tuning

NSP Mask LM Mask LM
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Figure 2.5: Architecture of the Bert network. [23]

Eventually, Google AI language researchers introduced Bert [23], which removes the
decoder half from the transformer and instead just stacks several encoder layers, breaking
with the seq2seq design of a transformer. Instead, Bert splits up its training process
into a pre-training and a fine-tuning session, as shown in Figure 2.5. On the right side of
the diagram, different language processing benchmarks are depicted, e.g. MNLI, which
are usually supervised learning tasks on a labelled dataset. However, on the pre-training
side Bert makes use of masked language modelling (LM), which is a semi-supervised
task: An sequence is put into the model, but before processing, Bert masks out random
tokens in the input sequence. The same input sequence is then used as a label on the
output side, but without the masked tokens. This effectively teaches the model to
predict the correct token at the masked location, making it learn the structure of the
input corpus. By splitting its training process into two stages, the Bert architecture
is one of the prime examples for transfer learning. Through training the model on the
input corpus without any manual labels, the model can gain a basic understanding of
the input language. This basic understanding is then transferred to a specific task, and
refined by the fine-tuning process. To this end, a new task-specific neural network is
placed on top of Bert after the pre-training is done. This thesis makes use of Bert-like
architectures and applies it to assembly instructions instead of natural language.
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CHAPTER 3
Related Work

This section gives an overview of the current state of the art regarding function clone
identification and deobfuscation. As function clone identification is not always wanted
or possible, most research is done in the broader field of binary similarity, which is not
necessarily limited to the scope of functions.

3.1 Classical Approaches to Binary Similarity
In the context of this thesis, all approaches that do not rely on or use machine learning
techniques to estimate similarity between binaries are referred to as classical approaches.
These approaches do not model binaries as a natural language processing or information
retrieval problem, but rather rely on meticulous feature engineering. The general idea is
to tackle the problem from the view of an experienced reverse engineer: When analyzing
a binary file they will be able to spot similar code by recognizing patterns gained through
experience. Due to the specific structure of the control flow and conditional branches,
it becomes easy to discern e.g. a function acting as strlen, memcpy or even printf. In
addition to this, magic constants, such as certain scalar values in address calculations or
specific offsets, can identify a function on first glance.

A prime example for the classical approach is BinDiff, which has been publicly released
by Google in 2016. [32] It works on the function and basic block level, trying to match
similar structures in two binaries to compare them and find how these binaries evolved.
To perform the matching, BinDiff provides a large list of heuristics for functions and ba-
sic blocks. [33] These include simple attributes, such as loop counting, string references,
sequence of calls, and more advanced techniques like fuzzy hashing and heuristics for
call graphs in functions, and control-flow graphs for basic blocks. BinDiff’s limitations
lie in the nature of these heuristics; most of them rely on counting of different attributes
and are designed to execute efficiently, making it fast to use on real-world applications,
but with concerns regarding the quality of the function matching.
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Different forms of fuzzy hashing are in general widely used for traditional binary similar-
ity approaches, the most common form being locality-sensitive hashing (LSH). [34, 35]
As the similarity problem can be represented as finding the nearest neighbour in a simi-
larity vector space, nearest neighbour appears to be a viable solution. However, nearest
neighbour algorithms perform poorly when facing high-dimensional data, and LSH tries
to solve this issue by providing a way to approximate nearest neighbour search through
hashing. According to a survey on binary similarity [13], a large number of approaches
uses LSH as some part of their pipeline, such as Kam1n0 [36], BinHash [37], Multi-
MH [38], BinSequence [39], CACompare [40] and others. [41, 42, 43, 44] Kam1n0
also introduces a custom, new form of locality-sensitive hashing. One reason for the
popularity of LSH is that it is rarely used on its own, but as an additional step in a
number of different heuristics to achieve better results, like e.g. BinDiff.

One of these additional heuristics can be n-gram analysis of instruction or byte sequences.
For this heuristic, sequences, be it byte, instruction or other tokens found in binaries,
of length n are generated and then compared with sequences in the target binary. The
first use of n-grams on instruction opcodes was described by Myles and Collberg [45] as
a way of generating software birthmarks in order to identify code theft. As n-grams are
simplistic on their own, there have not been significant changes to the core idea, however,
n-grams are still used in other approaches as one part of a larger pipeline. An example
for this is Rendezvous [46], which performs a number of different tasks, such as n-gram
analysis, n-perm analysis [47] and CFG subgraph [48] extraction and comparison. In
comparison to n-grams, n-perms do not just capture one sequence, but their permuta-
tions, as it might be legal to reorder some instructions without breaking semantics of
the original program. However, results of experiments conducted by the authors of Ren-
dezvous suggest that this might not be wanted, as n-grams still outperform n-perms
on all measurements. Furthermore, n-gram on its own appears to perform better than
k-graph subgraph, but the overall best precision/recall performance is achieved when
combining all techniques, with the exception of n-perms.

Structural comparisons like these make up a large portion of static binary similarity an-
alyzers, usually including some form of graph matching, like BinDiff. One of the more
recent examples relying on graph based similarity comparison is discovRE [49]. This
framework performs the function comparison based on a number of manually selected fea-
tures, extracting both numeric and structural features. The numeric features are used to
pre-filter potential candidate matches to avoid performing prohibitively many structural
comparisons of CFGs. The authors performed a robustness evaluation on the numeric
features they initially envisioned, and chose to ignore some of the original features, e.g.
the number of strongly connected components in a CFG for estimation of loop counts;
the remaining features include the number of function calls, counts for different instruc-
tion groups, basic blocks, basic block edges and incoming calls. A k-Nearest Neighbor
search is performed using these counts, and the selected candidates are then compared
by the structure of their CFG. The structural distance comparison is implemented by
using the maximum common subgraph isomorphism problem, using the McGregor al-
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gorithm. [50] In the evaluation, the authors present the capabilities of discovRE on
cross-architecture bug search, comparing and slightly improving upon Multi-k-MH [38];
however, discovRE is faster than Multi-k-MH by several magnitudes.

Two interesting approaches to structural similarity by the same authors are Tracy
[51] and GitZ [52]. Tracy splits a function into k-tracelets, recording partial traces
up to length k, with the intention of capturing the execution trace of one basic block.
The main goal of tracelets is to record the transition from one basic block to another,
capturing the first few instructions of the next basic block, to avoid dealing with possibly
imprecise jump addresses. To match the recorded tracelets, tracy defines a number
of edit operations, which are applied to convert one tracelet into a similar one. The
similarity is then counted as the edit distance between the two tracelets, i.e. the number
of edit operations performed. To further improve on results, Tracy also performs a
custom rewrite algorithm to counter the effects of compiler optimizations; this allows
the authors to outperform n-gram and k-graph CFG matching. The second tool, GitZ,
picks up ideas from the rewrite algorithm in Tracy, aiming to perform reoptimization
on the code extracted from functions. GitZ starts by retrieving the CFG of a function
and splitting up basic blocks to produce strands [53], sequences of instructions within
basic blocks that are data-flow dependent. The strands are then lifted to VEX-IR [54]
and subsequently to LLVM-IR; according to the authors, the step from VEX-IR to
LLVM-IR is added to provide better support for different architectures. The LLVM-IR
is normalized and then optimized using LLVM [55], with the final reoptimized strands
being checked for similarity using hashing.

The general consensus among binary similarity researchers is the inability of structural
comparison common in static analysis tools, making static approaches brittle to code
obfuscations with the intention to specifically destroy these structures. In addition to
static approaches, a plethora of dynamic techniques exists to complement them, with
some projects, e.g. Multi-MH [38], making use of both, static and dynamic features.
Multi-MH first lifts binary code into VEX-IR, to abstract the underlying architecture
away and allow for cross-architecture bug search, and then simplifies the generated
expressions using a theorem prover. To extract the semantics of the lifted expressions,
the IR code is emulated and fed with inputs according to a sampling strategy, a technique
that is also common in blackbox deobfuscation, as described in section 3.3. As the
analysis presented in Multi-MH works on the basic block level, the sampling produces
a number of input/output vectors which need to be compared in order to establish
similarity. Because this comparison is infeasibly slow in practice, due to the large number
of I/O pairs, the authors repurpose LSH, which has been widely used in various static
analysis approaches, as shown before.

BinGo [56] is another dynamic analysis approach, which combines several of the pre-
sented ideas, such as the tracelets from Tracy and the I/O pair sampling strategy to
model semantic similarity, and improves upon them. The main contribution of BinGo
lies in the extension of the tracelet concept: By selectively inlining function calls, a
trace is not only able to capture a control-flow transition within the CFG, but also the
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function call graph. This concept would later be picked up by asm2vec [10], as de-
scribed in section 3.2. The selective inlining process works by inlining library calls and
selectively choosing user-defined functions for inlining by measuring their function cou-
pling score. The authors remark that by inlining functions with a low function coupling
score, they are more likely to inline utility functions that don’t rely on other user-defined
functionality.

While BinGo, Tracy and Multi-MH rely on sampling of I/O pairs, Blex [57] proposes
a different primitive for determining similarity via dynamic analysis. This primitive,
called blanket execution, takes an environment and a function, executing the function
and recording its changes to the environment. In order to cover all instructions of a
function, Blex simply starts execution at instructions that haven’t been executed in
the next iteration. In order to calculate similarity, Blex records some features observed
during execution into feature vectors. These features include memory access to locations
on the heap, memory access to locations on the stack, calls to dynamically imported
functions, system calls and return values. In their evaluation, the authors show that stack
read/writes and writes to heap memory provide the highest accuracy during function
similarity comparison.

Similar to Blex, Tinbergen [58] builds upon the idea of monitoring the environment
while executing a function, and introduces IOVecs, storing input program state and the
state expected after execution. The idea behind IOVecs are, if a function accepts certain
inputs, a similar function is likely to accept the same inputs, i.e. a similar function
should produce the same/similar output on the same/similar input. To find IOVecs
in the first place, Tinbergen fuzzes the functions and if the function terminates, the
generated inputs and collected outputs are combined into IOVecs. A particular problem
with IOVecs is the detection of pointer arguments as input parameters for functions;
to mitigate this, the authors apply taint tracing to determine whether a crash during
fuzzing was caused due to an invalid pointer argument.

In general, dynamic analysis approaches suffer from long runtimes when compared to
static analysis, but try to improve robustness and accuracy. A prime example for this is
BinHunt [59], which uses taint tracing to compare binaries, and can take hours to match
basic blocks. A combination of techniques, as used by Expose [60], where functions are
prefiltered using static techniques and then dynamic analysis is used to compare the rest,
has the potential to circumvent the high cost of dynamic analysis, providing a tradeoff
between accuracy and performance.

3.2 Approaches Based on Machine Learning
The rise of computation power and the development of modern machine learning tech-
niques opened up new possibilities in the field of information retrieval and natural lan-
guage processing. Function clone identification no longer has to rely on static signature
heuristics or simple stochastic models, but can use these machine learning techniques to
model functions as complex feature sets. Especially approaches based on embeddings,
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as described in section 2.3, have been shown to work well on the problem of function
clone identification. One of the earlier approaches to use a technique akin to graph em-
beddings based on machine learning in contrast to manual feature extraction is Genius
[61]. It uses attributed control-flow graphs (ACFGs) as raw features extracted from the
binaries. In addition to the normal CFG, the ACFG in Genius’ case contains a number
of different indicators as attributes, split into statistical and structural features. The
statistical features include the number of certain instruction types, string constants and
numeric constants, while the structural features count the number of child nodes of a
basic block and calculate the centrality of the basic block in the CFG. In the next step,
called codebook generation by the authors, Genius calculates what is practically a graph
embedding. It performs a bipartite matching of ACFGs, assigning a cost value, which
relies on the attributes in the CFG, to each matched edge and then performs a learning
process using a genetic algorithm, to optimize the attribute weights. Afterwards, an
unsupervised learning algorithm is used to cluster ACFGs with the previously learned
similarity metric, creating a set of n clusters. Raw ACFGs are then encoded into a
vector of dimension n, by comparing the distance to the nearest centroid neighbour in
the codebook. The actual similarity lookup is performed by using LSH on the generated
feature vectors, as done by a majority of classical approaches. The evaluation compares
Genius to discovRE and Multi-k-MH, outperforming them in terms of result quality
and query time.

Gemini [15] is approaching the binary code similarity problem with embeddings of the
ACFG, in a similar manner to Genius. Compared to Genius however, Gemini uses neu-
ral networks to calculate the embeddings of an ACFG. The basic building blocks for this
approach have been laid by structure2vec [62], a network designed to create embed-
dings for structured data. However, the authors of Gemini note that structure2vec
has been designed for classification tasks and that generating the graph embeddings is
in itself not a classification task. To overcome this limitation, Gemini uses a Siamese
architecture: It contains two identical structure2vec networks and combines them to
produce a similarity score. Using a pair of two functions and a score for describing their
similarity, the model can then be trained to match this similarity score. This training
process requires a large amount of function pairs and their similarity, Gemini uses source
code information to create these function pairs with identical/equivalent functions.

While the neural network used by Gemini comes with performance benefits compared
to Genius, it also allows for specializing the trained model further for a specific task.
This task-specific re-training, as described in their paper, allows human feedback on
classification to be integrated into the model. This can be seen as a simple version of
transfer learning, where a model is pre-trained on a ground truth dataset, and then
fine-tuned for a specific task. The evaluation results of Gemini show a speedup and
accuracy increase over Genius, on their fabricated and real-world examples, showing
the usefulness of embeddings generated through machine learning. Gemini’s approach
of embedding the control-flow graph is however not without pitfalls, as the authors
describe that when only relying on the ACFG for embeddings, changes that don’t affect
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the ACFG also do not affect the similarity. In one specific evaluation case, Gemini was
not able to determine whether a software version was vulnerable or not, due to the patch
only affecting a small number of instructions and no control-flow transitions.
Increasing the complexity from Gemini in terms of model design, aDiff [63] tries to
remove the need for feature modelling altogether, by introducing a convolutional neural
network, modelled after image processing, which works on raw bytes instead of the
CFG or disassembled instructions. Not having to model features is the theoretical ideal
solution, as there would be no need for third-party tooling like disassemblers, IR lifters
or CFG reconstruction tools, also significantly speeding up the matching process. aDiff
outperforms BinDiff [32] and BinGo [56], interestingly also showing better performance
than BinGo on cross-architecture, despite being trained on raw bytes of one architecture.
The results seem questionable, as other recent work is cited multiple times in the paper,
but comparisons only use older approaches like BinGo or BinDiff, instead of comparing
with, e.g. Gemini.
An improvement to Gemini is shown by VulSeeker [12]. Instead of relying on the
ACFG alone, VulSeeker also tries to incorporate the data-flow graph into its analysis.
To this end, a construct called labeled semantic flow graph is generated by taking the
CFG and then adding data-flow edges, if it can be derived from LLVM IR that two basic
blocks are data-flow dependent. On the basic block level, VulSeeker uses a similar set
of statistical features as Gemini, combining the semantic flow graph and these features
using a neural network modeled after structure2vec. While VulSeeker on its own
is already able to outperform Gemini, the authors released an updated version called
VulSeeker-Pro [64], which builds on VulSeeker and improves the matching of the
top candidate functions by performing emulation.
Asm2vec [10] uses an approach closer to the original word2vec: Instead of calculat-
ing embeddings based on the control-flow graph, the embeddings are calculated directly
through the instructions. This marks a paradigm-shift towards treating assembly lan-
guage, or raw bytes of machine code instructions as similar to natural language. In terms
of architecture, the authors do not use a specific pre-existing network architecture, but
use PV-DM/doc2vec [65] as base architecture and construct their own network to fit
the assembly domain. As word2vec only marks the embeddings of the words itself, it
is limited when applied to function clone identification on assembly-level. Embeddings
of the assembly instructions themselves are not helpful on their own, but when aggre-
gated to create an embedding of the function as a whole, the embedding vectors of two
functions can then be used to calculate the similarity via cosine vector similarity. The
extension of word2vec necessary for this to work is covered in the PV-DM approach;
in terms of natural language, the assembly instructions would be words and a function
would be a paragraph or document.
As the authors did not just copy the PV-DM approach, some intricacies revolving around
specifics of assembly language are introduced. Asm2vec does not just linearly disassemble
a function from start to end and feed the instructions to the model for training, but
performs random walks on the control-flow graph of the function. This means, there is
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Figure 3.1: Asm2vec extension of the PV-DM model, as seen in [10].

not a single list of instructions, but a set of multiple instruction sequences of the same
function. These sequences are generated by taking the branch targets of control-flow
transitions into account: Random walks are being performed on the control-flow graph
and called functions are selectively inlined into the instruction sequences of the caller,
as suggested by BinGo [56]. To reduce overhead, function calls are not recursively
expanded, but only the first level of function calls is considered.

Another assembly language specific detail is the handling of operands. As assembly
language instructions are small parameterizable units, they lexically consist of multiple
tokens, but semantically act like simple functions. This can be seen in the graphical
description of the Asm2Vec model, shown in Figure 3.1; instead of treating it like
natural language, the instruction operands are handled separately from the instruction
opcode. All parts of an assembly instruction are tokenized and turned into vectors with
two parts, the embedding vector for the opcode, and the average of the embedding
vectors for the operands. These two parts are concatenated to form the embedding
vector for the instruction and averaged with the surrounding instructions. Finally, these
vectors are updated with the gradients from the backpropagation training process. The
authors do not specify how numerical operands, such as constant addresses, are treated
during the tokenization, making these operands normal lexical tokens that can cause
potentially large vocabularies. In their evaluation, they also take binaries obfuscated by
O-LLVM [18] into account, making it one of the first machine learning based approaches
to function clone identification that also consider obfuscated inputs. An approach similar
to Asm2Vec is instruction2vec [66], which was published at around the same time;
however the description of the approach is opaque and due to the different data set and
evaluation goal, the performance cannot be directly compared to Asm2Vec.
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Released around the same time as Asm2Vec, Reymond et al. [67] try to tackle the
embedding of instructions across architectures. Instead of building on PV-DM, their
approach uses word2vec directly, making it limited to predicting instruction similarity.
In order to learn embeddings for multiple architectures, they adapt the word2vec
continuous bag of words training approach to predict the following instruction in a
different architecture instead of its own architecture. While the authors provide a ROC
curve for basic block matching with simple summation of instruction embeddings that
seems promising, it ultimately can’t replace the overall better designed approach of
Asm2Vec; however, it poses a starting point for making Asm2Vec aware of multiple
architectures, as the presented multi-architecture approach could be introduced into
Asm2Vec with little effort.

InnerEye [44] works on addressing the cross-architecture problems of previous ap-
proaches, as well as going a step lower to the basic block level instead of working with
function pairs as most other approaches do. Compared to Asm2Vec, instructions are
therefore treated as words and basic blocks as sentences/paragraphs. Instead of combin-
ing the embedding training into one model, like Asm2Vec does, instruction embeddings
are generated first for each architecture. However, when generating the basic block em-
beddings, every architecture to be trained has its own LSTM model. Training these
LSTM models happens via a Siamese architecture, making sure that the models for the
different architectures are trained concurrently.

Similarly to InnerEye, Safe [11] takes a two-step approach to function embeddings.
Compared to Asm2Vec, where PV-DM was used to generate the function embedding
in one pass, Safe first generates embeddings for the instructions themselves and then
subsequently uses the instruction embeddings of a function to train a bidirectional recur-
rent neural network utilizing self-attention, building upon previous work from natural
language processing. [68] The respective models of these steps are trained separately,
showing a slow trend towards transfer learning, which has been hinted at with Gem-
ini before. Comparing the approach to InnerEye, Safe only requires one RNN with
self-attention, instead of separate LSTM models for each architecture.

For generating the instruction embeddings, called instruction2vec 1, a standard word2vec
approach is used, and the model is trained using the skip-gram technique. This means,
the embeddings are trained by predicting the neighbouring instructions of the current
instruction. Compared to Asm2Vec, constant values in disassembly instructions are
not just treated as additional lexical tokens, but if it concerns a memory offset or an
immediate value, the constant is being replaced by an abstract token, e.g. IMM for inter-
mediate values or MEM for addresses. The authors believe this to improve the quality of
the embeddings, but have not provided evidence to back this claim.

The function embedding part of Safe takes the sequence of instruction embedding
vectors of a function as input. The authors do not state how this sequence of instructions
is generated, but they mention not needing to generate a CFG as a speedup over Gemini;

1This model is not related to the instruction2vec [66] model in the paper of the same name.
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Figure 3.2: Architecture of the Safe function embedding RNN. [11]

this likely means that the instruction sequence is generated through linear disassembly,
making it not robust in the presence of obfuscations, such as data insertion between
instructions. This is in stark contrast to the meticulously designed random CFG walk
and call target inlining strategy implemented by Asm2Vec. Ater feeding the instruction
embedding sequence to the network, it first passes the bidirectional RNN, shown in
Figure 3.2. The hidden states of both directions are then concatenated and passed
through the self-attention mechanism, producing weighting in the form of an attention
matrix that is multiplied with the hidden state vector. This result is then finally passed
through a 2-layer feed-forward network to generate the final function embedding. In
order to train this model, Safe relies on the same mechanism as Gemini and uses a
Siamese architecture to learn the similarity of function pairs.

Despite not reconstructing the CFG to perform random walks and call target inlining,
Safe shows good performance in the authors’ benchmarks. The results have been evalu-
ated on one dataset on amd64 with multiple compilers, and a second dataset showing the
capabilities of cross-architecture function similarity. While acknowledging the existence
of Asm2Vec in the introduction, the authors only compared Safe to Gemini in their
benchmarks, where Safe outperforms Gemini in accuracy and evaluation performance.
The support for multiple architectures in Safe is mentioned as an improvement over
Asm2Vec, however Safe does not handle architectures in a special way and there is no
obvious reason why Asm2Vec should not be able to be trained on multiple architectures,
besides it not being shown in the paper evaluation. As an additional evaluation task,
Safe performs a semantic classification of the function embedding vectors, categorizing
them in encryption, math, sorting and string manipulation functions. Visualizing the
categories on the t-SNE [69] visualization of the embedding vector space, highlights that
semantically similar functions form clusters.
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As of the time of writing, the most current addition to machine learning approaches
for function clone identification is Trex [1], adding and refining several new concepts.
Trex model is based upon RoBERTa [70], providing the basics for transfer learning
that has been hinted at in Gemini and Safe by different means. Transfer learning allows
to shift more work into the pre-training of the model, as ideally the pre-training only
happens once and the model can be specialized for a specific task afterwards. With the
specialized task being the calculation of function embeddings, done through a simple
feed-forward network, the focus in this paper is on the pre-training approach. Here,
the authors decided to capture the execution semantics of instructions, as compared to
working with static instruction sequences. Observing the instruction execution through
microtraces, a form of microexecution [71] and pre-training with the dynamic values
pulled from registers and memory related to an instruction, is supposed to teach the
model the semantics of these instructions.

The RoBERTa model is trained with information from the microtraces by using a
masked language model objective. In this case, if a dynamic value retrieved from a
microtrace happens to be masked, the model is taught to predict this value. During
the evaluation phase of the model, only static information is used as input and it will
internally use the learned prediction on the static instruction sequence. Due to the
existence of these dynamic values, the Trex authors had to come up with an encoding
scheme for constants and concrete values, as using an abstract token for these values,
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like Safe does, would remove the additional information gained by using microtraces.
To keep this information without using dynamic values as tokens, a bidirectional LSTM
model is used for generating what is effectively a simple form of embeddings. Because
the pre-training approach is meant to capture the overall semantics of the instructions,
this part of the training can be done on a completely different dataset than the one
needed for the function similarity finetuning. Ideally, the pre-training set would cover a
wide range of different instructions and on different architectures.

In contrast to the other approaches, the Trex authors also include a thorough evalua-
tion and comparison to the most recent approaches listed here. Trex is able to show
similar performance to Asm2Vec when applying it to one step of compiler optimiza-
tions, and is able to outperform Asm2Vec when doing cross-optimization search across
the respective lowest and highest optimization levels. Performance across obfuscations
is slightly improved when compared to Asm2Vec, and performance in general is bet-
ter than reported by Safe. Trex also contains an ablation study, showing how the
pre-training impacts the performance of the model. When pre-trained with microtraces,
there is close to no noticeable difference when trained with 100%, 66% or 33% percent of
the original microtrace dataset. When not pre-trained, the AUC scores drop on average
15.7% and when pre-trained with static data instead of microtraces, the AUC scores
drop by 7%, putting the AUC scores on average below the reported values of Safe.

3.3 Deobfuscation
The usage of machine learning for deobfuscation is an interesting case, as the goal for
code deobfuscation is in general to retrieve the original code or something close to it.
This implies that the deobfuscated code needs to have the same exact semantics as
the original code, and machine learning techniques usually do not provide exact results.
However, there are a multitude of topics in deobfuscation where approximate outcomes
are applicable, as deobfuscation can also involve a human reverse engineer and approxi-
mate information can be valuable for human thought processes. This applies to names
in particular; in the worst case, an executable binary has no function labels, no symbol
information or no imported library functions. If a heuristic provided a list of imported
functions that is only 80% correct, this can already improve the time needed for a human
analyst to understand the overall structure of obfuscated code, turning e.g. detection
of obfuscated function clone into a problem solvable by applying machine learning algo-
rithms.

A prime example for this is Debin [8]. Instead of restricting itself to function clone
identification, Debin tries to recreate debug information for a binary, i.e. it tries to
assign the correct function names, as well as variable names and type information. In
order to facilitate this goal, Debin uses several different models for different elements to
be recovered: To determine whether a register or memory offset is a variable, Extremely
randomized Trees [72] are used. Afterwards, conditional Conditional Random Fields are
used to assign the most likely names and types to these variables and functions. Instead
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of working directly on bytes or disassembly, Debin extracts the features needed for
training the statistical models by lifting the binary into BAP-IR first, the intermediate
language of the binary analysis platform. [73] This allows Debin to function independent
of architecture and compilers and make use of pre-existing analysis modes in BAP, such
as detection of function boundaries.

Deguard [74] and Macneto [75] are approaches that work on deobfuscating Android
applications. When compiling and packaging Android applications, a lot of information
is retained in the final application, including names and identifiers, in contrast to binary
applications. While it is still possible to significantly obfuscate Java bytecode using
control-flow transformations [76], Deguard focuses on reversing layout obfuscations
done by ProGuard [77], shortening and renaming identifiers, such as class, variable, or
function names, to reduce size of the produced bytecode file and obfuscate the meaning
behind these variables. Deguard tries to work around these obfuscations, by using
a similar approach to Debin, where a dependency graph of related features in an An-
droid application is constructed, feature functions are assigned and combined into a
Conditional Random Fields; Deguard appears to be a precursor to what Debin would
eventually become on arbitrary binaries.

Macneto [75] instead uses an approach more in line with the recent advances in func-
tion clone identification. [1, 10, 11] While focusing on the obfuscations provided by Pro-
Guard, the authors also assume control-flow and data transformations to be present in
the code, but exclude dynamic obfuscation, such as overuse of reflection in Java. As the
first step in its pipeline, Macneto performs instruction distribution analysis, to build
a typical index as used for information retrieval. In the second step, the authors apply
topic modelling [78] to machine code instructions, where functions are treated as docu-
ments and instructions as terms, in order to uncover hidden topics in the disassembled
instructions of a function. The authors of Macneto arbitrarily chose 35 machine top-
ics, and used Latent Dirichlet Allocation [78] to create a topic vector for each function,
based on their instructions, mimicking instruction embeddings. Finally, the instruction
distribution and topic vector is combined and used to train a recurrent neural network,
predicting the topic vector of an unknown function, and cosine similarity is used to find
the original function.

While Debin, Deguard and Macneto work by reconstructing features necessary for
a human analyst, approaching deobfuscation of code constructs directly using machine
learning is possible. Tofighi-Shirazi et al. [79] present a technique for analyzing opaque
predicates, applying machine learning to this specific type of obfuscation. Through
automated binary analysis, using symbolic execution, they build a labeled dataset of raw
binary data for supervised learning. The raw binary data is lifted to an intermediate
representation using Miasm [80] and then turned into a normalized version of a static
single assignment (SSA) form. Based on this data, the authors seek machine learning
solutions for two questions to be answered: One model for determining whether an
expression is an opaque predicate and one for determining the value an opaque predicate
evaluates to. As not every predicate in a binary should be an opaque predicate, an
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obfuscator tries to make an opaque predicate look like a legitimate predicate; the opaque
predicate always evaluates to one certain value, and identifying a normal predicate as
opaque might lead to the wrong result when trying to calculate its value. Therefore the
first model is a safeguard to prevent the second model from trying to determine the fixed
opaque value. The authors tested several different simple machine learning approaches,
e.g. k-nearest neighbor or support vector machines, and found out that decision trees
produce the best results on their dataset.

Syntia [81] takes the application of machine learning for deobfuscation in a different
direction and does not directly use the output of a model for deobfuscation, as Tofighi-
Shirazi et al. did, but uses machine learning as a way to guide search space exploration.
In order to find the original code from code that has been obfuscated as a virtual machine,
the authors of Syntia use program synthesis, a technique where an optimal piece of
code is generated according to some formal specification of semantics. They mainly
build on work by Gulwani et al. [82], which introduced program synthesis based on
specification in off-the-shelf SMT solvers for synthesis of loop-free programs, and work
by Jha et al. [83], using I/O value pairs as an oracle to guide program synthesis. In
order to deobfuscate virtualized code, Syntia first records traces of a program under
execution. These traces are then dissected into trace windows, which split the trace
into logical units, with the authors mentioning that selection of the window boundary is
critical to the analysis; in the case of VM obfuscation, they chose to split the trace on
indirect branches, indicating processing of the next opcode. Afterwards, they perform
random sampling by finding I/O value pairs for the trace window, and finally perform
program synthesis using these value pairs. The main contribution of the authors is the
use of Monte-Carlo Tree Search (MCTS) [84] combined with simulated annealing [85] to
make program synthesis scalable in this context. This combination allowed the authors
to automatically learn the semantics of 98.9% of VM handlers in VMProtect [21] and
94.4% in Themida [20] at the time of the publication.

The most recent addition to deobfuscation of virtualized code using machine learning
approaches is Xyntia [86], which explores possible improvements of its namesake Syn-
tia, and reflects on machine learning based blackbox code deobfuscation in general. The
authors generalize the approach taken by Syntia and define a blackbox obfuscator as
a tool, which can generate arbitrary input, trigger the obfuscated code with this in-
put, observe the output and then generate code approximating the observed semantics.
Treating the obfuscated code as a blackbox that is queried rather than analyzed allows
to completely bypass obfuscations that rely on syntactic complexity alone in theory; the
approach of querying and e.g. comparing it with previously observed semantics for simi-
larity especially encourages stochastic heuristics or heuristics based on machine learning.
Instead of performing MCTS like Syntia, Xyntia uses S-metaheuristics [87], with It-
erated Local Search (ILS) [88] being the specific heuristic used. The authors mention
ILS being especially suitable for unstable search spaces and the ability to restart the
search from the previously best found solution. While the MCTS approach used by
Syntia may create new subtrees in an AST when synthesizing an expression, the ILS
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optimization strategy used by Xyntia only mutates terminal nodes in the AST. Xyntia
again uses an I/O oracle as sampling strategy and stops the ILS when the synthesized
expression is valid on all I/O samples, or when the search algorithm takes longer than
a set amount of time. When performing distance measurements, ILS shows a greater
structural distance from the starting expression than MCTS, as MCTS acts like enu-
meration in this case, while ILS is actively guided by an objective function, allowing for
mutations that would not be found by MCTS as they are too deep down in the search
space. The reported results of Xyntia across datasets used by QSynth [89] shows bet-
ter performance than Syntia and other state-of-the-art program synthesizers [90, 91],
while also outperforming QSynth when dealing with heavy obfuscation; the authors
credit the increased syntactic complexity on the heavy obfuscation dataset for this, as
QSynth uses a greybox deobfuscation approach.

Syntia and Xyntia demonstrate the viability of machine learning methods, even when
transforming code that requires exact results, and Xyntia shows that uninformed search
through a blackbox using learning strategies relying on a guiding function can outperform
white- and greybox solutions like QSynth. While a trend towards learning approaches
can be identified, there is still more potential for the introduction of modern machine
learning techniques, i.e. current approaches rely on stochastic search techniques and do
not make use of architectures like deep neural networks. Additionally, with the rise of
machine learning techniques comes the possibility of adversarial models targeting these
techniques. The authors of Xyntia briefly discuss how blackbox analysis methods can be
countered, namely using VM opcode handlers with complex semantics or complex nested
conditions, showing the fragility of blackbox analysis in the face of an adversary.
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CHAPTER 4
Obfuscated Function Clone

Identification

Review of related approaches has shown that binary similarity has profited from machine
learning and that usage of machine learning is viable for deobfuscation tasks. Out of
recent state-of-the-art function clone detection approaches, only two [1, 10] have dealt
with analyzing binary code which had its control flow and data obfuscated. Neither of
these existing approaches has tried to apply binary code similarity algorithms to counter
obfuscation by code virtualization. In order to improve the state of function clone
detection when faced with heavily obfuscated code, this thesis introduces Obfuscated
Function Clone Identification, or Ofci for short.

4.1 Assumptions and Threat Model
Before discussing the general architecture, it is necessary to highlight the assumptions
and constraints under which Ofci was designed to operate. In order for Ofci to de-
tect function clones, the knowledge of function entry points and boundaries is required
upfront, i.e. the function start detection problem is assumed to be solved by existing
tools/libraries. Since Ofci uses textual disassembly for comparing functions, as opposed
to raw bytes, a working disassembler is required; however, compared to other solutions
(e.g. Asm2Vec, Ofci does not need to reconstruct the CFG. In order to keep the
amount of training data to a manageable size, Ofci is only evaluated on the x86_64
architecture. Trex [1] and Safe [11], the previous works Ofci is based upon, have
shown good performance of cross-architecture clone search, making it likely that Ofci
can generalize across architectures as well, when presented with an adequate amount of
training data. Furthermore, when training Ofci from scratch, a consumer GPU with at
least 6 GB of VRAM is required to perform the training in a feasible amount of time (cf.
chapter 6). Using a trained version of Ofci for function clone identification does not re-
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quire a GPU, but using a GPU can speed up the inference process. Only Linux binaries
have been used for evaluation/validation, but there is no inherent obstacle preventing
the application of Ofci on executables for different operating systems or raw firmware
binaries.

The threat model of Ofci assumes the author of the binaries under analysis to be an
attacker, who makes use of obfuscation techniques to hide information contained in the
binary. It is not relevant, whether the binary executable is benign or malicious. In
this threat model, the attacker is assumed to only apply the obfuscations discussed in
section 2.2, i.e. only obfuscations that do not split or merge functions, as the goal of
Ofci is function clone identification. The attacker is generally not assumed to use packed
code, with the exception of code that can be traced or unpacked by existing tools, using
Ofci to statically analyse the unpacked code. As the first tool of its kind, Ofci also
allows an attacker to use code virtualization as an obfuscation technique. This is limited
to the function level, meaning virtualization is applied to individual functions and not
the whole program, as implemented by Tigress [17].

4.2 Architecture Overview

The architecture of Ofci consists of several moving parts and pipelines, designed to be
integrated into a reverse engineering environment. Every part of these pipelines can
be replaced by concept: It does not matter which reverse engineering environments are
used, as long as the environment provides a plugin interface for data import and export.
The machine learning libraries can be replaced by different implementations in a similar
manner, as long as the implementation provides the same model interface and general
architecture.

A coarse overview of the Ofci concept is shown in Figure 4.1. The diagram shows
the lifecycle of Ofci and its three basic pipelines: Pretraining, fine-tuning and infer-
ence within the reverse engineering environment. The training step being split up into
pre-training and fine-tuning is the result of the underlying machine learning model archi-
tecture (see section 4.4). Trex was the first approach to adopt a recent trend in natural
language processing, where a transformer model is pre-trained with a generic task on the
input language, initializing the network parameters by learning an "understanding" of
the language. This knowledge is then transferred to a specific task, in this case sentence
similarity, where functions extracted from a binary are interpreted as sentences. While
Trex used the pre-training to additionally include data gathered by dynamic analysis in
the input language [1], the authors also showed that pre-training without dynamic data
still increases the performance of the function similarity task. Ofci makes use of this
insight to build a simpler model that does not include the additional number of model
parameters required to accomodate dynamic information, removing the dynamic value
concept altogether. In the pre-training step of the pipeline, Ofci extracts a large num-
ber of functions from a set of different open source tools, using the binaries published
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Figure 4.1: Overview of the Ofci architecture and pipeline.

by the authors of Trex along with their code 1. After disassembling the functions, the
generated assembly code is preprocessed and stored in a database. The model is then
pre-trained on the complete set of functions using the Masked Language Modelling objec-
tive: Individual instructions within a function are replaced with a mask token and the
objective is to predict the original token at this position. The result of this pre-training
is a model which can already produce embeddings for functions, albeit embeddings of
poor quality for the similarity task. This step in the pipeline is the most time-consuming,
as the pre-training should make use of an adequately large dataset, and should ideally
be a one-time effort.

Making use of the pre-trained model, the second step in the pipeline uses the model
as starting point and applies a fine-tuning training for the task of function similarity.
In this step, a pair of functions is used as inputs for the model and the model outputs
the embedding vectors for each of them. The cosine similarity of the model outputs is
calculated and the difference to a specified label is used as the training loss. This means
that the fine-tuning step is supervised, specifying a pair of function and whether they
are similar (1.0) or dissimilar (−1.0), as opposed to the self-supervised pre-training step.

1The dataset is provided in the description of https://github.com/CUMLSec/trex (Accessed 2021-12-
06).
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A consequence of this is the need for function pairs in the dataset, through different
versions, compiler optimizations, or obfuscations. While the performance of the fine-
tuned model should not significantly degrade when used on previously unseen data, this
step is less time intensive than the pre-training task and can be repeated in a shorter
amount of time. In the final step of the Ofci pipeline, the fine-tuned model is being used
to generate embeddings for the functions to be analyzed. First, the function repository,
ideally the same functions from which the fine-tuning dataset has been generated, is
annotated with an embedding for each function in the database. When trying to find a
similar function for an unknown function, the disassembler can pass the assembly to the
model, generate the embedding and use locality-sensitive hashing to find a correlating
function in the repository. When compared to existing approaches [11, 10, 1], Ofci
also allows to extract the assembly for embedding generation from an instruction trace,
making it possible to analyze functions obfuscated through virtualization, where different
functions could reuse the exact same virtual machine code, but their bytecode behavior
only becomes apparent during dynamic analysis.

The different parts of the pipeline come with their own intricacies. Concluding this high-
level architecture overview, the following sections elaborate on the theoretical concepts
and considerations for each part of the pipeline, while the practical details and software
dependencies are covered in chapter 5.

4.3 Feature Modelling
While it is not an explicit pipeline step in itself, the feature extraction happens at every
part of the pipeline, providing the necessary input data for the embedding model. When
comparing the task of function similarity with sentence similarity in natural language
processing, the idea of treating disassembly as text and using it for further processing
directly seems to be the obvious choice. However, existing work has shown that there
is a broad number of approaches on how to model features based on executable binary
code: Some approaches use numeric features of basic blocks in the CFG [49, 61], other
approaches work directly on the byte level [16] and others perform random walks on the
call graph/CFG and use these instruction sequences for training [10, 92]. This highlights
the importance of feature modelling for the various approaches.

Ofci takes inspiration from Trex [1] and Safe [11], using raw disassembly as a starting
point for the feature extraction. It does not rely on being able to reconstruct a CFG
and only assumes knowledge of function entry points and that functions are layed out
linearly in memory. While raw disassembly can be used as text input for natural lan-
guage processing (NLP) tasks without further modification, numeric constants in the
disassembly present a challenge in typical word processing settings. These constants can
carry specific meaning, e.g. relative address offsets or special constants used for bitwise
operations, which should be preserved to aid identification of a function. The flipside
of preserving constants unmodified is increasing the size of the vocabulary used by the
tokenizer, which turns the words into numeric identifiers that can be passed to the model
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as input. On a 64-bit architecture this would entail the theoretical possibility of having a
vocabulary of size 264, making the vocabulary prohibitively large. Safe and Asm2Vec
solve this issue by limiting the range of the constants: If a value is smaller than a fixed
limit, it is interpreted as its own token, otherwise it is replaced with a token correspond-
ing to the type of the constant, e.g. NUM for arbitrary numeric constants or ADDR when
the constant is an address. Trex uses a bi-LSTM network to create embeddings for
numeric values instead, as they also work with dynamic values obtained through micro-
tracing. These dynamic values and constants are provided within a second input field
besides static code, also including other fields like absolute positions, relative positions
and architecture. Ofci takes an approach closer to the one used by Trex, but without
using multiple input fields and bi-LSTM encoding for numeric values.

Figure 4.2: Extraction of a normalized function from disassembly.

An example of how Ofci normalizes a disassembled function for tokenization can be seen
in Figure 4.2. In general, the information present in the disassembled code is largely
preserved: Memory accesses are still delimited by square brackets and calculation oper-
ators are kept as separate tokens. All symbols and words are separated by whitespace,
instruction operands are separated by comma and the instructions itself are separated
with a dot to eliminate line endings. Register names and opcodes are passed through
normalization unprocessed, but scalar values and addresses are treated separately. For
both, scalars and address offsets, values are first treated as 8-byte integer values in little
endian byte order. In order to prevent an arbitrarily large vocabulary, this integer is
then added as a new word to the normalized disassembly byte by byte, omitting trailing
zeros. This can be seen in the example, e.g. when 0x40f9e0 is turned into e0 f9 40. As
each byte is added separately, the vocabulary can only increase by the fixed size of 256
entries.

Trailing zeros are removed in order to keep the actual amount of needed tokens for
the number small, as they do not convey additional meaning. In a similar manner,
whenever a scalar or address offset is negative, the absolute value is taken if possible
and the negative sign is prepended to this value. In the example, this happens with
−1, which would otherwise be normalized as ff ff ff ff ff ff ff ff. In case the
negative scalar is part of an address calculation, a preceding addition operator is being
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replaced with the subtraction operator. Another special case for the normalization is
represented by addresses, which correspond to the entry points of known functions in
the binary, or external function stubs. Some previous approaches [10, 92] try to improve
function matching performance by expanding the called function and inlining parts of it
into the caller. This allows the establishment of interprocedural relationships, but has so
far only been used as additional information for training embeddings. It also comes with
the pitfall of having to reconstruct the control flow to a certain degree, as the mentioned
approaches rely on random walks across the CFG.

Ofci tries to incorporate the basic idea of function inlining, without actually having to
reconstruct the CFG or inline the function into the caller. Instead, address references to
the entrypoint of a function are recorded and replaced in the normalization phase. When
building a database of function embeddings, unique IDs are assigned to the function
names. Afterwards, whenever a function is called and the address of the called function
can be derived from static disassembly, the address is used to retrieve the name of the
function from the symbol table. Instead of keeping and normalizing the function address,
the unique name ID of the function is inserted into the normalized disassembly. If no
ID for a specific name is stored in the database, the address reference is replaced with
0, which can be seen at the CALL instruction in Figure 4.2, as the normalization was
generated without a backing database. If the function getopt_long was recorded in the
database with, e.g. name ID 1, the corresponding instruction would be normalized to
CALL 01. This procedure allows iterative generation of embeddings, as it highlights the
calls to other functions as part of what makes a function similar. When trying to assign
function name labels to a stripped binary, the embeddings for all functions having no
calls are generated first. After assigning labels to these functions, embeddings for all
functions making one call are generated next, the matching labels are assigned, and so
on. At the basic level, this also encodes the API calls to the operating system or external
libraries, which are known statically 2 and can be factored into embeddings right at the
start of the analysis. If no functions from other libraries are used, this approach also
works on the syscall level, if the number of the syscall can be resolved statically.

Concluding the normalization of the disassembly, Figure 4.3 shows the rest of the fea-
ture extraction process and the subsequent generation of data for various steps of model
training. After the disassembly is normalized, it is stored in a database, together with
function metadata that is required for generating labeled training data and the itera-
tive embedding generation. The normalized disassembly cannot be processed for model
training directly, it still has to be tokenized, i.e. turned from words into an integer list.
For tokenization, a method normally used with the chosen neural network architecture,
see section 4.4, has been selected. This tokenizer is based on the Byte Pair Encoding
(BPE) compression algorithm [94] and has been invented to allow handling of rare words,
without having to mark the entire word as unknown. [95] Other state-of-the-art tokeniz-

2There are trivial and sophisticated obfuscation techniques aiming to specifically prevent the static
lookup of imported functions. This does not fall under the threat model of Ofci, but promising ap-
proaches utilizing dynamic analysis exist. [93]
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Figure 4.3: Feature extraction and training data generation.

ers such as Unigram [96] or Byte-Level BPE [97] build on the basic ideas of the BPE
tokenizer and refine them for natural language; as assembly language is already very
structured in itself, the improvements made by e.g., Unigram, are not necessary for the
use case of this thesis. The general idea of a BPE tokenizer, or other recent tokenizers, is
to prevent rare words from unnecessarily increasing the vocabulary size. In order to do
that, BPE tokenizers split rare words into more common substrings and define a set of
merge rules, which define when subsequent characters or substrings should be grouped
together instead of interpreted as individual token. As an example, MOV is the most
common instruction in most x86 programs, but with various different suffixes, different
actions can be performed. One might encounter more common suffixes like MOVSX for sign
extension, or rare opcodes like MOVLPS used with SSE instructions. Rather than adding
all of these variants to the vocabulary, the opcode can be split up and have MOV as token
and then treat e.g. S and X as separate tokens. Since S and X are single characters that
can show up in suffixes of other instructions, treating these characters as tokens can
decrease the base vocabulary size. The vocabulary and these merge rules are not fixed,
which results in the tokenizer having to be trained on the dataset first. This step can
be seen in Figure 4.3, where the BPE tokenizer trainer pulls the normalized disassem-
bly from the database and learns vocabulary. Since the tokenizer does not inherently
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know when to classify a word as rare, the desired vocabulary size has to be specified for
training; the training process is short and is finished within a few seconds. When the
training is done, the files containing the vocabulary and the merge rules are generated,
which can now be used by the BPE tokenizer to convert the normalized disassembly into
a list of numbers that can be used as input vector for a language model. The tokens for
each function are stored in the database and are then used for the process in the lower
half of Figure 4.3, the generation of training and evaluation data.
Two kinds of datasets are required for training Ofci: The pre-training and the fine-
tuning dataset. The pre-training dataset does not require special handling, as the model
is pre-trained using the Masked LM objective and masking words is handled by the
corresponding data loader during training. Ideally, the pre-training dataset consists
of a large number of functions that do not have to be similar to the functions used
for the fine-tuning dataset. The exporter responsible for generating the pre-training
set has to fetch all tokens for each function and make sure to split token lists longer
than the input dimension of the model. Generating datasets for fine-tuning is more
involved, as this step performs contrastive learning through a Siamese architecture. This
means the model is trained on pairs of functions, rather than working with inputs from
just one function, with each pair having a cosine similarity score assigned, where −1
corresponds to non-equal and 1 to equal. This not only results in the selection of function
pairs, but also introduces a need for thorough dataset creation, as the fine-tuning is
a supervised training and thus prone to overfitting and unlearning of the pre-trained
knowledge. Another issue in training data generation is tied to the parameters of the
underlying model, namely the maximum length of the accepted input, which is especially
relevant in the approaches of Trex and Safe. Transformers have fixed-size inputs, and
a maximum token count of e.g. 512 is fine when dealing with sentences, but function
lengths can be vastly different. From the released source code of Safe it appears that
functions are cut off after 128 tokens. This trivially implies that all functions that are
only different after the maximum token count will be classified as the same. On inquiry,
the author of Trex stated that they split the functions on the maximum token count
border and classify every pair from the cross product between two function splits as
similar. Ofci instead tries to adopt a different approach, with details being discussed
in chapter 5.

4.4 Neural Network Architecture
Ofci is mainly inspired by Trex concerning the architecture of the main neural network.
In comparison to Safe, which uses an LSTM network for language modelling, Trex
builds on more recent work and uses a modified version of RoBERTa [70] to learn
function embeddings. RoBERTa is an optimized version of Bert [23], a model based
on the transformer architecture whose variants still achieve state-of-the-art performance
on language processing tasks. When compared to an actual transformer, Bert only
uses the encoder parts of the transformer, layering a certain number of transformer
encoders on top of each other. However, the main idea behind Bert is not to just
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layer transformers, as the typical transformer would need a decoder to perform tasks
like translation and Bert only uses the encoder parts of the transformer. Instead of
adding a decoder, Bert expects a task-specific neural network to be placed on top,
e.g. a simple feed-forward network for classification tasks. This network does not have
to be present for the complete training: Bert is first trained on a general task, such
as masked language modelling, without the task-specific network; afterwards the task-
specific network is added on top and the model is fine-tuned on a specific task via more
training.

This process is called transfer learning and Bert is one of the current main architec-
tures, which demonstrate the feasibility of transfer learning on practical tasks. Transfer
learning in the case of language processing has the advantage of allowing training on
a large corpus of data with subsequent re-use of the same trained network for different
specific tasks. This makes it possible to deal with a large amount of model parameters
and input data, since models are becoming more complex and are trained with increas-
ingly large datasets. Additionally, the pre-training process is semi-supervised, e.g. when
training with masked language modelling, which allows the handling of large amounts of
data without labelling/preprocessing and is not prone to overfitting. On the other hand,
the specific task that is trained during fine-tuning is usually supervised and therefore
needs a labelled dataset and measures to prevent overfitting. While the transfer learn-
ing approach makes pre-training a one-time effort, pre-training is still expensive. This is
largely not an issue for language processing, as tools and research that require existing
pre-trained models have access to a large selection of pre-trained models 3 or can distill
an existing pre-trained model onto their own architecture. [98] However, applying models
of these dimensions to binary and assembly language processing is a recent development
and pre-trained models are therefore rare. Even if a pre-trained model for a special use
case exists, there is no agreed-upon representation of binary instructions, e.g. one could
use raw bytes or a certain abstraction of assembly language. In addition, even modestly
sized models using Bert architectures can run out of memory on consumer graphics
cards, as the base version of the original Bert consists of roughly 110 million model
parameters. The pre-trained model provided by Trex uses 60 million model parameters
and the training checkpoint archive is about 700MB in size. While this reduces the size
of the original RoBERTa and Bert to half the parameters, a reduction that is achieved
by lowering the layer count, number of attention heads, and a smaller vocabulary, this
is still not adequate for handling the model on consumer devices. Therefore, one goal
of Ofci is to reduce the model size even further, while still producing results that are
comparable to what Trex and Safe can achieve.

One possibility for decreasing the model size is distillation, where a pre-trained large
model is used as a teacher for training a student model. [98] However, the distillation
process is only useful after training/pre-training the large model, a process that can
still be prohibitively expensive. Instead, Ofci adopts a different architecture altogether,
while still being based on Bert. This architecture is called Albert [99], designed specif-

3E.g. https://huggingface.co/models (Accessed 2021-12-06)
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ically to reduce the model size of Bert. In order to limit the parameter count of Bert
significantly, Albert introduces two optimization strategies: Factorization of the vocab-
ulary embedding matrix and sharing of parameters between layers. While approaches
like Safe and neural re-ranking techniques like Conv-KNRM [24] rely on existing em-
beddings or learn vocabulary embeddings as the first part of the process, the vocabulary
embeddings are learned as part of the model in Bert-like architectures. A growing
vocabulary size increases the size of this embedding matrix, which is in turn influenced
by the size of the hidden layers. Albert factorizes the embedding matrix into smaller
matrices to accommodate bigger vocabularies and hidden sizes; as the vocabularies of
Ofci and Trex are small compared to natural language processing tasks to begin with,
this optimization does not have a large impact on the number of parameters. However,
sharing parameters between hidden layers does pay off, as a similarly sized Ofci model
has 8 million parameters, compared to 60 million parameters in the corresponding Trex
model; the saved model archive of Ofci is 30MB in size. While the memory savings are
obvious, Albert also offers a slight speedup according to its authors, but the speedup
in training/evaluation time is not within the same order of magnitude of the memory
savings. The computations for the additional hidden layers still have to be performed,
even if they do not need additional memory. Additionally, Albert allows grouping of
hidden layers, in order to make sure parameters are only shared within a group; this is
not used by Ofci, all its layers share the parameters.

In the context of Ofci, Albert is pre-trained using masked language modelling, with the
disassembly features that have been previously extracted. After pre-training, a simple
feed forward network, a "head" for the base network, has to be added on top of Albert.
The similarity head is constructed as follows: First, mean pooling of the embeddings
is calculated, then passed through a dropout layer, a single feed forward layer with the
tanh activation function, through another dropout layer and then through normalization.
This follows roughly the architecture used by Bert classification tasks, or the similarity
heads implemented in Sentence-Bert [100] and Trex. While the structure of the
similarity head itself looks similar to common classification heads, the difference lies
in how the heads are trained. Classification relies on given labels and is trained using
mean squared error (MSE) loss, but for similarity a contrastive learning approach is
used. In literature, the Siamese architecture is commonly shown as two models with
shared parameters, but in practice this means the two inputs are passed through the
same network one after the other and fed into a loss function. The goal of the training is
to adjust the embeddings learned during pre-training, so that the embeddings of similar
functions have a cosine similarity score close to 1. This means the loss function has to
be a cosine embedding loss, which can be derived by calculating the cosine between two
embedding vectors and comparing it to the similarity label using MSE loss, but this type
of loss is common enough for typical libraries to provide it out-of-the-box.4 The network
is then trained with the function pairs provided by the extractor discussed in section 4.3.
An alternative to the contrastive cosine embedding loss would be a triplet loss, taking a

4https://pytorch.org/docs/stable/generated/torch.nn.CosineEmbeddingLoss.html (Accessed:
2021-12-06)
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function, a similar function and a dissimilar function. Ofci has chosen the contrastive
cosine embedding loss due to easier handling of function pairs compared to triplets, and
pairs being prevalent in related works. [1, 11]

4.5 Virtual Machine Analysis
Analysis of obfuscation through virtualization is still an active research field, as discussed
in section 3.3. While there is literature on deobfuscating virtualized code, research deal-
ing with virtualization in the context of function clone detection is scarce. Another recent
survey [101] highlights the need for covering interprocedural virtualization obfuscators
like Themida [20], or VMProtect [21], as the obfuscations applied by Obfuscator-LLVM
[18] do not appear to be harder to solve than cross-optimization binary similarity. Ofci
does not solve interprocedural obfuscation either, but is intended as a stepping stone to
expand research in this area. To this end, Ofci aims to perform binary similarity on
functions virtualized with Tigress [17], which works by virtualizing functions separately.
Previously, Tigress has only been discussed in Asm2Vec [10], but the obfuscated code
has only been analyzed statically, whereas Ofci analyzes virtualized code dynamically.

When virtualizing code, the original code of a function is translated into a new language,
i.e. bytecode, which is intended to obfuscate the original intention of the instructions.
When two functions share the same bytecode, it is no longer possible to distinguish the
two functions based on their instructions. Since static analysis cannot make sense of
the attached bytecode, it is not able to derive the differences between the functions. If
the program is virtualized interprocedurally, as with Themida, there are no function
boundaries that can be discovered statically altogether. Therefore, it is necessary to
incorporate some form of dynamic analysis into the similarity detection process. While
there are approaches that use dynamic information to facilitate code clone detection, as
discussed in chapter 3, at the time of writing, no approaches use dynamic analysis to
detect function clones across virtualized code. Ofci fills this gap, by monitoring the
virtualized code dynamically: The program is run and Ofci collects traces for the given
inputs. Afterwards, the traces are fed into the training/inference machinery in place of
the static disassembly, and the similarity score is calculated in relation to the trace.

The traces used for this process are plain instruction traces, without additional informa-
tion, such as register values or memory accesses. This additional information could be
used to make the analysis more precise, as shown in a similar manner with microtraces
by Trex. Since Ofci does not use additional data, the instruction traces do not have to
track every instruction, only the entrance and exit of basic blocks is tracked and written
to a log file. This solves an additional problem, as the produced disassembly needs to
be in the exact same format as the one by the disassembler. Due to slight differences in
disassembly output, the disassembly is not generated within the tracer, but the log file
from the tracer is loaded by the disassembler. The same disassembler plugin taking care
of the dataset generation for the training process is then also processing the list of basic
block addresses, going through every basic block and determining the function it origi-
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nated from. In this basic version, calls from functions under analysis are not handled,
i.e. if the virtualized code called into another virtualized function, it is not represented
correctly in the generated function tokenization; in order to track control-flow transfers
to different functions, the call stack needs to be simulated during analysis time.

4.6 Evaluation
For comparison with other approaches and as preparation for practical application, the
database containing the training data has to be processed first. This process can be seen
in Figure 4.4, which starts with an embedding generation program. The embedding
generator takes all functions stored in the repository database and uses the fine-tuned
model to generate embeddings for them, which are stored in the database along with
the metadata. When encountering a function that is longer than the maximum input
dimension of the model, the tokenized function is split into chunks at the maximum
input length border. Since embeddings are vectors and similar vectors point in the same
direction, the embeddings of all chunks are averaged to represent the overall function
vector.

Figure 4.4: Embedding generation and validation scoring.

After all embeddings have been generated, Ofci can be used for inference in production.
Additional steps are taken for evaluating the performance of Ofci: A validation set of
function pairs that have not been used for fine-tuning the model is required. This set can
be the same one described in section 4.3, but any set of function pairs can be used, as
long as the functions have not been used during the fine-tuning step of the Ofci pipeline;
the exact composition of the validation sets is being described in the respective sections
of chapter 6. The metadata and embeddings for every function pair in the validation
set are pulled from the database and then processed and scored according to the used
metrics. The main metrics used for evaluation are the Receiver operating characteristic
(ROC) and Precision at rank 1 (P@1). As function clone detection is a knowledge
retrieval problem, the main metrics are precision, i.e. the ratio of relevant functions in
search results, and recall, i.e. the ratio of relevant functions out of all relevant functions.
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4.7 Inference and Application

When applying Ofci in production use, i.e. when reverse engineering an unknown binary,
the process is different to the evaluation, as not all information can be pulled from the
database. Instead, the binary under analysis has to go through all steps of the pipeline,
as shown in Figure 4.5. With its basic building blocks, the inference pipeline consists of
four separate steps: Disassembly, tokenization, inference and lookup. In the first step,
a disassembler has to provide the disassembly text of a function. In the case of simple
obfuscations or compiler optimizations, the static disassembly alone is enough, but when
virtualized code is present, a trace of the function is required. Ofci does not currently
support automatic trace creation; if a trace is required for analysis, it has to be created
manually using the tracing tool provided by Ofci. The reason why this is not done
automatically is the nature of dynamic analysis, as a function under analysis might not
be seen by a trace, if the wrong input is provided to a program. This could be solved
using, e.g. coverage guided fuzzing or symbolic tracing from the function entrypoint,
but is out of scope for this thesis.

Figure 4.5: Resolving a function through embedding inference and lookup.

After the disassembly has been extracted, using either the disassembler’s inbuilt facilities
or the Ofci tracing tool, it has to be processed using the tokenizer. The tokenizer only
requires a vocabulary file in production and works the same as when generating training
data. The tokenized disassembly is then used as input for the embedding inference, which
requires a snapshot of the fine-tuned model. Most machine learning frameworks provide
means for packaging and integrating trained models into production environments and
Ofci makes use of this to integrate the inference process into the disassembler plugin,
without having to ship large dependencies. Lastly, the generated embeddings are used
as queries for the LSH lookup into the database, filled with known functions. The
lookup will always return a function from the database, therefore the cosine similarity
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is calculated and a threshold applied, in order to avoid false positives when the cosine
similarity is not conclusive. The throughput of the inference pipeline can easily be
increased with parallel processing, as tokenization and LSH lookup is independent per
function. The embedding inference is a bottleneck, as fast inference requires the use of
a graphics card and only one inference step of the model can be executed per GPU. To
combat this issue, the GPU memory usage has to be maximized, by not just moving a
single tokenized chunk to GPU memory for inference, but a whole batch of tokenized
chunks. The GPU can then perform the inference step on every chunk in the batch at
the same time.
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CHAPTER 5
Implementation

While recent approaches for function clone detection perform well on paper, code is rarely
published or relies on closed-source software, such as IDA Pro [14], making independent
evaluation hard or impossible. Safe [11] is fully open-source, Asm2vec [10] relies on
IDA Pro, Gemini [15] and TREX [1] publish code for their respective machine learning
models, but don’t provide code for the feature extraction process. From an engineering
perspective, the goal of this thesis is to build an end-to-end solution called Ofci, a set
of tools covering feature extraction, model training and verification/application. The
main requirement for Ofci is to only rely on recent and publicly available open-source
software and to publicly release all parts of its own pipeline. This allows for independent
verification of evaluation results and practical usage outside of academic applications.
The following sections cover all major parts of the Ofci framework and discuss their
implementations in detail.

5.1 Technology Stack Overview
At the core of the Ofci framework is Ghidra [5], which is used as disassembler and
evaluation tool. Released publicly in 2019, Ghidra [5] is an environment for software
reverse engineering, offering a similar set of features as IDA Pro [14], but at no cost and
with its source code being publicly available. As development now continues in public
and with Ghidra offering an API, good extensibility through its plugin architecture, and
it being user-friendly, it has been selected for realization of the Ofci architecture. This
choice also potentially allows the approach to be used in real world day to day reverse
engineering work. Ghidra offers both a Python [102] and a Java [103] API, with Ofci
making use of the Java API, because Ghidra interprets Python using Jython [104] within
Java. This allows simple script execution within Ghidra, but Jython is limited, does
not offer full Python compatibility, and adding additional packages for, e.g., database
connectivity can only be done through the Java API. Using Java also comes with the

49



5. Implementation

benefit of packaging as an extension, which allows code reuse among different parts of
the Ofci pipeline, providing a single interface for training data generation and function
clone detection application. Building the extension creates a jar package that can be
distributed and installed cross-platform directly from the Ghidra user interface.

The Ghidra plugin takes care of extracting data from the disassembly and program
database and stores the normalized disassembly together with function metadata in a
PostgreSQL [105] database. The choice of PostgreSQL and SQL in general was made in
consideration of training data generation: The fine-tuning training requires the match-
ing of functions with the same name within the same tool, which is straightforward to
do within SQL. When keeping application of Ofci by a user in mind, packaging or
requiring a database server is not ideal and when Ofci grows beyond a research proto-
type, a use-case specific data storage format is required. For processing a large dataset
in preparation of pre-training or fine-tuning, Docker [106] is leveraged to create a Post-
greSQL container and spawn several Ghidra containers that can process a large dataset
in parallel. For data processing that is not handled in the Ghidra plugin Rust [107]
is used. The data processing tasks covered by the Rust tooling involve generating the
datasets used for model training and querying/or modifying the extracted data in the
PostgreSQL database. This has to be fast for quick iteration in prototype development
and is desirable in production use as well; Rust fits the requirements as a safe, low-level
language without garbage collection.

An additional factor for selecting Rust is the existing tooling for natural language pro-
cessing (NLP): The Transformers library [108] built by the Hugging Face community
uses Rust for implementing fast and parallel tokenizers, while Rust-Bert [109] provides
a Rust port of the Transformers library. Transformers also is the library at the core of
all machine learning operations in the Ofci pipeline. In a previous prototype fairseq
[110], which is maintained by the Facebook machine learning team and has been used
with Trex, was used, but Transformers was chosen due to the larger range of supported
models and a cleaner API for providing extensions. Despite the existence of Rust-Bert
as a port of Transformers, the original Python library is used for the training and evalua-
tion of the models. This allows quick fixes and changes of parameters without having to
recompile the program every time, as well as providing the means to plot and visualize
the results. Python is also used at several different stages to automate simple tasks
like sorting the original dataset into a folder structure that can be used by the Ghidra
extractor. For training and evaluation, the PyTorch [111] backend is used and the Rust
code also makes use of PyTorch, as Rust-Bert links to the Rust bindings of libtorch. For
embedding lookup, Faiss [112] by Facebook Research is used. Besides providing exact
embedding lookup, Faiss also allows speeding up queries at the cost of precision.

Because the Python API of Transformers is used for training the datasets processed
and generated by the Rust data processing tool, a file format for exchange of large
amounts of floating point data was needed. Python pickling, the standard serialization
of Python, was too slow and custom raw binary formats would produce large files; the
HDF5 file format [113] has been chosen, as it is designed specifically for exchange of
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scientific data and therefore well suited for numerical data. It also has implementations
for the relevant languages in the Ofci pipeline and loading the datasets used in chapter 6
finishes within a matter of seconds. Finally, in order to perform the tracing required for
detecting virtualized function clones, a performant binary instrumentation framework
is needed. Most binary instrumentation frameworks do not run the full binary from
the start, as the interaction with the operating system creates overhead and additional
complexity. This also requires setting up a harness for the binary, allowing it to be
traced within the framework. As tracing the binaries should be as straightforward as
possible, Ofci aims to avoid the additional harness and traces the full binary, including
the operating system interactions. Intel Pin [114] was selected for creating traces, as it
fulfills the mentioned criteria.

5.2 Feature Extraction via Ghidra
The Ofci plugin to Ghidra provides an API for extracting the necessary features from
the disassembly text and a service for connecting to a PostgreSQL database in order to
store the feature information. It follows the same directory and code structure as the
sample plugin provided by Ghidra and implements several tasks that make use of the
Ofci API as Ghidra scripts. The core part of the plugin is a script called OFCIExtractor.
This plugin takes care of generating the feature data needed for training of the Ofci
model and can be executed for one specific binary from the Ghidra GUI, or can be run
in batch mode to process a large number of files at once. The feature extraction process
consists of the following steps:

1. Extraction of Function Symbols. In the first step, a list of function symbols
is extracted through the API. Special care has to be taken of external symbols, as
these are being listed twice, for their respective PLT and GOT addresses.

2. Extraction of Assembly Instructions. As instructions are the features that
we will embed, the next step is to extract all assembly instructions that belong to
a function.

3. Normalization of Opcodes and Arguments. Before a tokenizer can create
numeric vectors necessary for training the embeddings, the Ghidra plugin first
has to normalize the instruction disassembly to deal with information that cannot
easily be tokenized, such as numeric values or too many details in opcodes and
arguments.

4. Export of Extracted Features. After the disassembly instructions have been
normalized, they are stored in a database together with the necessary metadata
needed for training set generation.

Collecting all function symbols in the binary serves multiple purposes: Providing the
function entry point for disassembly of the function, as well as the function names
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for labelling and for identifying call targets, since the call targets are used as special
features with respect to the embeddings. Calls to external functions, e.g. syscalls or libc
functions, are relevant for the call ID feature of Ofci: When not directly obfuscated,
calls to library and operating system functionality can help to identify an otherwise
obfuscated function. Ghidra handles these external functions as two separate function
symbols: The GOT entry, which is being marked with an external flag, and the PLT
address, which is the one actually being called. When iterating over all function symbols
the extractor has to remember functions marked as external, but then only keep track
of the address of the function with the same name that is not marked external, as this
corresponds to the PLT entry. When later looking up a called function address, it will
yield the correct function name. While assembling the list of relevant function symbols,
thunked functions are discarded and not further analyzed. These functions are small
code segments, e.g. trampolines, that redirect the caller to the actual function. The
name and address of these function stubs are kept for the call ID feature, but their
disassembly is not exported.

The list of function symbols is stored in the PostgreSQL database through batch inserts,
assigning every function name a unique ID, or retrieving the ID if the function name is
already present in the database. The retrieved IDs are then stored in a function lookup
map, where functions can be looked up using either name or address of the function
entry point, for making the call ID feature available later on. As the function names
alone are not a unique identifier, the category, project and tool name are stored in the
database as well. This structure is not ultimately necessary, but arose from the way the
Trex dataset is built. Category corresponds to the process through which a binary was
compiled, e.g. with O3 compiler flags or optimizations. The project name is necessary,
as there are several projects like coreutils, which are included in the dataset but consist
of multiple binaries. Lastly, the tool name corresponds to the name of the actual binary
file, e.g. ls or mkdir from coreutils.

After storing the binary and function name metadata in the database, the list of functions
is processed by the extractor. As functions are not always laid out linearly in memory,
the Ghidra API marks the contents of a function with a set of address ranges. The
correct identification of what code ranges belong to a function can only be identified
when enabling the Decompiler Switch Analysis in the analysis overview. Ofci takes this
for granted; while it does not rely on the full CFG of a function being reconstructed,
it does require an approximate range of which instructions belong to a function. The
address ranges provided by Ghidra are iterated in forward order, sorted by the starting
address of the range block. The interface provided by the Ofci plugin accepts these
address ranges for disassembly and normalization, which is the same interface used by
the trace analysis in section 5.5, as basic block information provided by traces directly
translates to an address range set in Ghidra.

In order to train embeddings on the disassembly instructions, these have to be tokenized
into numeric tokens. While the Ghidra plugin itself does not take care of the tokeniza-
tion, it has to pre-process and normalize the text from the disassembly according to
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uniform rules, which can then later be tokenized. As x86 disassembly is not defined in
a precise way, e.g. there is AT&T and Intel syntax, and Ghidra also introduces variable
naming for memory offsets instead of showing the actual offsets, Ofci has to process
the disassembly to remove these discrepancies. This is done within the Ghidra plugin,
because the API provides a way to analyze and modify the generated disassembly from
scratch, instead of having to parse it from the text itself. Another benefit is that missing
information can be pulled through Ghidra’s API directly from the original data source
without additional steps. An example for this are call and jump targets, where Ghidra
can perform additional analysis, when the instruction text is either referring to an un-
known address or the jump is register-based. Normalizing the disassembled instruction
also requires design decisions in regards to which part of the instruction should actually
be treated as a separate token and which parts should be combined. This becomes ap-
parent when taking LEA instructions, or any instructions using the advanced x86 memory
addressing as can be seen in Listing 10. In this case, the part of the instruction responsi-
ble for calculating the memory address can be either split up into its respective smaller
tokens, or interpreted as a group. Ghidra fortunately represents complex memory ad-
dressing operands as operand groups and provides means of iterating the representation
of an operand before it gets converted into a string. Each element of the iterator is either
a register, scalar, address or a character. Due to words like qword ptr being presented
to the iterator character by character, parsing the iterator is complicated. Ofci works
around this by stripping the pointer size qualifications altogether and only accept char-
acters from the iterator if they correspond to a separator or arithmetic character like +,
- and so forth.

1 MOV RDI, qword ptr [RBP + -0x30] ; 488b7dd0
2 MOV qword ptr [RBP + -0x6d0], RAX ; 48898530f9ffff
3 CALL <EXTERNAL>::strlen ; e809c8ffff
4 MOV RDI, qword ptr [RBP + -0x6d0] ; 488bbd
5 LEA RAX, [RDI + RAX*0x1 + 0x11] ; 488d440711
6 AND RAX, -0x10 ; 4883e0f0
7 MOV RCX, RSP ; 4889e1

Listing 10: Disassembly produced by Ghidra showing complex memory addressing argu-
ments.

A similar design decision is required when dealing with scalar operands or memory
addresses, as scalar operands have been handled with care in previous work [11, 1] and
memory addresses, such as call addresses, are an integral part of the way Ofci handles
call IDs, as described in chapter 4. As earlier Ghidra presents operands and parts of
a complex operand group as iterator again, but this time the focus is not on literal
characters. While registers are passed through normalization unchanged, a distinction
is made between scalars and memory addresses. If a scalar is encountered, it is encoded
in the way described in section 4.3. The same goes for addresses, but in case the address
was found in the function lookup map, the call ID stored in this map is inserted instead
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of the address value. While thunked functions are not passed to the normalization step,
their names are still stored in the database and therefore they also have an assigned
ID. In practice this means that even if a function is external and only a stub is present,
i.e. there only is the PLT jump code, the name of the external function still has a
valid ID and can be referenced from a memory address operand. Additionally, the
normalizer tracks the number of valid references made to functions in the function lookup
map; this information is later used for iterative function similarity detection. Similar to
function call references, syscalls can be interpreted as call references as well; in case of
Linux, syscalls can be mapped to the same names exported by libc. On x86, syscalls
do not have their respective syscall number as operand to the syscall instruction, which
leads to additional effort required when this information is used for analysis purposes.
Fortunately, Ghidra itself contains a script for deriving the syscall number when it
stumbles upon a syscall instruction. Ghidra makes use of inbuilt emulation capabilities
and provides a script called ResolveX86orX64LinuxSyscallsScript, which tries to resolve
the syscall number based on a simple constant propagation algorithm. In order to make
use of this information in the exporter, the script has to be called before using the Ofci
exporter.

This normalization process is handled by a number of different interfaces in the Ofci
API, which can be reimplemented in order to achieve a different normalization. At the
bottom of the hierarchy is the Tokenizer interface, which contains a string buffer for
storing the normalized disassembly while processing a function, and which takes care of
adding integers to the string buffer as described in section 4.3. The InstructionParser
interface takes care of normalizing one instruction and its operands/operand groups,
while FunctionParser is the equivalent for normalizing a whole function, based on an
address range set. The FunctionParser can make use of FunctionMetadata to retrieve
the data about the current function from the Ghidra API, as well as GlobalFunctionInfo,
which stores the function lookup table required for the call ID feature. After all address
ranges of the function have been parsed, it can be passed to the Dao if the plugin is
connected to the PostgreSQL database. The Dao will either remember the normalized
function for batch insertion, or directly insert the function into the database. Besides
storing the function name, category name, project name and tool name IDs, the database
also contains a hash of the normalized disassembly, allowing quick identification of exact
function clones.

Ghidra allows for batch processing of input files, using a directory of files as input,
instead of a single file. While this allows processing of a large number of files, some
limitations apply, as Ghidra is generally slower when compared to other disassemblers.
[115] However, Ghidra allows deactivation of certain analysis options and as decompiled
code is not required, the number of needed analysis passes can be reduced to a small set.
In headless mode, Ghidra provides statistics for runtime of the individual analysis passes,
allowing profiling; the pass consuming the most time is Decompiler Switch Analysis.
Unfortunately, testing has shown that disabling this analysis prevents instructions from
being discovered, as the basic blocks of a jumptable are no longer discovered, even
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if they are directly next to the function and would be discovered by a linear sweep
disassembler. This does not only affect obfuscation, but already happens in switch
statements of normally compiled programs. Therefore, the switch analysis pass has been
kept enabled, resulting in long analysis times as shown in chapter 6. In general, every
analysis pass that does not impact the extracted features, has been disabled.

Static code archives on Linux present somewhat of a challenge to Ghidra in headless
mode. As they are used by the dataset collected for the evaluation of TREX [1], they
are crucial for the evaluation of Ofci, as this dataset is used to compare the base
performance in chapter 6. The issue for Ghidra is the archive nature of these static
libraries: Instead of being one contiguous binary file to analyze, a static library is an
archive of object files that can’t be directly opened with Ghidra. In the graphical user
interface, Ghidra presents several options on how to handle the static library on import,
but none of these appear to be available in the headless analyzer. [116] As a workaround,
all static libraries are unpacked in a new subdirectory and all object files contained in
the static library are treated as a separate binary to be analyzed. Through naming
conventions the metadata of the extracted functions is then later merged when inserting
it into the database, making it appear as one single project again.

In order to make better use of Ghidra’s batch processing, Ofci uses Ghidra within
Docker containers as an easy way to run it on an otherwise empty virtual machine. By
default, Ghidra runs the analysis in a single thread and while it does support multi-
threading, this functionality has not been used while developing Ofci. Rather than
running analysis multithreaded, Ofci uses the structure of the Trex dataset and splits
binaries into their categories, such as O0 and O3 for compiler optimizations. Then
a new analysis container is started for every binary category, distributing the analysis
load. During development of Ofci many iterations of the extractor plugin were nec-
essary, which resulted in splitting the Ghidra extraction into two steps: The analysis
step and the extraction step. For the analysis step, the Docker container would just
load the binaries into a Ghidra project, perform the analysis, and save the project. The
extractor container can then just open the project file without performing the analysis
and immediately start with the extraction after the project has been loaded. Running
the analysis with the help of Docker containers comes with another advantage: Hosting
the required PostgreSQL server is simplified to just downloading the official container
image and starting it. The extraction container then has to be created within the same
Docker network the PostgreSQL container is running in.

5.3 Processing Exported Feature Data
After the normalized disassembly and metadata has been stored in the database, further
processing is necessary. The disassembly still has to be tokenized, i.e. turned into a
numeric vector instead of text, and datasets for model training need to be generated for
tokenized data. As the database reaches multiple gigabytes of data on the Trex dataset
alone, efficient processing is needed, which is why the data processing tool is written
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in Rust, allowing fast iteration times when re-tokenization of data is required. All
processing steps from the Ofci pipeline are handled within a single Rust library, having
multiple different command line tools as frontends. These processing tools perform the
following steps:

• ofci-genvocab. Before the database can be tokenized, a vocabulary for the tok-
enization process has to be generated. As outlined in chapter 4 a BPE tokenizer
is trained and used, specifically the BPE tokenizer as implemented in the Rust
tokenizers of the Transformers library [108]. As the vocabulary size is already very
small compared to natural language vocabularies (roughly 800 entries), training
the tokenizer is fast and produces a vocabulary file and the merges list typical for
BPE tokenizers.

• ofci-tokenize. With an existing vocabulary, the tokenize tool simply fetches the
normalized disassembly and stores the tokenized disassembly in the database. The
length of the tokenized disassembly is not chunked or cut in this step, the full
tokenization of the function is stored.

• ofci-generate-pretrain. For generating the pre-training dataset, the whole func-
tion database is fetched, the tokenized disassembly is chunked and written to a
dataset file.

• ofci-generate-finetune. Generating the dataset for fine-tuning requires more
effort than pre-training dataset generation, as function pairs need to be matched.
Additionally, the dataset needs to be split into training and validation sets, because
the fine-tuning is a supervised learning process.

All of these utilities require access to the database, which is managed by the Diesel
ORM Mapper [117]. The schema for the database layout is managed with Diesel, al-
lowing the migration management to initialize the PostgreSQL database in the first
place. The database layout is small, as the database stores nothing but the names of
functions, categories, projects and tools, with one table storing all function related data.
The queries needed to process the data are simple select and update queries; therefore,
and due to heavy reliance on compile-time code generation, the used Diesel ORM func-
tionality do not incur significant overhead and provide convenience. Diesel does not
currently provide iterators on query results based on cursors, which means in the cur-
rent implementation of Ofci, queries fetching all functions will fetch all data at the
same time. This did not matter on the machines used to generate the datasets, but
for larger datasets a less memory-heavy solution is required. Initializing the database is
currently not done automatically: The PostgreSQL server is started as a container with
the help of docker-compose and it has to be manually initialized by executing the Diesel
migration command.
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After the database has been filled by the Ghidra extraction plugin, the ofci-genvocab
utility has to be executed. As the name implies, this will start the vocabulary gener-
ation process, meaning all the instructions that are going to be tokenized have to be
in the database by then; otherwise opcodes or arguments will be interpreted as out-of-
vocabulary tokens later on. First, the utility fetches all functions from the database
into memory and the tokenizer trainer will pre-process the disassembly text by stripping
whitespace from the beginning and the end of the text, as well as performing Unicode
normalization. The latter is not strictly necessary, as all text generated by the Ghidra
plugin should be ASCII text anyways, but the tokenizer was carefully initialized in the
exact same manner the Transformers library initializes the RoBERTa tokenizer when
called from Python, to avoid introducing discrepancies between the tokenizer implemen-
tations. The BPE trainer is initialized to a maximum vocabulary size of 1000 and trained
on the functions retrieved from the database, with the training being finished in a matter
of seconds, while pulling the functions from the database and preprocessing the func-
tions can take up to 40 minutes. After the BPE training finishes, the files containing
the vocabulary and merges are stored at the location specified on the command line.

The ofci-tokenize utility initializes the tokenizer with the generated vocabulary file and
pulls all functions from the database again. The tokenization can be performed in an
embarrassingly parallel manner and every token list is stored in the database through
an update of the function’s row. The list of tokens is additionally serialized as JSON
data before being stored in the database. Some form of serialization was needed to
store the token list and JSON was chosen due to straightforward visual inspection when
performing sanity checks on the dataset. Surprisingly, the overhead of storing the token
lists, a list of small integers, as JSON instead of a binary format is negligible within
PostgreSQL. Due to the vocabulary being small and the most common tokens being
composed of one or two digits in JSON format, the JSON of a token list is only marginally
bigger than the equivalent representation as an array of 16-bit integers. Additionally,
PostgreSQL appears to be efficient at storing text data, compressing the full dataset
including disassembly text and token list JSON down to 4GB, while a binary dump of
16-bit integers with padded chunks for pre-training results in a 7GB dataset file.

For creating the pre-training dataset, the ofci-generate-pretrain utility performs a
mapping of the full function database to a hdf5 dataset that can be imported in a
Python script for model training. As the pre-training of the model is handled in a
self-supervised manner, the creation of labels is not needed and the tokens can largely
be passed onto the dataset file unmodified. However, because the model’s input size is
limited to 512 tokens the token list of a function has to be processed accordingly, i.e.
functions from the database have to be broken up in chunks with a maximum of 512
tokens each. The JSON token list of a function is first deserialized into a numeric array,
and then cut into chunks. The memory for chunks is allocated upfront and every chunk
has one pre-defined location in the allocated memory, based on the function and chunk
index. This allows for simple parallel processing, as only one thread will access a specific
chunk location at a time, speeding up the JSON token list decoding and copying to the
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chunk location. In order to speed up loading and processing times, all chunks are padded
to the maximum size of 512, using the padding token of the vocabulary, allowing the full
dataset to be stored as a fixed-size tensor that can be loaded efficiently in the Python
scripts. To save memory and loading times, the tokens are stored as 16-bit integers,
which is the smallest integer that can store the vocabularies used by Ofci.

The step performed by ofci-generate-finetune is the most elaborate one within the
Ofci data processing library. In comparison to generating the pre-training data, the fine-
tuning data requires function pairs, due to the contrastive learning approach. Additional
care is required due to the nature of this training approach: While the pre-training is self-
supervised, fine-tuning is supervised and requires a labelled dataset. Supervised training
is susceptible to overfitting and the used dataset has to be balanced, making sure bias
is not introduced intentionally or unintentionally. In the first step of the process that
aims to achieve this, the metadata of all functions is pulled from the database. The
x86 dataset from Trex together with the newly introduced binaries and traces by Ofci
adds up to roughly 180000 unique function names. This number does not seem large
on its own, but for every function name a number of different versions and versions in
different categories exist, allowing for roughly 1800008 possible function pairings. Not all
functions are included in this pairing; the excluded functions can be seen in Listing 11.
The reason for leaving these functions out is that they exist in almost every binary, do
not contain a lot of information in itself, or can be found trivially by most static analysis
tools. With all the metadata available, the goal of the utility is to now select a random
subset from the amount of all possible pairings.

1 _init
2 frame_dummy
3 __do_global_dtors_aux
4 register_tm_clones
5 deregister_tm_clones
6 __libc_csu_fini
7 _start
8 __libc_csu_init

Listing 11: Functions that have been excluded from fine-tuning dataset generation.

The selection of function pairings is limited by several bounds. The main upper bound is
the number of chunks to be generated by the function pairing algorithm. The algorithm
limits the number of chunks instead of the number of functions, as even functions with
the same name may produce a vastly different amount of chunks based on the length of
their token lists. The best example for this is the pairing of functions with a trace, where
a trace can be several times longer than the actual function. The number of chunks is
also not an exact limit; the pairing loop is simply stopped when the number of chunks
exceeds the defined limit. Another global limit to function pairing is the amount of
negative pairs that follows on a positive pair. Trex generates 5, Ofci generates 2 and
Safe generates one negative function pair on one positive pair. Trex cites practice in
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contrastive learning [118] as reason for selecting a 1:5 ratio, referring to the distribution
of dissimilar functions when applying function clone detection. [1] However, the ratio of
dissimilar functions is larger than 1:5 in practice, and Safe produces good results with
simple triplet learning, i.e. one similar and one dissimilar function, therefore Ofci chose
the middle ground. Besides the ratio of similar and dissimilar functions, Ofci tries to
distribute the selected functions fairly across different obfuscations. The categories of
the dataset, i.e. O0, O1, O2, BCF, CFF and so on, are used to create a frequency table.
Whenever a function pair is picked, the chunk counts of the respective categories are
increased in that frequency table. The frequency table is used to calculate probabilities
for selecting the next obfuscation category, using 0.9999n as formula with n being the
number of fragments already processed in the corresponding obfuscation category. The
goal is to create roughly 50000 chunks for each obfuscation category, the formula makes
sure that the probability for selecting a certain category is below 1% when this goal
is reached. Some special handling is required for the cases where there is no function
clone in the other category; in this case further processing is withdrawn and another two
obfuscation categories and functions are picked. This also prevents issues when whole
categories do not share similar functions, as is the case with virt and bcf. In general
functions can be selected multiple times to achieve a large number of pairings, while
function pairings themselves are unique within the dataset.
When the function pairs are selected, only their metadata is selected and stored in a
list. To turn the list of function pairs into the final dataset, the same process for chunk
splitting from the pre-training data generation is used. The difference in this case is
that one row in a dataset now consists of three parts: A chunk from the first function, a
chunk from the second function and a label indicating whether the functions are similar
or not. As the number of chunks is likely different for functions in different categories,
Ofci takes the minimum number of chunks shared within the function pair. This means,
if one function is 2 chunks long and another version of the function consists of 5 chunks,
only 2 chunks are selected from each function. The chunks are matched up linearly, i.e.
the first chunk from the first function is matched up with the second chunk from the
second function. After all chunks have been extracted, the dataset is stored column-wise
in the exported hdf5 file, with the two function’s chunks being stored in two different
tensors and the labels stored in an additional tensor. This allows for easier processing on
the Python side and for storing the labels as 8-bit integers, the smallest possible datatype
in hdf5. Additionally, a list of functions that have been selected is stored alongside with
the dataset, so the evaluation scripts can later determine which functions to use for
performing validation metrics. For validation during the model training, chunks of the
same functions can still be used if they haven’t been used for training, for the evaluation
afterwards, only chunks from functions that have not appeared in the dataset are used.

5.4 Model Training
The aim of the model implementation is to make sure, to reuse as much code from Trans-
formers and PyTorch as possible, as the architectures in Transformers are constantly
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evaluated and used by researchers. By only making minimal changes to the architecture,
underlying models can be swapped out when needed, as long as they follow the same
architecture and objectives as Albert, Bert or RoBERTa. All code for model training
is written in Python and consists of several main parts: The data loader, taking care
of loading the datasets from the hdf5 files and serving it to the trainer, the model im-
plementation and the configuration and training process. While the Python scripts for
the training do not contain a lot of code, development was not straightforward, as even
deviating slightly from the usual tasks performed with Transformers requires reading up
on the code of the library itself, because a lot of convenience features are not directly
documented. These features seem to rely on an engineer just assuming some Python
keyword arguments are interpreted correctly; whether the relevant data fields are passed
along correctly requires studying the source code and testing.

1 class OFCIPretrainDataset(Dataset):
2 def __init__(self, data_tensor):
3 self.elements = data_tensor
4 self.amask = (data_tensor != PADDING_TOKEN).float()
5
6 def __len__(self):
7 return self.elements.size()[0]
8
9 def __getitem__(self, idx):

10 return { 'input_ids': self.elements[idx], 'attention_mask': self.amask[idx] }
11
12 def load_data(file):
13 with h5py.File(file) as f:
14 idx = torch.randperm(f['data'].shape[0])
15 data_shuffled = torch.tensor(np.array(f['data']))[idx][:1_500_000].long()
16 return data_shuffled[:10_000], data_shuffled[10_000:]

Listing 12: Data loader for pre-training.

First, the vocabulary and dataset files are loaded, with the dataset being fully loaded
into memory. Custom datasets in Transformers are handled by inheriting from the
PyTorch Dataset class. In documentation examples, tokenization is usually performed
directly within the data loader, where the existing tokenizers in the Transformers library
generate data exactly in the way it is needed for the model. As the tokenization is
already taken care of during the data processing phase in Ofci, the data loader just
has to pass on the data in the correct format. This happens in the implementation of
__getitem__ within the data loader, which accepts an index and expects an element
in return. However, Ofci needs to pass additional parameters to the model; how this
works is hinted at in the documentation of Transformers, but not explained. If the
__getitem__ implementation returns a Python dictionary instead of one single element,
the dictionary entries are passed as keyword arguments to the model. In the case of a
labelled dataset, i.e. the dataset for fine-tuning, the data loader provides the labels as
labels entry in the dictionary. Because the dictionary is directly passed to the main
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model function internally, it does not contain single elements, but tensors equal in size
to the specified batch size for training. In order to select the correct elements from the
dataset, Transformers passes an index tensor to __getitem__ instead of a single index,
allowing the efficient selection of multiple dataset elements.

Besides providing labels in the dictionary, not using the tokenizer in the data loader also
requires Ofci to pass on an attention mask. This attention mask is passed on to the
transformer model, limiting the self-attention mechanism on certain unwanted tokens. In
the case of Ofci, this means the attention mask needs to mask all tokens corresponding
to the padding token, which can be done easily through making use of inbuilt PyTorch
tensor operations, as shown in Listing 12. As hinted by the float call at the end of the
attention mask assignment, the data passed on to the model also needs to be converted
to a specific data type. This is also done when loading the dataset from the hdf5 file,
i.e. in load_data, where the token tensor has to be converted to the long datatype.
Transformers requires this for it’s masked LM data collator; the reasoning behind this is
unclear as using a 64-bit integer for representing tokens appears to be a waste of memory,
even for natural language vocabularies. Another peculiarity of Transformers is the slow
import of hdf5 datasets when directly passed to torch.tensor1, which is why f[’data’]
is passed to np.array first in the code snippet.

1 class AlbertSimilarityHead(nn.Module):
2 def __init__(self, config):
3 super().__init__()
4 self.dense = nn.Linear(config.hidden_size, config.hidden_size)
5 self.dropout = nn.Dropout(config.hidden_dropout_prob)
6 self.out_proj = nn.Linear(config.hidden_size, config.hidden_size)
7
8 def forward(self, features):
9 x = torch.mean(features, dim=1)

10 x = self.dropout(x)
11 x = self.dense(x)
12 x = torch.tanh(x)
13 x = self.dropout(x)
14 x = self.out_proj(x)
15 x = F.normalize(x)
16 return x

Listing 13: Similarity head for an Albert transformer network.

For pre-training, Ofci uses the unmodified Albert model as provided by Transformers,
specifically the inbuilt version with a masked LM head. The masking of the tokens nec-
essary for masked LM is performed by the Transformers data collator, with a probability
of 0.2. When it comes to fine-tuning, some manual effort is required. While the Trans-
formers library does provide several fine-tuning heads, there is no head for contrastive
learning or sentence similarity. The structure of the head network is roughly the same as

1https://github.com/pytorch/pytorch/issues/28761 (Accessed: 2021-12-06)
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in the code provided by TREX or Sentence-Bert [100] and can be seen in Listing 13.
First the outputs of the Bert part of Albert have to be mean-pooled before process-
ing. Afterwards, the outputs are passed through a dropout layer, through a layer using
tanh as activation function, and then finally through another dropout layer before being
normalized. Dropout layers randomly and intentionally discard inputs with a certain
probability, which trains the network to generalize better and to prevent overfitting.

1 class AlbertForSequenceSimilarity(AlbertPreTrainedModel):
2 def __init__(self, config):
3 super().__init__(config)
4 self.config = config
5 self.albert = AlbertModel(config)
6 self.similarity = AlbertSimilarityHead(config)
7 self.init_weights()
8
9 def forward(

10 self,
11 input0: torch.LongTensor = None,
12 input1: torch.LongTensor = None,
13 attention_mask0: torch.LongTensor = None,
14 attention_mask1: torch.LongTensor = None,
15 labels: torch.FloatTensor = None,
16 ...
17 ) -> SequenceSimilarityOutput:
18 # Feed first function fragment to model
19 outputs = self.albert(input0, attention_mask=attention_mask0, ... )[0]
20 logits0 = self.similarity(outputs[0])
21
22 # Feed second function fragment to model
23 outputs = self.albert(input1, attention_mask=attention_mask1, ... )[0]
24 logits1 = self.similarity(outputs[0])
25
26 # Calculate cosine similarity loss
27 loss = F.cosine_embedding_loss(logits0, logits1, labels, margin=0.1)
28 return SequenceSimilarityOutput(loss=loss, logits0=logits0, logits1=logits1)

Listing 14: Sequence similarity task implemented on top of an Albert transformer
network.

The similarity head only describes the additional structure of the neural network added
on top of the base transformer model, but it does not describe the task itself. The
implementation of the corresponding task can be seen in Listing 14 and is based on
other implementations within the Transformers library. The fine-tuning tasks inherit
from the class of the pre-trained model, in this case AlbertPretrainedModel, and follow
the same interface as the base model. This means the only important function that needs
to be implemented is the forward method, taking the relevant inputs and calculating the
loss. The forward method expects a number of keyword arguments with the additional
arguments passed by default hidden in the listing. In order to implement contrastive
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learning, the forward pass has to accept two inputs, input0 and input1, corresponding
to a batch of function chunks. Additionally, for every input the attention mask is needed
for the underlying model and since fine-tuning is supervised, the needed labels have to
be provided as well. The inputs are passed to the base model one after the other, then
passed through the similarity head and finally combined using the loss function. As
training through cosine similarity is a common operation when performing contrastive
learning, PyTorch provides an inbuilt embedding loss function. If this loss function was
not present, a similar effect can be achieved by performing cosine similarity and using
the result with mean squared error (MSE) loss, calculating the error with respect to the
label. The loss is returned with a custom data class for model outputs and is the only
attribute that has to be present, as otherwise the trainer could not train the model; the
output follows the same sparsely documented rules as the keyword arguments for the
forward pass. In addition to the loss variable, the results of the similarity head output,
i.e. the embedding vectors, are returned in the output as well. Every additional attribute
of the model output data class can be used within an evaluation function provided to
the model trainer.

The evaluation function is called compute_metrics within Transformers and allows per-
forming custom evaluation and metric computation in addition to the metrics calculated
by the trainer itself. The metric computation is performed at certain steps of the train-
ing and the frequency of it can be specified. Ofci uses the function to evaluate how
well the model performs on a part of the validation dataset, mainly to detect overfitting;
as the default metric only logs loss on the training dataset, overfitting is not detected
per default. In addition to logging the evaluation loss, Ofci also calculates the area
under the curve (AUC) of the receiver operating characteristic (ROC) on the validation
set, together with the numbers of how many functions were classified as similar and
dissimilar. The ROC-AUC and other metrics necessary for the evaluation are being dis-
cussed in detail in section 6.1. The data returned from the compute_metrics function is
conveniently logged by the Transformers trainer implementation and stored within the
data directory of every checkpoint that is created during the training. The point in time
of checkpoint creation together with its frequency is one of several configuration options
provided by the default trainer of Transformers. Other notable configuration settings
are the number of epochs, the training batch size, the evaluation batch size, gradient
accumulation and support for 16-bit floating point operations.

The batch size specifies how many function chunks can be presented to the network at the
same time; this does not only speed up training, but larger batch sizes are also connected
with the learning rate of the training and small batch sizes can lead to faster overfitting;
e.g. the fairseq developers provide specific recommendations for batch sizes and learning
rates when pre-training RoBERTa2. When developing Ofci it became apparent that
transformer models use up most memory on consumer graphics cards, and the small
on-device batch sizes quickly led to overfitting when trying to fine-tune a model. The

2https://github.com/pytorch/fairseq/blob/main/examples/roberta/README.pretraining.md (Ac-
cessed: 2021-12-06)
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solution for this is gradient accumulation, allowing the decoupling of the speed and
the training quality benefits of batches. The configuration options allow specifying a
number of steps for accumulating the gradient, before performing the backpropagation
pass, allowing to "simulate" larger batch sizes even when the GPU can not fit the full
batch in memory. During evaluation, gradient accumulation is not needed and not having
to store the gradient information in GPU memory allows a slight increase in on-device
batch size. Another useful feature natively provided by PyTorch is mixed precision
training [119], which can be enabled using the fp16 option. Mixed precision training
allows training with half-precision floating point numbers, i.e. 16-bit floats, without
losing accuracy compared to performing the whole training with single-precision floating
point numbers. During the development of Ofci, training with fp16 has shown an
approximate 2x speedup in training time, when training on consumer GPUs by Nvidia
starting with the 2000 RTX generation. Older cards have fp16 support, but tests did
not result in reduced training time. In general, during all Ofci experiments fp16 has
never resulted in reduced memory consumption, which presented as another advantage
of mixed precision training.

1 VOID StoreBBLRange(ADDRINT end_ptr, ADDRINT start_ptr) {
2 ADDRINT start = start_ptr - base_address;
3 ADDRINT end = end_ptr - base_address;
4 trace_file.write(reinterpret_cast<char *>(&start), sizeof(ADDRINT));
5 trace_file.write(reinterpret_cast<char *>(&end), sizeof(ADDRINT));
6 }
7
8 VOID Trace(TRACE trace, VOID* v) {
9 for (BBL bbl = TRACE_BblHead(trace); BBL_Valid(bbl); bbl = BBL_Next(bbl)) {

10 // Only trace instructions of the current main binary
11 ADDRINT addr = BBL_Address(bbl);
12 if (addr >= IMG_HighAddress(main_binary) || addr < IMG_LowAddress(main_binary))
13 continue;
14
15 INS_InsertCall(
16 BBL_InsTail(bbl),
17 IPOINT_BEFORE,
18 AFUNPTR(StoreBBLRange),
19 IARG_INST_PTR,
20 IARG_ADDRINT,
21 addr,
22 IARG_END
23 );
24 }
25 }

Listing 15: Hooking and logging basic blocks within a simple pintool.
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5.5 Trace Generation and Analysis
The Ofci trace generation is not handled by Ghidra, as Ghidra did not possess a func-
tional tracing API fulfilling the previously mentioned criteria at the time of writing.
Instead, tracing currently has to be done manually with the help of Intel Pin and a
small Ofci pintool. Pintools are plugins for the main Pin engine and are compiled as
shared library files within the Pin project structure. The Ofci pintool, OFCITracer,
is provided as an out-of-tree buildable module, which can be built in a straightforward
manner, given standard Linux build utilities are installed and the path to the Pin dis-
tribution folder is passed as PIN_ROOT variable to the makefile. The pintool performs a
single task: Hook all basic blocks during execution and log their start and end addresses
to a trace file; this is covered by the code snippet shown in Listing 15.

As a means to keep the trace file small and prevent library calls from being logged, the
pintool identifies the main binary image on startup. When hooking the basic blocks it
is then checked, whether the basic blocks in question are actually located within the
main image. This comes with another benefit: By subtracting the image address from
the basic block start and end address, the trace file is position independent per design.
The binaries generated for the evaluation of the trace tooling are position independent
and have a different base address when analyzed in Ghidra; the Ghidra plugin can load
the trace file and simply add its own image base address to the basic block addresses.
Within the trace file, the addresses are just stored with two unsigned 64-bit integers,
as shown in the code snippet. The endianness is ignored and as the Ofci prototype
only supports the x86 architecture, little endian is used on both the tracing and analysis
architecture.
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CHAPTER 6
Evaluation

After discussing the methods and implementations in the previous chapters, this chapter
evaluates the performance of Ofci with respect to the research questions posed in sec-
tion 1.3. To put the achieved results in perspective, Ofci is compared to the approaches
it mainly builds upon, i.e. Trex [1] and Safe [11], as well as recent approaches with
the same goal, such as Asm2Vec [10]. Beyond the main research questions other impli-
cations that are rarely covered in existing work, e.g. practical applicability and training
time, are discussed.

6.1 Metrics
In order to analyse the performance of Ofci and compare it to the state of the art, the
used metrics have to be introduced. Work directly related to function clone detection
mainly evaluates two things: The quality of the produced embeddings, if the approach
uses embeddings, and the quality of the returned results when searching for a function
clone in the known database. Quality of embeddings in the case of similarity based
approaches, such as Ofci, can be determined by evaluating the cosine similarity of
similar and dissimilar functions. The value produced by the cosine is in [−1, +1], with
−1 being definitely dissimilar and +1 being definitely similar. The in-between values
are up for interpretation and for distinguishing similar and dissimilar function pairs,
a threshold has to be introduced, e.g. 0. To make sure the similarity classification
performance holds up under the threshold, related work relies on the Receiver Operating
Characteristic (ROC) curve, which is a common measure in classification problems. For
drawing the ROC curve, every encountered similarity score is added into a threshold list.
This list is sorted in decreasing order and for every threshold in the list the true positive
rate, as well as the false positive rate is calculated. The false positive rate is then used as
x-coordinate and the true positive rate used as y-coordinate. To start the line at (0, 0),
an additional value higher than the maximum threshold is added; since there are no
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positive predictions at this threshold, the true positive and false positive rate are both 0.
In the upper right corner of a ROC curve plot, the threshold reaches the minimum and
all predictions are classified as positives, putting the true positive and false positive rate
at 1. When decreasing the threshold, a perfect classifier would not generate any false
positives before all possible true positives have been generated, creating a curve that
moves straight from the lower left corner to the upper left corner and then to the right.
A random classifier would result in a straight line from the lower left corner to the upper
right corner, as both positive rates steadily increase. The goal of similarity classifiers
like Ofci is to have the ROC curve bending towards the corner of the ideal classifier. To
compare the performance of different models more easily, the area under the ROC curve
can be computed (ROC-Area Under Curve, or ROC-AUC). Following the description
of perfect/random classifier, the perfect classifier would result in a ROC-AUC score of
1, while the random classifier results in a ROC-AUC score of 0.5. The AUC is not
a perfect measure [120] and hides the actual distribution of true-positive/false-positive
rates on the ROC curve, but Trex provides a large number of reference AUC scores
with different approaches on their dataset and thus offers a decent reference point to
compare against. Additionally, the curves reported by Safe and Gemini [15] are largely
symmetrical around the median threshold, minimizing loss of information through the
AUC score. While ROC and ROC-AUC are used to evaluate the quality of the produced
embeddings with respect to similarity, a different metric is needed for the actual task
of Ofci: Querying a database for function clones. As this is an information retrieval
problem, the corresponding metrics also come from the field of information retrieval
and are used as defined by Manning et al. [121]. After calculating the embedding of
a function, it can be used as a query into the database to look for similar functions.
The embedding lookup algorithm will then return at most k similar functions, ordered
by decreasing cosine similarity score. This makes function clone detection a ranked
retrieval problem and as such, the main metrics are Precision/Recall at k documents
(P@k, R@k). For one function similarity query, the precision at k corresponds to the
ratio of actually similar functions out of all returned functions k; recall at k corresponds
to the ratio of similar functions in the top k query results out of all similar functions in
the dataset. For ranked retrieval problems, recall eventually becomes meaningless as k
gets larger, because with a sufficiently large k recall will eventually reach 1. To compare
with Asm2Vec [10], P@1 is used within the evaluation. In this setting, P@1 assumes
that there is exactly one similar function, i.e. the correct function has the same name
and/or version, making the precision for one query either 0 or 1, and equal to R@1. The
values reported by Asm2Vec are averaged above all queries, making the reported P@1
the ratio of all functions that have been identified correctly; unless otherwise mentioned,
this definition is used for the evaluation when reporting P@1.

6.2 Experiment Setup
For evaluation of Ofci, the model is pre-trained and fine-tuned on the dataset pro-
vided by Trex, with additional data to accommodate analysis of virtualization-based
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obfuscation. Extraction of data from the dataset, fine-tuning, and all other tasks un-
less specifically mentioned otherwise, are performed on a developer machine using Arch
Linux with a 5.14 kernel, an AMD Ryzen 1800x, 32GB of RAM, and an NVIDIA RTX
2070 Super. This is a realistic mid-range setup for a reverse engineer regularly using
VMs for malware analysis, as well as a mid-range consumer graphics card. For pre-
training the model, a server running Ubuntu 18.04.5 LTS with an NVIDIA GTX Titan
X, 94GB of RAM and an Intel Xeon X6580 CPU has been used. This machine has been
used exclusively for pre-training of the model and despite offering almost twice as much
graphics memory, it does not offer better training performance than the local developer
machine; both machines run current NVIDIA graphics drivers and CUDA version 11,
but the fp16 performance of the Titan X is worse than the performance of the 2070.
The reason for choosing to run the pre-training on this server nonetheless was concern
regarding the stability of the local developer machine, due to the pre-training requiring
a time-span of several days.

For training Albert at the core of Ofci, the hyperparameters shown in Table 6.1 have
been chosen. For parameters that are not shown in the table, the default values of the
mentioned Transformers version are used. The batch sizes used for pre-training and
fine-tuning are directly derived from the available graphics memory and the amount
of gradient accumulation steps; the number of gradient accumulation steps was chosen
in order for the overall batch size to be at least 512, thus resulting in "odd-looking"
batch sizes when using the maximum available batch size in GPU memory. After pre-
training and fine-tuning, the embeddings for all functions within the embedding dataset
are generated and stored in a separate database for evaluation. The evaluation scripts
work directly on this database and do not go through the process of extracting the data
from the raw binaries through Ghidra again. As the validation dataset is quite large,
data for the graphs relies on sampling from the database, with the sample size specified
in the respective evaluation section.

hidden_size 768
intermediate_size 3072
num_attention_heads 12
max_position_embeddings 514
num_hidden_layers 8
vocab_size 868
pretrain_batch_size 520
finetune_batch_size 522
peak_learning_rate 0.00005
transformers_version 4.11.3

Table 6.1: OFCI Hyperparameters for Albert
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6.3 Processing and Exploration of the Dataset
The base evaluation of Ofci is being done on the dataset of the Trex authors [1] , as
the authors already compared a number of different approaches and they are the only
ones who released their full, raw dataset. This dataset covers several architectures, but
as Ofci is only implemented on amd64 for now, the other architectures are not taken
into account for this evaluation. The uncompressed dataset for amd64 contains 1.5GB of
ELF files and is split into two sets: One unobfuscated part, containing the same binaries
for different compiler optimization levels and one part containing binaries which have
been obfuscated using various methods. It is noteworthy that not the complete dataset
has been used for benchmarking in [1], and there are additional obfuscations in the
dataset; the reason for this seems to be that the additional obfuscations are not applied
to every binary in the dataset. As the datasets for these obfuscations are too small and
some of the obfuscations violate Ofci assumptions, e.g. not breaking up functions into
multiple functions, these binaries are not considered for evaluation.

Project O0 O1 O2 O3 BCF CFF IBR SPL SUB Total
Binutils 57.527 43.901 42.166 39.096 62.981 62.981 62.981 62.981 62.981 497.595
Busybox 3.321 2.108 1.831 1.854 3.160 3.271 3.483 3.282 3.282 25.592
Coreutils 96.696 74.505 73.013 69.207 17.331 17.331 17.343 17.331 17.331 400.088
Curl 5.390 742 727 661 1.002 1.002 1.002 1.002 1.002 12.530
Diffutils 3.959 2.500 2.829 2.614 848 848 850 848 848 16.144
Findutils 5.055 2.671 3.625 3.286 1.400 1.400 1.404 1.400 1.400 21.641
GMP 789 698 690 665 782 782 782 782 782 6.752
ImageMagick 4.456 2.389 2.380 2.308 4.447 4.447 4.447 4.447 4.447 33.768
Libmicrohttpd 200 176 171 161 200 200 204 200 200 1.712
LibTomCrypt 794 749 743 726 794 794 795 794 794 6.983
OpenSSL 12.178 11.197 11.077 10.755 10.745 10.871 12.176 10.749 11.476 101.224
PuTTy 8.104 5.741 5.666 5.387 8.154 8.154 8.154 8.154 8.154 65.668
SQLite 2.192 1.525 1.367 1.181 2.183 2.183 2.183 2.183 2.183 17.180
Zlib 154 139 124 115 154 154 154 154 154 1.302

Table 6.2: Extracted functions from the Trex dataset.

The number of functions extracted through the Ghidra exporter can be seen in Ta-
ble 6.2. These numbers show some discrepancies with the numbers reported by Trex
and includes Busybox as a project, which is not reported by the Trex authors at all.
Minor discrepancies can be explained by the way the functions are exported from Ghidra:
Even if there is no explicit function symbol at a given location, Ghidra will still export
a function with a generated name, i.e. FUN_ followed by the address. In Ofci, these
functions are not used during fine-tuning, as the generated function names do not allow
for meaningful function pair comparison, but are still left in the pre-training dataset. In
general, the numbers reported in Table 6.2 have not been pre-filtered in any way and
Trex does not mention whether the numbers they reported had filters applied or which
filters they applied. For several listed projects, e.g. Binutils and Coreutils, the numbers
are off by an amount that cannot be explained by the Ghidra export strategy alone. The
Trex dataset contains multiple versions of several projects, but the paper states only
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certain versions that have been used for training the model. In comparison, Ofci uses
all available versions in the dataset; when dividing the number of extracted functions by
the number of versions present, the function coins more accurately depict the number of
functions reported by Trex. The reported counts for functions in obfuscated binaries
are in line with the Ofci requirements that prohibit functions from being split into new
versions and with minor differences where Ghidra detects new functions, the function
counts stay the same across obfuscations.

This dataset covers the basic set to compare it with existing approaches, without taking
obfuscation into account. The additional methodology of Ofci for analyzing functions
not only obfuscated by O-LLVM but through Tigress virtualization, requires an addition
to the existing dataset. Since Tigress is not a drop-in replacement for other compilers, it
takes considerable effort to create a dataset large and diverse enough for training machine
learning classifiers. To this end, an approach similar to the one used by Syntia [81]
and QSynth [89] has been used: A script generates functions from a simple grammar,
calculating variable values through arithmetic and bitwise operators, based on some
function input parameters. As this results in very short functions, the generation script
for Ofci also adds variable assignments and conditional expressions, in an attempt to
represent real functions more closely. The script makes sure that these conditionals are
always taken when certain arguments are supplied, simplifying the dynamic analysis of
the functions later on, as there exists only one program path and the tracer can follow this
exact path. In total, 70.000 functions are generated this way and split across 70 source
files, to make them manageable with Tigress. As with the Trex dataset, the source
files are compiled on all optimization levels, but not with O-LLVM, due to Hikari not
building on the target system. From the Tigress obfuscations, encode arithmetic (EA)
and virtualization (VIRT) have been chosen and applied to all functions. For the final
step, EA and VIRT have been combined, producing three sets of binaries obfuscated with
Tigress. While the binaries obfuscated with EA are treated just like O-LLVM obfuscated
binaries, the ones using virtualization have to be analyzed by the Ofci tracer, which
is done manually. All generated binaries are then imported into the complete database,
using the usual Ghidra exporter or the specific trace exporter. As the virtualization
dataset overlaps the Trex dataset in the O0 to O3 categories, it is not included in the
evaluations focussing on the comparison with existing approaches, as this would falsify
results, due to additional function pairs being present.

Functions that have no corresponding similar functions cannot be used for fine-tuning
and are therefore left out when generating the fine-tuning dataset. These functions are
retained in the overall dataset, as they can still be used for pre-training. In addition,
some form of basic filtering is imposed on the training dataset generation: For pre-
training, only fragments of a function containing 60 tokens or more are selected, with 60
tokens being the minimum length of the smallest function in the virtualization dataset.
This rule has been introduced to reduce the number of function fragments available for
pre-training, as Trex has already shown that reducing the pre-training dataset does not
have a large impact on performance later on. [1] Selecting fragments with 60 tokens or
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more also makes sure that the pre-training is able to learn something from a fragment, as
the masked language-modelling performs better if the fragments are not mostly empty.
Even with the filters in place, the pre-training dataset contains still roughly 3M function
fragments. To reduce training time, the dataset is shuffled randomly and 1.5M fragments
are selected, 10.000 of which are used for validating pre-training performance after every
epoch; the validation set for this step is small, as there is no risk of overfitting. For
generating the fine-tuning dataset, the function pairing strategy and filters as described
in section 5.3 are used. Out of all unique functions in the database, 30% have been
randomly selected and used for function pair generation. From the fragment pairs of the
selected function pairs, 300.000 have been randomly selected to reduce training time and
of these, 100.000 are used for validation during the training. Therefore, out of the 30%
training function selection, the training will not see all functions/all function fragments.

6.4 Feature Extraction and Training Performance

Category Analysis Export
O0 88 8
O1 95 6
O2 90 6
O3 103 7
BCF 102 6
CFF 36 7
IBR 410 5
SPL 124 7
SUB 57 6
EA 42 11
VIRT 248 17
VIRT-EA 271 17

Table 6.3: Processing times of the dataset within Ghidra, in minutes.

The largest part of the feature extraction pipeline in terms of time spent is the analysis
and export of the binaries in Ghidra. While Ghidra offers comfort from a user standpoint,
analysis is comparatively slow, with the analysis times for all different categories of the
dataset being shown in Table 6.3. The listed times have been split in analysis time
and export time, with the latter being the time Ofci took to extract the normalized
disassembly. In a one-off setting, analysis and extraction can be performed as a single
step, but for the purpose of developing the exporter, the dataset categories have been
analyzed upfront and stored as Ghidra projects. The space required by the Ghidra
projects is roughly 10x larger than the original binary dataset; this does not matter,
as the Ghidra part of the pipeline should only be executed once, unless the exporter is
changed, and the database of each analyzed file can be discarded after analysis/export.
The listed duration measurements offer some insight into the expected analysis times on
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different program categories within Ghidra. The difference in time between optimizations
is not big and the duration tends to increase with more complex optimizations. When
taking a look at obfuscations, it becomes clear that indirect branching and virtualization
is the most time intensive w.r.t analysis in Ghidra, as Ghidra tries to resolve target
locations of indirect jumps. Interesting outliers also exist on the opposite side of the
spectrum: Control-flow flattening and instruction substitution result in shorter analysis
durations, with control-flow flattening taking less than half the time of the binaries
compiled with O0. Since CFF and SUB should be in theory harder to analyze than
O0, this gives cause for suspicion. However, the function counts (as previously shown
in Table 6.2) show that all functions have been extracted, the export logs of the Ofci
plugin do not show abnormal behavior and the exported data in the database appears to
be complete. The export duration measurements, which scale linearly with the amount
of instructions exported, do not show stark differences in CFF and SUB either, leaving
the cause of the shorter analysis times unknown. The timings have been replicated three
times and the best guess is that Ghidra fails to identify a large number of cross-references
due to these obfuscations; Ofci is indifferent to this information and only requires the
disassembly. Compared to CFF and SUB, EA is not an outlier, as this obfuscation is
only performed on the smaller virtualization dataset. Export times across the categories
are expectedly similar, with the exception of the virtualization categories: The exporter
does not parse functions here, but traces and the instruction traces are longer than
functions.
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Figure 6.1: Function parsing and embedding generation performance.

After the normalized disassembly has been exported from Ghidra, a vocabulary has to be
trained (in case it is not present) and the disassembly has to be tokenized. The process
for vocabulary generation took 10 minutes and the tokenization took 50 minutes, both of
which have been executed across the complete dataset. A large part of the tokenization
process is pulling the disassembly from the database, serializing the generated tokens
and storing them in the database again; this is currently handled in a naive way that
performs a query for every function and could be optimized to form batches when reading
from/writing to the database. After selecting which functions to use for fine-tuning, the
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pre-training and fine-tuning datasets are generated, which happens by dumping the
tokens from the database into HDF5 files. The pre-training on the remote server was
run for exactly one week, during which it achieved 8 epochs on the pre-training dataset.
Due to validation runs in between epochs, the total training time was hard to predict,
as the base goal was to fit around 10 epochs of pre-training into a week of training. The
fine-tuning was executed on the local developer machine and ran for 30 epochs within
20 hours.
To compare the performance of the framework with other approaches, the performance
benchmarks published by Trex are used. The authors argue that only function pars-
ing and embedding generation can be meaningfully compared, as training time can be
neglected over time and embedding lookup depends on the embedding lookup approach
being used. [1] When comparing the function parsing performance, Ofci is faster than
both Safe and Trex; as Trex specifically mentions function parsing, the Ghidra anal-
ysis time is not taken into account. Exporting the disassembly and normalizing it in the
Ofci Ghidra plugin takes 16s, 4s, 1.5s and 0.9s for Binutils, PuTTy, Findutils and Dif-
futils respectively. Additional 40s, 8s, 1.6s and 0.9s are required for tokenization; adding
these measurements results in the function parsing performance shown in Figure 6.1. It
is unclear how the Trex authors measured the function parsing performance, especially
w.r.t. Safe. When trying to replicate the performance numbers on the published code
of Safe the measured function parsing duration is a lot higher than reported (by the
Trex authors). For example: Diffutils should be parsed in roughly 4s according to the
figure, but actually takes 236s to parse when replicated. The difference is large enough
to correspond to a different unit of time, i.e. the values are close enough to be inter-
preted as minutes instead of seconds, but sanity checking with the embedding generation
measurements confirms that the plots are indeed correctly labelled with seconds. In the
embedding generation, Safe is very fast compared to Ofci and Trex seemingly only
requires a fraction of Ofci’s embedding generation time. The main contributing factor
for this stark difference is the measurement of embedding generation on the GPU: The
reported values are measured on a system with 8 Nvidia RTX 2080-TI GPUs, while
Ofci is evaluated on a machine with only one RTX 2070 Super. Even when taking
the difference in hardware into account the differences appear odd, as measuring Safe
embedding generation performance results in the same numbers as reported by Trex,
but only on a single GPU. Without knowing the exact benchmarking setup of the Trex
authors, it appears as if only Trex is taking advantage of the 8 GPUS, while Safe
does not. As Trex does not have fully functional code and models published, the ex-
act amount of time it takes to generate embeddings cannot be verified; since Trex is
based on RoBERTa, while Ofci is based on the much smaller Albert, Ofci should
outperform Trex in terms of embedding generation throughput.

6.5 Comparison of Model Size
One goal in the creation of Ofci is to decrease the size of the model when compared to
other recent approaches, cutting down on model complexity. The model size in terms of
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on-disk size and number of trainable model parameters is shown in Table 6.4, compared
to the most recent and best performing approaches, Trex and Safe. While the table
shows Ofci in a good position, namely lowest model size on disk and lowest number
of parameters in comparison to Trex and Safe, it does not show the full picture and
requires additional context. First, other approaches like Asm2Vec or Gemini are not
shown, as Trex and Safe outperform them. Gemini is significantly smaller, with
about 10.000 trainable parameters, but does not work on instructions, but manually
selected statistical features. [15] The amount of trainable parameters in Asm2Vec
depends on how many functions it is currently trained with, making it hard to compare
against the more recent approaches. In general, neither Asm2Vec nor Gemini provide
models trained on their full dataset and exact numbers regarding model size on disk
and parameters in the case of Asm2Vec can therefore not be established. Another issue
presented when comparing the size of the different models is the different ways of storing
the trained model on disk. Ofci has 9M trainable parameters, multiplied by 4 (for 32-
bit floating point numbers) results in 36MB of model data, meaning the parameters
are stored almost entirely without meta-data or transformation, with the exception of
compression. Performing the same calculation does not hold up for Trex, which is also
using PyTorch to store its model, but reaches a size of almost 700MB, where it should
only have 240MB according to the same calculation.

Approach Size on Disk Number of Parameters
Trex 696MB 60.606.229
SafeTorch 210MB 55.043.500
Ofci 35MB 9.136.000

Table 6.4: Comparison of model size of different approaches.

The case of Safe is more complex than shown in the table, as to allow a better compar-
ison, SafeTorch1, a reimplementation of Safe with the same parameters used for the
paper, for PyTorch by the Facebook research team is used. The original Safe implemen-
tation used Tensorflow instead of PyTorch, but the reason for the difficult comparison
can be found elsewhere: In their original implementation, Safe is split up into two parts,
namely the instruction embedding and the function embedding part. The instruction
embedding part is implemented using word2vec [26], training instruction embeddings
based on the functions they appear in. The result is stored in a large matrix, 192MB
compressed, 403MB uncompressed, and as this is not part of the Safe Tensorflow model,
it would also not be counted as a trainable parameter. The actual model, a Siamese
architecture for contrastive learning using RNNs instead of the transformers used by
Ofci, weighs in at a 211MB file and 4.5M trainable parameters. This would put Safe
at half the trainable parameters of Ofci, but would only consider half of its training
process, as it still has to train the instruction embeddings before training the Siamese
network. The use of SafeTorch for comparison is valid, as the reimplementation keeps

1https://github.com/facebookresearch/SAFEtorch (Accessed: 2021-12-06)
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the parameters of the actual Safe model the same, but PyTorch allows for easier inte-
gration of the instruction embedding into the overall training process. This provides one
complete model, trained together with the embedding matrix, stored as a 210MB file on
disk. This is surprisingly close to the model stored by the Tensorflow version of Safe
and would make sense if this version also stored the embedding matrix together with
the model; following the code this does not appear to be the case, making the similar
disk sizes a coincidence. Integrating the instruction embedding training into the overall
training is valid and does not break with the actual architecture of Safe: Just as in a
separate training, the instruction embeddings can still be used on their own, extracted
from the full model, and used for training the model on different data, without training
the embeddings again. The same is the case for Trex and Ofci, as the underlying
models also store embedding matrices, which could be reused or repurposed. All condi-
tions considered, this does put Ofci as the leanest approach in comparison to Safe and
Trex, at worst requiring only 17% of the disk space and trainable parameters.

6.6 Performance on Unobfuscated Data
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Figure 6.2: ROC of function pair similarity across all optimization levels.

While the focus of Ofci lies on obfuscated data, the first set of experiments is being
performed on the unobfuscated part of the dataset and establishes baseline results for
comparison with other approaches. In the unobfuscated dataset, the performance of
Ofci’s function clone detection capabilities is evaluated on functions with different opti-
mization levels. When mentioning results of other approaches, these mirror the results
reported by the authors of Trex or other related work, unless otherwise specified. This
is due to the fact of other approaches not providing code/trained models and Trex
having baseline results on their own dataset. The robustness of Ofci embeddings on
function pairs sampled from different optimization levels can be seen through the ROC
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curve in Figure 6.2. On its own, the curve shows good results for the embeddings gener-
ated by Ofci, with a high ROC-AUC of 0.95 and no obvious skewing towards true/false
positive rates.

To put the ROC-AUC score into perspective, Table 6.5 compares the AUC scores against
Trex. The authors of Trex provide ROC-AUC values for the respective projects in
the dataset and for this comparison the cross-optimization scores have been selected.
To calculate the ROC-AUC for one project, Ofci samples 1.000 similar and the same
amount of dissimilar pairs from the database, with the standard deviation across 10
runs of sampling being smaller than 0.01 in all cases, while it is unclear how Trex
selected/averaged the values, as it is not feasible to calculate the ROC of all possible
function pairs in the dataset, depending on the project. The AUC scores of Ofci are
worse, as the number of trainable parameters has been significantly reduced and it does
not make use of the microtraces introduced by Trex. The numbers do not follow a
specific pattern when comparing the two approaches, as the AUC scores reported by
Trex are already very high; only the slight drop in performance of the Zlib project is
seen in both approaches. Ofci performs the worst at LibTomCrypt, with an AUC score
of 0.849. In this case, the drop in AUC is roughly 15%, while the average decrease is at
7%, which is minor when compared to the 85% reduction of model parameters in Ofci,
when compared to Trex.

Project Trex Ofci
Binutils 0.993 0.933
Coreutils 0.992 0.968
Curl 0.993 0.929
Diffutils 0.992 0.951
Findutils 0.992 0.939
GMP 0.993 0.929
ImageMagick 0.993 0.924
Libmicrohttpd 0.994 0.901
LibTomCrypt 0.994 0.849
OpenSSL 0.992 0.952
PuTTY 0.995 0.938
SQLite 0.994 0.916
Zlib 0.991 0.892
Average 0.990 0.925

Table 6.5: Comparison of AUC scores across unobfuscated projects.

To analyze the performance of Ofci when comparing function pairs of different complex-
ity in detail, the ROC curves of unoptimized functions and their optimized counterparts
in different optimization levels are shown in Figure 6.3. When splitting up into differ-
ent optimization levels, the ROC-AUC score of the function pair classification starts to
decline with higher optimization levels. This is expected and provides some additional
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insight into the dataset: The highest ROC-AUC score when comparing with unopti-
mized functions is produced by pairing with functions optimized at O1. When pairing
with functions in O2, the ROC-AUC score drops slightly, highlighting how O2 produces
code more different to O0 than O1. Finally, there is a larger drop when comparing with
O3; this is expected as well, since O3 can introduce the most complex optimizations,
significantly breaking up the code structure.

0.0 0.2 0.4 0.6 0.8 1.0

False Positive Rate

0.0

0.2

0.4

0.6

0.8

1.0

T
ru

e
 P

o
s
it

iv
e
 R

a
te

O0 and O1 (AUC = 0.945)

O0 and O2 (AUC = 0.939)

O0 and O3 (AUC = 0.907)

Figure 6.3: ROC of unoptimized functions and optimized counterparts.

Similar conclusions can be reached when interpreting the ROC curves in Figure 6.4.
Instead of comparing every optimization level to the unoptimized base version, the func-
tion pairs are sampled from O1-O2 and O2-O3, showing how the performance of Ofci
changes when incrementally increasing the optimization level. Starting from the levels
O0-01, which is shown on the previous figure, this group achieves a ROC-AUC score of
0.945. The next group, O1-O2, achieves a ROC-AUC of 0.969, showing how the increase
from O0 to O1 has a higher complexity than the increase from O1 to O2. When analyz-
ing the ROC curve of O2-O3, the AUC can be seen decreasing to 0.95 again. However,
while the AUC drops due to increased complexity of O2-O3 when compared with O0-
O1, the ROC-AUC of O0-O1 is the lowest, marking this step as the highest change in
function complexity.

As the ROC-AUC only shows the performance of classifying functions as similar, it does
not show how well Ofci performs on function search. To this end, Table 6.6 shows the
comparison of Precision@1 reported by Trex and Asm2Vec to Ofci. The reference
values are taken directly from the Trex paper and contain the function lookup perfor-
mance across different optimization levels. While the function similarity classification
performance of Ofci is on par with other approaches, this is not the case when it comes
to function search. When searching similar functions from binaries with optimization
levels O2 and O3, the average performance of Ofci is well below Trex and Asm2Vec,
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Figure 6.4: ROC of function pairs between different optimization levels.

at around 50%. This gap further widens when searching functions across O0 and O3,
where differences in the binaries increase, only achieving a Precision@1 of 0.121. While
Ofci does not perform well in function search, the precision values are still well above
the performance of random embeddings. For example, the Precision@1 for Coreutils
is at 0.025, but there are roughly 28k unique functions in the evaluation set, putting
the chance of matching one function correctly at 0.0003 when accounting for 8 different
versions of Coreutils; a Precision@1 of 0.025 implies that about 700 functions have been
matched correctly, making it unlikely to be caused by random chance based on the prob-
ability of matching one function. Another observation is the missing correlation between
performance drops when compared to Trex and Asm2Vec. While both of these ap-
proaches show decreased performance in the same projects, the Ofci performance drops
do not occur in the same projects and appear to rather depend on the number of unique
function names in the project evaluation sets.

A drop in performance is expected, as Ofci reduces model complexity and the number
of trainable parameters, but the reduction margin should be closer to the results on
ROC-AUC scores. Due to the long duration of a full model training cycle, evaluating
all possible factors for the decreased function search performance is not in scope of this
thesis and outside of a student budget for GPU hardware/hours of computation time.
Therefore, the discussion of possible reasons is limited to what can be observed from
the available results and surrounding decisions made in the implementation phase. The
starting point for this discussion is the aforementioned reduction of model complex-
ity. With the initial intention of building on Trex, a model too computation heavy
to train on a student budget, the focus of Ofci was set to transformer-based models.
Here, Ofci decided to work with Albert [99] in comparison to Trex, which made use
of RoBERTa [70] at its core. Within the Albert paper, the authors devise certain
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O2 and O3 O0 and O3
Project Trex Asm2Vec Ofci Trex Asm2Vec Ofci
Coreutils 0.955 0.929 0.137 0.913 0.781 0.025
Curl 0.961 0.951 0.680 0.894 0.850 0.159
GMP 0.974 0.973 0.748 0.886 0.763 0.219
ImageMagick 0.971 0.971 0.457 0.891 0.837 0.066
LibTomCrypt 0.991 0.991 0.611 0.923 0.921 0.040
OpenSSL 0.982 0.931 0.469 0.914 0.792 0.082
PuTTy 0.956 0.891 0.248 0.926 0.788 0.049
SQLite 0.931 0.926 0.551 0.911 0.776 0.117
Zlib 0.890 0.885 0.465 0.902 0.722 0.329
Average 0.957 0.939 0.485 0.907 0.803 0.121

Table 6.6: Comparison of Precision@1 across optimizations.

measures to reduce the model complexity (discussed in section 4.4), and can achieve
on-par performance with Bert [23] on several widely used natural language processing
benchmarks, including semantic textual similarity (STS). RoBERTa performs better
than simple Bert and thus better than Albert in theory. The performance differences
discussed in these papers however are in line with the ROC-AUC score differences dis-
cussed here, and not with the drastic differences in precision scores. In fact, Albert
does appear to even outperform smaller variants of RoBERTa in textual similarity
benchmarks.2 Based on this data, it does not appear that the bad precision scores of
Ofci are caused by this choice of neural network architecture and the reduced complex-
ity. In order to rule out this possibility definitely, a reimplementation of Trex with the
full dataset and same methodology is required; besides requiring an extensive amount
of time, not all relevant code for generating the data from scratch is published by the
authors.

This ties in with the reporting of metrics and description of evaluation sets in
related work. While there are a variety of popular benchmarks for natural language
processing, these benchmarks do not exist for function clone detection and most fields of
binary analysis in general, making it hard to objectively compare different approaches on
a certain task or validate claims. This is highlighted by the authors of Trex in a striking
manner: For every approach they compare against, i.e. Asm2Vec [10], Safe [11],
Gemini [15] and Blex [57], they compare results with different metrics, because with the
exception of Safe, none of the other approaches provides the full source-code or trained
model. Additionally, the datasets are also not exactly the same, ruling out a fair and
objective comparison. Another issue in comparing the metrics is omitting the details on
how exactly these metrics are calculated; this does not relate to the established definition
of the metrics, but on how the data for the metrics is selected. For example, due to the
large number of possible function pairs, it is not possible to calculate the ROC curve

2https://paperswithcode.com/sota/semantic-textual-similarity-on-mrpc (Accessed: 2021-12-04)
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for all possible pairs. To solve this, the function pairs have to be sampled from the base
dataset, which opens up several possibilities for influencing the outcome: The dataset
can be partitioned in favor of the benchmarks, the number of sampled function pairs can
be varied and a different ratio of similar/dissimilar function pairs can be selected in order
to steer the results into a better direction. This information could readily be omitted
from a paper, if the accompanying evaluation code was released as well, since this would
clear up any missing details. Unfortunately, most papers do not release the code for
their approaches and even when releasing all of their relevant implementation code, like
Safe did, they might not release their evaluation code. Large, publicly available and
well designed benchmarks could alleviate this problem; as chapter 3 shows, binary code
similarity is no longer a niche problem and agreed upon benchmarks are long overdue.

Finally, the most important factor in the subpar function search performance of Ofci
is the definition of what constitutes a similar function. Per the definition in
section 2.1, two functions are similar when they exhibit the same semantics. However,
the dataset and the corresponding labels are not structured this way: In the context of
related work, a function is similar if they have the same name within the same project, as
the ultimate goal is to identify an existing function and assign a name. When compared
to Trex, Ofci made the decision to not only treat functions with the same name in a
project as similar, but also if they are from different versions of the same project. This
is possible, as the Trex dataset provides different versions for some projects, e.g. 8
different versions of Coreutils, of which all functions with the same name are considered
similar. While this does not account for all of the missing function search performance
in Ofci, it does make the results different to the ones reported by Trex. Not only are
there more overall functions per project, but now the different versions are treated as
similar during training, when it is also possible that functions have changed in large parts.
Combined with the issues of the code virtualization similarity approach in section 6.10
(which has been trained together with the rest in one fine-tuning session) and the small
amount of training data selected to keep training times feasible, this leads to possible
issues with the composition of the training set. One possibility to counteract this effect is
to reduce the scope of the training to one project: A reverse engineer will normally have
a good guess about which libraries are being used in a program and just has difficulties
identifying the specific functions; they could therefore select a model that has been fine-
tuned on this specific project. The fine-tuning process would be faster, as less training
data needs to be processed, making it possible to have multiple fine-tuning training
processes running. Alternatively, functions could be grouped into overall functionality
categories, e.g. cryptographic functions, which is what Safe implements on top of its
embeddings. [11]

Following the definition of similar functions, another issue that is present in all ap-
proaches is the unexpected similarity of functions with different names. When manually
inspecting retrieval results at a certain rank k for Ofci, two distinct variants of negative
results (i.e. the correct function is not at rank 1) appear. In the first case, functions
with different names perform exactly the same or very similar operations and because
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they are so similar, they push the correct function out of rank 1. If the functions are
exactly the same, this can be detected by hashing, but if some addresses are different or
a handful of instructions are added, this is not easy to detect. In the second case, the
correct function does not appear within rank 10-20; when comparing the disassembled
original function, the rank 1 function and the correct function, the visual representation
(disassembly, CFG) of the rank 1 function did indeed appear more similar to the original
function. As Trex has not published precision values for their models without micro-
traces, it is unclear whether adding more semantic information in the form of microtraces
helps reducing the impact of this issue and there are still going to be cases where, for
example, the optimized versions of two functions are similar, reducing the problem to the
first case. The first case is interesting, as it can be somewhat seen as a chicken-and-egg
problem: In order to create a good dataset, function similarity of the dataset needs to
be known beforehand. While natural language processing can use humans to annotate
the similarity of two text snippets, this is difficult to apply to reverse engineering, where
assessing the similarity can take a significant amount of time, even for obvious function
clones. Related work does not mention whether they sanitized their dataset w.r.t. unex-
pected similarity; Asm2Vec mentions the edit distance between function pairs, but does
not go into detail whether this affected the labeling of the dataset. [10] This remains an
open issue that could potentially be solved by applying classical similarity approaches
to find obvious similar functions.

6.7 Performance on O-LLVM Obfuscated Binaries
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Figure 6.5: ROC of obfuscated function pairs and all function pairs.

To start off the evaluation of Ofci on obfuscated binaries, Figure 6.5 shows the ROC
curves of classifying similar function pairs between obfuscations and between all func-
tions in the dataset, including the different optimization levels. The AUC score on the
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obfuscated function pairs is 0.963, which puts the classification performance above the
previously discussed classifying of function pairs across optimization levels, which re-
sulted in an AUC of 0.953. In general, this means that Ofci performs slightly better on
the obfuscation part of the dataset, due to two reasons: The obfuscations provided by O-
LLVM appear to be less drastic than difference between O0 and O3, and the AUC score
is calculated between obfuscated function pairs only, meaning there are less differences
between the different obfuscations itself.

Obfuscated Pairs All Pairs
Project Trex Ofci Trex (w/o microt.) Safe Ofci
Binutils 0.991 0.947 0.952 0.871 0.918 0.942
Coreutils 0.991 0.966 0.951 0.900 0.910 0.965
Curl 0.991 0.940 0.953 0.919 0.931 0.924
Diffutils 0.990 0.959 0.952 0.931 0.918 0.945
Findutils 0.990 0.967 0.961 0.889 0.910 0.934
GMP 0.990 0.869 0.953 0.931 0.930 0.852
ImageMagick 0.989 0.910 0.962 0.889 0.935 0.902
Libmicrohttpd 0.991 0.905 0.951 0.910 0.917 0.874
LibTomCrypt 0.991 0.836 0.953 0.900 0.911 0.844
OpenSSL 0.989 0.946 0.952 0.858 0.925 0.941
PuTTy 0.990 0.976 0.941 0.840 0.900 0.951
SQLite 0.993 0.956 0.953 0.850 0.929 0.947
Zlib 0.990 0.911 0.960 0.810 0.931 0.888
Average 0.990 0.929 0.953 0.884 0.920 0.916

Table 6.7: Comparison of AUC scores across obfuscated projects.

The performance on the obfuscated data when compared to other approaches can be seen
in Table 6.7. The comparison is split into two categories, with the first category being
the ROC-AUC across obfuscated function pairs only. Ofci is here directly compared to
Trex, as the results come from the same dataset; the ROC-AUC calculation for Ofci
is again sampling 1.000 similar and dissimilar function pairs, and calculating the mean
AUC across 10 runs of sampling, while the Trex and Safe results are taken from the
Trex paper or have been provided by the authors on request. When comparing the
AUC scores of obfuscated pairs, Ofci is expectedly outperformed by Trex and again
shows a maximum drop of 15% in AUC score, which is similar to the unobfuscated
results presented in the previous section. This is again an acceptable tradeoff for an
85% reduction in the number of trainable model parameters. The second category,
the ROC-AUC of all function pairs in the dataset, is taken from the ablation study
performed by Trex. It includes the AUC scores calculated for Safe on the Trex
dataset and the Trex results when the model is not pre-trained with microtraces, but
only with static data, similar to Ofci. This comparison is not entirely objective, as
these numbers also include cross-architecture function pairs that are not present in Ofci;
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however, the comparison is presented here to contextualize the results produced by Ofci.
Keeping this in mind, Ofci manages to achieve a higher AUC score than Trex on two
projects, manages to generally outperform the version of Trex that does not make
use of microtraces and produces results in the same range as Safe. Even keeping the
difference in dataset composition in mind, Ofci can therefore achieve good results when
only taking the ROC-AUC into account.
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Figure 6.6: ROC of unobfuscated functions and obfuscated counterparts.

To analyze the performance of Ofci on the different obfuscation methods, Figure 6.6
shows the ROC curves when sampling function pairs from O0 and the obfuscations, with
the obfuscations sorted by decreasing AUC score. While CFF, one of the most complex
obfuscations offered by O-LLVM, shows the worst AUC score as expected, the similarly
potent IBR obfuscation shows the second highest ROC-AUC. The SUB obfuscation
performs best, as it only adds minor changes by substituting instructions and constants,
while the methods adding to the control-flow, BCF and SPL, end up in between IBR and
CFF. Inspecting the different obfuscation with Ghidra explains the reason for the bad
performance of CFF and the comparatively good performance of IBR: The IBR obfus-
cation does not flatten the control-flow like CFF does, but only adds indirect branches
where there already have been direct branches in the code. Due to Ghidra’s indirect
branch analysis, it still detects the targets behind the indirect jumps and since the code
is not reordered, looking at it from the disassembly view does not produce extensive
changes. Analyzing the same function in a binary obfuscated with CFF, not only exist-
ing control-flow is replaced, but new basic blocks are added, and what remains of existing
functionality does not appear in order when looking at the disassembly. Analyzing the
function search Precision@1 results in the values presented in Table 6.8, again compared
to the reported values of Trex and Asm2Vec. The use case of function search for
an obfuscated function is the determination of the original unobfuscated function. To
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this end, the embeddings of the unobfuscated functions are stored in an index, and the
index is queried with the obfuscated functions. This is done for the BCF, CFF and SUB
obfuscations, as these are the ones listed by Asm2Vec and Trex. The original table
reported by Asm2Vec [10] contains another row for combining the obfuscations, but the
Trex dataset only contains the separate obfuscations and Ofci can therefore not report
on this category. The results are slightly worse than the numbers shown for Ofci in the
previous section when searching functions across O0 and O3, highlighting that O-LLVM
obfuscations are still able to increase the complexity of the function beyond the typical
capabilities of standard compiler optimizations. The Precision@1 values are also in line
with the ROC-AUC scores in Figure 6.6: Instruction substitution is among the simpler
obfuscations with an average Precision@1 of 0.229, while CFF and BCF are on the more
complicated end with 0.136 and 0.149 average Precision@1 respectively. Similar to the
precision values of the unobfuscated function search, the results are however far behind
the reported values of Trex and Asm2Vec; the argumentation for these results is the
same as for the unobfuscated version and is not repeated at this point (c.f. section 6.6).

Obf. Approach GMP LibTomCrypt ImageMagick OpenSSL Average

bcf
Trex 0.926 0.938 0.934 0.898 0.924

Asm2Vec 0.802 0.920 0.933 0.883 0.885
Ofci 0.158 0.121 0.224 0.093 0.149

cff
Trex 0.943 0.931 0.936 0.940 0.930

Asm2Vec 0.772 0.920 0.890 0.795 0.844
Ofci 0.169 0.178 0.156 0.043 0.136

sub
Trex 0.949 0.962 0.981 0.980 0.968

Asm2Vec 0.940 0.960 0.981 0.961 0.961
Ofci 0.249 0.214 0.283 0.169 0.229

Table 6.8: Comparison of Precision@1 scores across obfuscated projects.

6.8 Performance of Fragmented Functions
While recent approaches [11, 1] limit the input size of their solutions, or have to limit
the input size due to limitations of the underlying model architecture, there is no com-
prehensive evaluation of the effects on larger functions. This does not matter as much
in natural language processing, as sentences and paragraphs will more easily fit within
a 512 token boundary, or 4096 when taking recent large models into account. [122, 123]
These models require a large amount of memory and GPU resources and do not solve
the underlying problem in function clone detection: The length of a function can range
anywhere from 10 to thousands of tokens, making it hard to fit functions into a fixed-
size window for classification. The ROC curve in Figure 6.7 shows the performance of
Ofci on unobfuscated functions, selected over a different number of fragments per func-
tion pair; in this case, the function pairs have been sampled from functions having the
same amount of fragments. On unobfuscated functions, Ofci performs best on functions
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Figure 6.7: ROC of unobfuscated function pairs categorized by fragment count.

that are not longer than one fragment. There is a noticeable drop in the ROC-AUC of
function pairs with two or three fragments, showing how the embeddings become less
robust as soon as functions become longer. It can also be seen that the quality of the
embeddings does not further decline after the initial drop, as function pairs that are
three fragments long perform slightly better according to the ROC-AUC. In general, the
ROC-AUC does not further decline after more than two fragments, oscillating roughly
around the 0.93 mark, some of this being due to the fact that the pool to sample function
pairs from becomes smaller with growing length and the ROC becoming less precise.
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Figure 6.8: ROC of obfuscated function pairs categorized by fragment count.

Taking the same viewpoint on the set of obfuscated function pairs reveals a similar picture
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6.8. Performance of Fragmented Functions

in Figure 6.8. Again, function pairs that are no longer than one fragment perform best,
with a ROC-AUC 0.98 that is even higher than it is for unobfuscated function pairs.
However, for obfuscated functions, the ROC-AUC continues to drop, even after having
function pairs with more than two fragments, before it eventually starts to converge
against 0.91. The reason for this is not clear from the dataset; one contributing factor is
the fact that the performance for functions with one fragment is already higher than the
corresponding ROC-AUC for unobfuscated functions, spreading the performance drops
over a wider range.

Project 1 Frag. 2 Frag. 3 Frag.
Binutils 0.102 0.009 0.006
Coreutils 0.032 0.017 0.019
Curl 0.305 0.013 0.000
Diffutils 0.380 0.071 0.113
Findutils 0.296 0.087 0.079
GMP 0.500 0.150 0.032
ImageMagick 0.269 0.072 0.076
Libmicrohttpd 0.800 0.167 0.136
LibTomCrypt 0.237 0.114 0.100
OpenSSL 0.055 0.016 0.053
PuTTY 0.111 0.035 0.045
SQLite 0.314 0.011 0.052
Zlib 0.750 0.111 0.160
Average 0.319 0.067 0.067

Table 6.9: Comparison of Precision@1 of fragmented functions.

The difference in AUC scores also translates to Precision@1 measurements across all
projects. The measurements have been taken through function search of the original
function from binaries that have been obfuscated with CFF, in order to highlight the
impact on obfuscated function search. With two exceptions, Coreutils and OpenSSL,
the Precision@1 drops if the function is longer than one fragment, and in some cases
continues to drop when looking at functions with three fragments. Limiting the search
to all functions that are not longer than one fragment also reveals better performance
on obfuscated function search than the results of the previous section have shown. This
implies that long functions drag the overall Precision@1 score down.

To summarize, the performance of Ofci is still acceptable for functions that cannot
be represented within 512 tokens, showing the robustness of the generated embedding
vectors. However, as expected, there is a noticeable drop when looking at embeddings
consisting of two or more fragments, showing room for improvement when dealing with
longer functions. Unfortunately, research into this direction, e.g. the transformer models
in [122, 123], tries to push the boundaries by increasing the input size of transformer
models and despite successful reduction of complexity, the memory consumed by these
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models is still overwhelming for consumer graphics cards. Without a breakthrough
w.r.t. transformer models, strategies for longer inputs have to shift towards redesigning
the training process: Similar to gradient accumulation for achieving certain batch sizes,
accumulating results specific for the contrastive learning task across fragments could
improve results at the cost of a much more complicated and less efficient training task.

6.9 Ablation Study
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Figure 6.9: ROC of all function pairs restricted to a different number of function calls.

One feature Ofci adds on top of the machine learning model is the Call-ID, where ref-
erences to another call are added to the call instruction, with the intention of improving
the results of the embedding. Within this ablation experiment, the performance of Ofci
with and without the Call-ID feature is tested, in order to see whether the call reference
offer an improvement of the embeddings and identification results. The first experiment
can be seen in Figure 6.9, showing the ROC curves of function pairs selected from the full
dataset, grouped by the number of calls these functions execute. Functions that do not
perform any calls are excluded, as the Call-ID feature will not have any impact on them.
Furthermore, as the set of available function pairs decreases with a growing number of
function calls, there is no further distinction among functions that perform more than
4 function calls. To build the necessary dataset for comparing the results of function
pairs with and without Call-IDs, the dataset is exported from Ghidra twice, one export
containing the full Call-IDs to be tokenized and the other export having all Call-IDs set
to 0, treating it as if all calls are made in reference to unknown functions. Embeddings
are generated for both of these datasets, each function being indexed by an ID that is
the same across datasets; when sampling function pairs, the functions are selected based
on their attributes and a function pair consists of two function IDs. When looking up
the embeddings of the functions in the pair, the same ID can be used to retrieve the
embedding from either the dataset with or without Call-IDs. The ROC curves in Fig-
ure 6.9 show no visible difference, the robustness of the embeddings appears to be just
as good as without the Call-ID feature. However, there is a very small difference in the
ROC-AUC score of function pairs in favor of having the Call-ID feature. For the groups
of 1-2 calls and the functions with more than 4 calls, this difference is as low as 0.001
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difference in AUC, and does not become bigger the more calls a function has, which does
not appear to be intuitive at first.

0.0 0.2 0.4 0.6 0.8 1.0

False Positive Rate

0.0

0.2

0.4

0.6

0.8

1.0

T
ru

e
 P

o
s
it

iv
e
 R

a
te

1-2 Calls (AUC = 0.966)

1-2 Calls w/o Call-ID (AUC = 0.965)

0.0 0.2 0.4 0.6 0.8 1.0

False Positive Rate

0.0

0.2

0.4

0.6

0.8

1.0

T
ru

e
 P

o
s
it

iv
e
 R

a
te

3-4 Calls (AUC = 0.973)

3-4 Calls w/o Call-ID (AUC = 0.970)

0.0 0.2 0.4 0.6 0.8 1.0

False Positive Rate

0.0

0.2

0.4

0.6

0.8

1.0

T
ru

e
 P

o
s
it

iv
e
 R

a
te

> 4 Calls (AUC = 0.966)

> 4 Calls w/o Call-ID (AUC = 0.962)

Figure 6.10: ROC of all function pairs by call count and corrected for fragmentation.

One issue here is that the functions sampled from are inspected without regard for length
and the more calls a function has, the more tokens it will usually contain. This effect
also manifests in the decline of the general ROC-AUC score across the three curves,
where the AUC is generally lower if function pairs with higher call counts are selected.
To compensate for this, Figure 6.11 shows the ROC curve corrected w.r.t. the length
of a function, by only picking functions that fit within one fragment. The results are
similar to the uncorrected curves, showing that the Call-ID feature does improve the
robustness of the embeddings in all cases, albeit by a small margin. In comparison to
the uncorrected ROC curves, these results do show an improvement if a larger number
of function calls is involved, going from a ROC-AUC difference of 0.001, to 0.003 for
function pairs with 3-4 function calls, and 0.004 for function pairs with more than 4
calls.
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Figure 6.11: ROC of various obfuscated function pairs with and without Call-ID.

As the previous results are sampled from the full dataset and Call-ID is intended to im-
prove the performance on obfuscated function clones, Figure 6.11 shows the performance
of Call-ID on three selected obfuscations, with CFF and IBR being the most complex
obfuscations provided by O-LLVM, and BCF being one of the less invasive operations.
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In order to produce a real-world comparison, where the an obfuscated binary is under
analysis and the unobfuscated version is nown, the function pairs are sampled from the
specific obfuscation method and the corresponding function in O0. The results show an
improvement in embedding robustness across the listed obfuscations, the range being of
similar margin as the previous results. The curves also show expected behavior w.r.t.
the complexity of the applied obfuscations: CFF and IBR, the most complex out of
the O-LLVM obfuscations, benefit more from Call-ID with a difference in ROC-AUC of
0.003, while a simple obfuscation like BCF is hardly affected by Call-ID at all. Virtual-
ized examples are not considered here, as Ofci does not perform analysis on virtualized
code that is also interprocedural. While the differences in the ROC-AUC scores are very
small, the effect of Call-ID can be observed in the Precision@1 scores as well, shown in
Table 6.10 for all projects when searching O0 from CFF. The dataset is the same subset
used for the ROC curve O0-CFF in Figure 6.11. While the differences are again small,
they are more distinct than the difference in ROC-AUC scores and with the exception
of Curl/OpenSSL they are showing that Call-ID can indeed improve the function clone
search.

Project Call-ID w/o Call-ID
Binutils 0.131 0.116
Coreutils 0.059 0.057
Curl 0.462 0.500
Diffutils 0.471 0.462
Findutils 0.360 0.326
GMP 0.857 0.714
ImageMagick 0.377 0.333
Libmicrohttpd 0.857 0.714
LibTomCrypt 0.296 0.296
OpenSSL 0.049 0.052
PuTTY 0.108 0.100
SQLite 0.372 0.283
Zlib 0.857 0.857
Average 0.404 0.370

Table 6.10: Comparison of Precision@1 with and without Call-ID.

To summarize, the ablation testing shows how the Call-ID feature does appear to be
beneficial, with the shortcoming of the small margin. A difference in the third decimal
place of the ROC-AUC is not a significant improvement, but this difference is consis-
tently positive across all tests. In its current form a tradeoff has to be made: Using
Call-ID is cheap, but not free when exporting disassembly from Ghidra. As the classifi-
cation of other functions might change when new functions are identified, some functions
have to be put through embedding generation again. Processing functions sorted by the
number of calls minimizes this effect, but the problem still persists; as the benefit of
using Call-ID is that small, repeated unnecessary embedding generations might be per-
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formed. For future work, a strategy on how to increase the benefit of Call-ID is needed.
With the current implementation, the Call-IDs are added as tokens into the normalized
disassembly, in hopes of the transformer models recognizing these tokens as important.
Through ablation it becomes clear that the significance of the Call-ID tokens is not in-
creased in relation to other tokens, making it necessary for future work to more tightly
integrate this with a custom model, where Call-IDs can be handled separately. This can
happen through extending a transformer model, or adding a separate model in the likes
of Gemini [15], which generates embeddings based on manually selected features.

6.10 Performance on Tigress Virtualized Examples
As the second major new addition on top of existing work, Ofci tries to approach
analysis of code obfuscated through virtualization. At the time of writing there are only
two references to virtualized code in related work regarding function clone detection: A
survey [13] citing virtualized code as an unsolved problem, and Asm2Vec [10] performing
analysis on the static code generated by Tigress. The Asm2Vec authors showed that
they were still able to detect vulnerabilities from the static code generated by Tigress
virtualization, with a true positive rate of 35.8% on a small dataset, but do not discuss
function clone detection across virtualization. To the best of my knowledge, Ofci is
the first approach trying to tackle function clone detection across virtualization through
dynamic analysis, i.e. through generating instruction traces of the virtualized code and
comparing with these traces; the results can therefore not directly be compared with
existing approaches.
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Figure 6.12: ROC of all function pairs across optimizations and virtualization.

The dataset of the experiments on virtualized code is distinct from the dataset used in
the previous evaluations, however the model has always been trained with both to be as
general as possible. The main difference between the two datasets is the source of ground
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truth: While the previous results have been shown on real-world applications, the Tigress
dataset has been synthetically crafted by following a few grammar rules. Tigress makes
it hard to create large-scale datasets on real applications, as it requires the program
to be easily combined into a single C file, does source-to-source transformations and
outputs the compiled binary itself. As mentioned in section 6.2, the dataset contains the
binaries across different optimization levels, EA, VIRT and VIRT-EA. The ROC curve
for function pair embeddings across this whole dataset can be seen in Figure 6.12. The
results show that the classification of function pairs across virtualized code is not good,
but also not completely random, with the random classifier being represented by the line
in the middle of the plot. There is an initial climb up to a certain threshold, meaning
no false positives have been detected below this threshold, but also not all positives. In
the second experiment, only the robustness of function pairs across virtualizations has
been measured, with the corresponding ROC curve shown in Figure 6.13.
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Figure 6.13: ROC of all function pairs across virtualization.

The curve is similarly close to the curve across all function pairs in the dataset, but
missing the initial climb, leaning more towards the random classifier as the thresholds
become larger. Otherwise, it is showing a more curve-like behavior, hinting that the true
positive/false positive rates are leaning more slightly to what is expected. Precision@1
scores are omitted here, as they show results similarly close to the performance of a
random classifier. Only in the case of searching virtualized functions against obfuscated
or other virtualized functions does Ofci produce results that are slightly above random
performance. Therefore, a possible solution to produce better results would be to ob-
fuscate known functions with the same virtualization technique and only then compare
them with unknown virtualized function traces. The generally bad ROC-AUC scores
lead to the question, why the model is working well on the non-virtualized code, but
producing embeddings that can hardly be classified correctly for virtualized code. One
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reason for this is the length of the virtualized code: As shown previously, the robustness
of the generated embeddings drops when functions larger than one fragment are com-
pared and tends to drop as the number of fragments increases for obfuscated code. When
comparing the traces of virtualized code with normal functions, the length of the traces
is several magnitudes higher than the average length of normal functions; the traces in
the dataset are long enough to make up 1/3 of the fragments in the pre-training dataset.
While the traces are therefore a special case and the evaluation of fragmented functions
has shown that there is a drop in performance, it has also shown that the drop is not
this big and can therefore not fully explain the near-random classification performance
of virtualized functions.
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Figure 6.14: ROC of unobfuscated functions in the virtualization dataset.

A more likely culprit is the composition of the Ofci dataset itself. While the approach of
generating functions according to a simple grammar works well when trying to retrieve
an exact result through deobfuscation [89, 81], it comes with issues when trying to
apply this to a machine learning algorithm that works through pattern recognition. The
ROC curve in Figure 6.14 highlights some issues w.r.t to missing code complexity and
composition of the synthetic dataset. Embeddings generated for function pairs in the O0
and O1 categories correspond to a random classifier. However, there is a significant jump
in classification performance from O1 to O2, and when sampling function pairs from O2
and O3, the ROC curve corresponds to the other extreme end, i.e. the perfect classifier.
While this seems nonsensical at first, it gives some insight into the complexity of the
dataset: The functions are considered very similar and O1 effectively optimizes every
function in this dataset. When the optimization level is increased, not every function can
be optimized further; looking at the ROC curve suggests that only half of the functions
in the dataset can be optimized further and the changes introduced by O2 are not as
drastic as O1. Finally, due to the low overall complexity of the functions, O3 does not
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introduce any other optimizations and all functions in O3 are exactly the same as in
O2. Since every positive function pair sampled from O3 and O2 will be exactly the same
function, this corresponds to the perfect classifier. This also shows how the complexity of
the synthetic dataset differs w.r.t. a dataset consisting of real-world applications. When
looking at the performance of Ofci on functions with different optimization levels in
section 6.6 and the ROC curves in Figure 6.3 and Figure 6.4, a real-world dataset shows
the biggest change in ROC-AUC score when looking at optimization level O3, while the
synthetic dataset shows no change between O2 and O3.
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CHAPTER 7
Conclusion

Function clone detection remains a hard problem and surrounded by ever more complex
growing machine learning approaches, this thesis introduced Ofci. With the initial in-
tention of building on Trex [1] and focusing on obfuscated function clones, it became
apparent that these modern approaches are too computation-heavy for production use.
Therefore, Ofci trimmed down the model into a slimmer form of state-of-the-art archi-
tectures and implemented the approach as an efficient framework. Every part of this
framework makes use of open-source technologies, with Ghidra as core reversing engi-
neering environment and PyTorch as central machine learning library. This makes it
possible to have an open end-to-end pipeline for function clone detection, whereas ex-
isting approaches rely on proprietary disassemblers like IDA. In addition to openness,
the evaluation of Ofci has shown that the framework is able to scale to hundreds of
thousands of functions, facilitated by Ghidra’s headless analysis modes, outperforming
existing approaches in terms of function processing.

Ofci has significantly reduced the number of trainable parameters when compared to the
most recent and promising related approaches. This does not heavily affect the ability
to classify function pairs based on their similarity, which is highlighted in the ROC-AUC
scores of the evaluation. Unfortunately, not all aspects of Ofci have been as successful
and the precision of function clone search leads to mixed results in comparison to other
approaches. The reasons for these results have been discussed, but further scrutiny and
trials are required. Similar issues can be found in the Call-ID and virtualized clone
detection features of Ofci. The evaluation showed that Call-ID, i.e. adding function
call identification info into the tokenized disassembly, can slightly improve performance
function search performance, while virtualized clone detection through traces does not
work in the current form as implemented by Ofci. By extensively analyzing these mixed
results, Ofci was able to highlight some general issues in the way related work tackles
the function clone detection problem. As future approaches need to tackle these issues,
Ofci provides a mature framework for rapid prototyping and testing new models.
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7.1 Future Work
The development of Ofci highlighted the difficulty of working with modern machine
learning models: Research institutions have large amounts of computation resources
available and these resources are used to squeeze out additional performance. This
comes at the cost of approaches not being reproducible on consumer hardware or not
being usable in production for reverse engineering. Therefore, one important issue is
to reduce the complexity of new function clone search approaches, while keeping the
search performance at the same level. Ofci has already reduced the number of trainable
parameters by a large margin, but is still a computation heavy transformer model.

The feasibility of approaches ties in with the input length limitations. Ofci has shown
that function pairs that are longer than the model input length generally perform worse
in similarity classification and function search. However, just increasing the model input
length is not enough, as this makes models even more expensive to train and use. As
the length of functions in binaries varies greatly, a more elastic approach is needed. A
model like this would ideally accumulate an embedding by moving a sliding window over
a stream of instructions. This would also allow models to make better use of instruction
traces and other dynamic information.

Another issue is the generation of datasets for training the models. While this is largely
trivial for cross-architecture, cross-optimization and cross-obfuscation (in the case of
O-LLVM) binaries, more interesting targets require more effort to create large enough
datasets. Ofci ran into the issue of not being able to create a large and diverse enough
dataset to train its model for cross-virtualization function clone detection. This issue is
largely caused by Tigress not being able to function as drop-in replacement and working
as a very limited source-to-source compiler. Other virtualizing obfuscators like Themida
[20] and VMProtect [21] offer graphical user interfaces, which are not helpful when the
goal is to build a large dataset. The best course of action for future work is to use
Tigress for building a dataset based on real, open-source programs; due to the nature of
Tigress, this does unfortunately require an enormous amount of manual work.

Another point that has not been touched by Ofci is the explainability of machine learn-
ing models. So far, no related approach has tried to analyze the inner workings of their
models in order to explain why certain functions are classified as similar. As transformer
models are now widely used, new recent research [124] tries to expand the possibilities for
explainability. Lastly, there are several minor things that can be integrated into Ofci.
While existing function clone detection approaches already support multiple architec-
tures, Ofci only supports amd64, as its focus is on obfuscated function clones; adding
new architectures should be as simple as adding additional binaries to the dataset, but
the effects on function search performance need to be evaluated. Since Ofci also sup-
ports instruction traces through Intel Pin, another interesting prospect is the integration
of additional information from dynamic traces, similar to the microtraces used by Trex.
And finally, it is worth investigating whether using intermediate representations or raw
bytes instead of disassembly is viable as input for binary code similarity models.
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