
Smart Economy
A Blockchain Solution – Automation of Austrian

tax system

DIPLOMARBEIT

zur Erlangung des akademischen Grades

Diplom-Ingenieur

im Rahmen des Studiums

Wirtschaftsinformatik

eingereicht von

Ing. Oliver Steizinger, BSc.
Matrikelnummer 01127076

an der Fakultät für Informatik

der Technischen Universität Wien

Betreuung: Privatdoz. Mag.rer.soc.oec. Dipl.-Ing. Dr.techn. Weippl Edgar

Wien, 12. Dezember 2021
Oliver Steizinger Weippl Edgar

Technische Universität Wien
A-1040 Wien Karlsplatz 13 Tel. +43-1-58801-0 www.tuwien.at

Smart Economy
A Blockchain Solution – Automation of Austrian

tax system

DIPLOMA THESIS

submitted in partial fulfillment of the requirements for the degree of

Diplom-Ingenieur

in

Business Informatics

by

Ing. Oliver Steizinger, BSc.
Registration Number 01127076

to the Faculty of Informatics

at the TU Wien

Advisor: Privatdoz. Mag.rer.soc.oec. Dipl.-Ing. Dr.techn. Weippl Edgar

Vienna, 12th December, 2021
Oliver Steizinger Weippl Edgar

Technische Universität Wien
A-1040 Wien Karlsplatz 13 Tel. +43-1-58801-0 www.tuwien.at

Erklärung zur Verfassung der
Arbeit

Ing. Oliver Steizinger, BSc.

Hiermit erkläre ich, dass ich diese Arbeit selbständig verfasst habe, dass ich die verwen-
deten Quellen und Hilfsmittel vollständig angegeben habe und dass ich die Stellen der
Arbeit – einschließlich Tabellen, Karten und Abbildungen –, die anderen Werken oder
dem Internet im Wortlaut oder dem Sinn nach entnommen sind, auf jeden Fall unter
Angabe der Quelle als Entlehnung kenntlich gemacht habe.

Wien, 12. Dezember 2021
Oliver Steizinger

v

Abstract

Blockchain and smart contracts are rising technologies in modern computer science.
This enables a new type of application where financial products and services can be
implemented as executable code. Accounting is an activity with still a lot of manual
work which is necessary to calculate profit and further tax values. Bills are forwarded to
the accountant who fed complex accounting software with the bill data and report back
the payable tax amount. This leads us to the research question of this thesis, creating a
decentralized application to automate tax systems like in Austria to demonstrate the pos-
sibilities of such systems. The system automates the manual processes of tax accounting
and the transaction of the tax amount to the tax office. The thesis starts with theoretical
research about blockchain systems and economic models, followed by the creation of a
simple model of economic interactions necessary for tax calculations. Subsequently, the
smart contract is implemented with the Solidity smart contract programming language on
the Ethereum blockchain. Furthermore, this contracted is implemented on a web-based
decentralized app to grant users access to the system.1 The smart contract is published
on Etherscan and the decentralized app is accessible via MetaMask on kovan network. 2

Metamask is a browser extension to connect an Ethereum wallet to a website based app
and interact with smart contract functions. [met]

The thesis demonstrates how tax law can be implemented within a smart contract
programming language. It includes implementations of income tax, VAT, social insurance,
insurance tax, corporate tax, wage tax and local tax according to Austrian tax law.

The implementation demonstrates how an automated tax system could work, but it
also shows the weakness of the current Ethereum live chain. With an emulation of
transactions, the capabilities of the system are tested. The results show that more
development is necessary regardless of the scalability and transaction costs of blockchains,
especially the Ethereum blockchain. With second-layer solutions and ETH2, the outlook
seems promising for further improvement of decentralized systems.

1http://www.smarteconomy.at
2https://kovan.etherscan.io/address/0x52B0a2531Bd462b67D9c959AC0Ac7c17f2851717#code

vii

Contents

Abstract vii

Contents ix

1 Introduction 1
1.1 Motivation and problem statement . 1
1.2 Aim of the work . 3
1.3 Methodological approach . 4
1.4 Literature review . 5
1.5 Economy model . 6
1.6 Smart contract implementation . 7
1.7 Testing and emulation . 8

2 Blockchain – State of the art 11
2.1 Blockchain technology . 11
2.2 How can Blockchain help us to automate economic processes? 13
2.3 Ethereum smart contracts . 14
2.4 Decentralized Applications (dApps) . 17
2.5 Other smart contract systems . 17

3 Business Cycle – Economy model in Austria 19
3.1 Participants of a business cycle . 19
3.2 Economic interactions . 26
3.3 Class diagram . 30
3.4 Limitations of the model . 30

4 Implementation – Smart contract 33
4.1 Technologies . 33
4.2 Concept . 33
4.3 Code description . 34

5 Implementation – Website 45
5.1 Technologies . 45
5.2 Concept . 45

ix

5.3 Code description . 49

6 Tests and emulation 57
6.1 Test data description . 57
6.2 Test environment . 59
6.3 Test description . 61
6.4 Test report . 65

7 Analysis 75
7.1 Functionality . 75
7.2 Live performance estimation . 76
7.3 Long-term test analysis . 77
7.4 Smart contracts and tax law . 77

8 Conclusion and outlook 79

List of Figures 81

List of Tables 83

Bibliography 85

Attachment 89

CHAPTER 1
Introduction

1.1 Motivation and problem statement
Business informatics at TU-Wien is a study of informatics, economics and the connection
between these disciplines. From the perspective of a computer scientist, the models
used to calculate and predict the economy seem simple in the first place but can evolve
to complex structures and they are always influenced by social phenomena. With the
blockchain technology and smart contracts, these two disciplines can be directly connected.
In November 2015, Peters and Panayi discussed how Blockchain technologies and smart
contracts could be the future of transaction processing [PP15]. Ali, Ally, Clutterbuck
and Dwivedi released a literature review about the state of blockchain technology in
the financial service sector five years later in October 2020 [AACD20]. It is interesting
to see how scientific research is evolving and how much research papers are created in
such short timeframe. This brings us to the motivation for this master thesis: We want
to create a small economic system with hundred participants within the decentralized
Ethereum blockchain platform and build a test environment to find out the limitations
in terms of automatability and performance of an Ethereum smart contract by testing it
on a local EVM and Truffle. This simulation intends to demonstrate how an automated
economic system could work. It will not be designed to predict future economic events.
The actual economic system is not entirely automated and transparent, and therefore we
will create a system that meets these requirements and can thus be used for simulations.
Cryptocurrencies with smart contract systems are able to create automated cash flows
of business processes which need third person entities in our current economic system.
With a decentralized system it is possible to eliminate the middleman in the economy
processes that would lead us to a “trustless” economy system with automated interactions
between multiple stakeholders. In this thesis we want to focus on the topic, how a
government could create a smart contract on a permissionless blockchain, to collect their
taxes automatically. Permissionless blockchain means that neither the functionality nor

1

1. Introduction

the consensus algorithm is controlled by a central entity like defined in the paper of
Peters and Panayi [PP15].

Ethereum and its smart contract system are a good example of this possibility. Hartel,
Homoliak and Reijsbergen analyzed existing smart contracts in their paper “An Empirical
Study into the Success of Listed Smart Contracts in Ethereum” [PP19]. Ethereum has
already implemented some useful decentralized finance applications like the DAI stable
coin. DAI is an Ethereum token that holds up the price of 1$ relatively strongly and
is not affected by price fluctuations. The price was always between 0.96$ and 1.093$
since creation of the token and stabilized even more in 2021. As well there are projects
with governance tokens which are used to give the owner of the token a right to influence
decisions of further development. With all these tools it should be possible to program
a simple economic model within the smart contract system. For this “smart economy”
system, a test environment has to be implemented that is used to simulate economic
interactions between stakeholders.

One of the biggest problems of permissionless blockchain systems like Ethereum right
now is the scalability in terms transactions. Therefore, the simulation will focus on the
ability of processing transactions with the current technology stack of Ethereum and how
the system behaves with interactions on a larger scale. That means we will automatically
create transactions to find out the limitations of a local EVM and relate these findings
to the performance of the live-chain. Because of the high transaction costs, we will not
test the system on the main network of Ethereum.

The implementation of the smart contract and a user interface leads to an automated
tax system which is able to replace conventional bookkeeping systems. In theory a
government could create a local blockchain for their residents and user a similar smart
contract to collect taxes automatically. In our case, the government would have to force
everybody to use this method because there are no interfaces to traditional tax systems.
Realistically such systems need to fit into the existing system to evolve slowly.

We will examine the functionality of the program code with tests to see if the tax is
redirected correctly to the stakeholder of the system. Besides the automatic transaction
we calculate taxes traditionally and compare the results. The taxes are calculated
differently due to the nature of a transaction. For example, the smart contract will
provide a function for business addresses to pay wage to an employee. In this case,
all wage related taxes are calculated and transferred directly to the tax office. In case
of buying and selling products, a business address is able to create digital bills which
then can be paid by customers. The VAT is transferred depending on the status of the
customer (business or private).

Furthermore, we use this code to analyze how the current state of the Ethereum chain
would react to a larger scale system like a tax system.

Furthermore, we use this code to analyze how the current state of the Ethereum chain
would react to a larger scale system like a tax system.

2

1.2. Aim of the work

1.2 Aim of the work

This thesis will start with a theoretical introduction that focuses on the blockchain and
Ethereum smart contracts. We want to show how Ethereum and comparable systems,
could be used to improve and automate our economic system. The main part of the
master thesis consists of three practical tasks which depend on each other. These tasks
will be the milestones of the research and will be finished one after another.

The first task of the practical work is to create a simple meta model that represents
the stakeholders of our economic system in Austria from the perspective of financial
interactions between them. I start with a simpler model of a small town and evolve it to
a general model for a larger context. This model is used to build a class diagram and
furthermore it is used as model for the smart contract. A smart contract is a program
with defined functions which is stored on an Ethereum blockchain in our case. Ayman,
Roy, Alipour and Laszka released a paper about smart contract development from the
perspective of developers on social media [ARAL20]. The paper shows the dominance of
smart contract development on the Ethereum platform which is the main reason why we
pick Ethereum as smart contract development tool. Participants of the network are able
to access this functionality to interact with the program and transfer their taxes directly
to the tax office. All participants of a national economy will be considered to show how
a nationwide decentralized economy could work. It is essentially a model of the business
cycle [wikb] in modern economies comprising households, companies, state and capital
collection points like banks [wika]. Social insurance is added as part of the economy in
Austria. Modeling international trade relationships like import or export of goods is not
part of this research project but is considered in the theoretical part. Internal processes
of companies are not part of the research.

The second task of this project will be the proof of concept implementation of the smart
contract(s) on the Ethereum network [eth]. For this purpose, the program language
Solidity is used, which is an object-oriented, high-level language for implementing smart
contracts [sol]. The contracts are deployed and tested on a public Ethereum test network
(Ropsten, KOVAN). Moreover, a WEB3-Page is created to make the contract functions
accessible in the browser. Di Angelo and Salzer provide a paper with tools for analyzing
Ethereum smart contracts which can be used to find a fitting tool for the smart contract
programming part [AS19].

In the third and last task, we will test the system and simulate a sample economy. It will
be necessary to create our own test environment and a private Ethereum test network.
An algorithm to simulate business interactions has to be defined and implemented to the
system.

Finally, the results of the tests will be analyzed and real world impact will be deduced.
The goal of this thesis is a smart contract implementation for a government which is
used to collect taxes. Participants of an economy must interact with this smart contract
to meet the defined tax requirements without manual calculations. Basically it could be

3

1. Introduction

used for automation of tax settlement and should reduce the work for tax offices. We are
exploring the limits of a single smart contract used by a set of participants concurrently.

1.2.1 Simplifications
This implementation assumes that all transactions are operated within the Ethereum
network and without hard cash. This is a major political barrier but it is not important
for a feasibility study.

Capital collecting points, investment associations and other insurance companies than
social insurance will not be considered for the implementation, for reasons of simplification.

Branch specific taxes which need product amounts as an external input to calculate the
tax are not implemented but discussed in the thesis. To automate such taxes an oracle is
necessary.

By reason that enterprises can exist with many different characteristics, the imple-
mentation is a simplification of the entire reality with the possibility to extend. Sole
proprietorship, partnership (OG, KG), corporation (GmbH, AG) and other corporate
forms are treated equally.

1.3 Methodological approach
The methodological approach comprises the following parts:

• Systematic literature review
Basic information about the blockchain and Ethereum smart contracts has to be
gathered to provide an overview of the topic. An economy model has to be created
and its limitations discussed.

• Economy model
The created economy model has to be converted to a class diagram.

• Smart contract implementation
The implementation of the smart contracts will be performed with the Design
Science methodology and it will produce the following two artifacts:

– Solidity implementation (smart contracts)
– Web3 browser integration (JavaScript code)

• Testing and emulation
Five steps are necessary to test the created software artifacts with meaningful data:

– Gathering data about business interactions in Austria
– Creating test environment for smart contracts

4

1.4. Literature review

– Creating emulation algorithms with gathered data
– Running emulation
– Validation

• Analysis
In the analysis, the results of the emulation are related to the real world, considering
both technical and economic perspective. Based on the theoretical insights derived
from the economic model, possible future trajectories of our economic system are
reflected upon.

• Further research
In the final part, the created contract and how it could be used in further research
is outlined.

1.4 Literature review
The first method used in this thesis is a literature review of blockchain systems and
economy models. This method is used to find all available research for related topics
and choose which research papers can contribute to the thesis. The most important
research contributions are selected and summarized in the theoretical part of the thesis.
The following steps are based on the research methods lecture of Associate Prof. Dr.-
Ing. Stefan Schulte, which can be summarized as planning, conducting the review and
reporting. To cover specialties of systematic literature reviews within the domain of
software engineering, the journal article “Lessons from applying the systematic literature
review process within the software engineering domain” was reviewed. This article
concludes that the basic steps of a systematic literature review appear as relevant to
software engineering as they do to medicine, and it offers insight into which modifications
improve the research process. [BKB+07]

• Formulate your research question
This master thesis is a practical solution for an economic problem. We want to
show and analyze how a government could use a smart contract for tax collecting
purposes. Accordingly, two research topics have to be researched: first, a valid
literature background for the economic model is necessary; and second, the technical
solution is state of the art. As the understanding of the problem increases during
the development of the research protocol, the research question will be revised
afterwards.

• Establish a pilot
A pilot study is used to build a review protocol. The pilot study helps to clarify
the research questions and the data collected within the review protocol. Ideally,
an external reviewer should validate the process.

5

1. Introduction

• Choose appropriate search keywords
With the definition of the software artifact extended by blockchain technology
terms, the search keywords can be specified to find relevant research. After a
search cycle, the keywords are reviewed and eventually extended. Because of
the well-defined problem definition and the short history of blockchain systems a
manageable amount of research papers is expected.

• Conduct the search and collect studies
After an overview of the search results of different sources, the abstracts of relevant
research papers are analyzed. It is important to search with multiple sources to
obtain all primary studies of the topics.

• Select relevant studies
The most valuable research is selected to be included in this master thesis. Because
of poor standards of software engineering abstracts the conclusion will be added to
the review process. In addition to traditional literature, we use grey literature and
community inputs for the development of the smart contract.

• Analyze primary studies
Selected studies are analyzed to support the validity of the software artifact.

• Report on the results
The entire research process is consolidated in a report to give the reader the
possibility to validate the research process.

The process of the systematic literature review is documented with five key elements.
The review protocol specifies the research question and the methods used. A search
strategy is defined to find all related research. To assess the rigor and completeness of
the systematic literature review, documentation is needed. Explicit criteria with explicit
inclusions and exclusion criteria are required. For the analysis of the reviewed papers, an
information specification is created, specifying the information to be obtained from each
study including criteria to evaluate (Attachment 1 - Review protocol).

1.5 Economy model
With the findings of the theoretical research we create an economic model including the
most relevant economic participants and their financial relationships. A simple business
example is used to monitor errors within the model by testing all possible transactions
between all economic stakeholders. The model has to include all participants which are
part of the defined tax transactions, all values stored for further tax calculations and the
transactions between the participants. It is correct when all from the government defined
tax calculations can be calculated within the model. The goal is an entity-relationship-
model which can be used for the implementation of the smart contract.

6

1.6. Smart contract implementation

1.6 Smart contract implementation
For the smart contract and the web3 page implementation, the Design Science method is
used. Based on the Design Science IS Research Framework (Figure 1.1 - Design Science
IS Research Framework), Hevner et al. (2004) created seven guidelines to create an
information system artifact. [HMPR04]

• Guideline 1: Design as an Artifact
“Design-science research must produce a viable artifact in the form of a construct,
a model, a method, or an instantiation.”
For the given problem statement, the product is a smart contract on the Ethereum
blockchain that fulfills the requirements of a software artifact.

• Guideline 2: Problem Relevance
“The objective of design-science research is to develop technology-based solutions to
important and relevant business problems.”
The problem relevance is discussed in the research part of the thesis. Essentially,
the artifact can be used for automation of tax settlement and should reduce the
work for tax offices.

• Guideline 3: Design Evaluation
“The utility, quality, and efficacy of a design artifact must be rigorously demonstrated
via well-executed evaluation methods.”
Due to the nature of the Ethereum blockchain where computing power is costly,
the evaluation of the smart contract is a main aspect of the developing process.
Accordingly, the source code needs to be as simple as possible, with a low number
of data transfers. The code will be reviewed as an iterative process until no major
improvements can be identified.

• Guideline 4: Research Contributions
“Effective design-science research must provide clear and verifiable contributions in
the areas of the design artifact, design foundations, and/or design methodologies.”
This master thesis is a feasibility study of an automated economy system based on
current decentralized blockchain technologies.

• Guideline 5: Research Rigor
“Design-science research relies upon the application of rigorous methods in both, the
construction and evaluation of the design artifact.”
A final systematic approach will be defined with the created economy model.
Essentially, a construct with all economic participants is created and the business
functions are added consecutively.

7

1. Introduction

Figure 1.1: Design Science IS Research Framework

• Guideline 6: Design as a Search Process
“The search for an effective artifact requires utilizing available means to reach desired
ends while satisfying laws in the problem environment.”

• Guideline 7: Communication of Research
“Design-science research must be presented effectively both to technology-oriented as
well as management-oriented audiences.”
The Ethereum blockchain explorer Etherscan provides a service to give people
the possibility to validate the code of a smart contract. Without this validation,
nobody would trust the smart contract because backdoors would be possible. The
code is publically available on Etherscan and GitLab.

1.7 Testing and emulation
The created software artifact is tested with an emulation of the real-world problem. This
iterative process is performed until the result is proven satisfactory by reaching key
indicators. The emulation will be performed on a local test environment and the results
will be adopted to the live Ethereum chain. The purpose of the emulation in my thesis
is to test the performance of the system and find scalability issues. Furthermore, the
emulation should prove the concept of the created software artifact and make it closer to

8

1.7. Testing and emulation

reality, therefore being easier to understand for people by being imaginable how such
systems could work. To compare the results with the real world, public data about the
number of transactions carried out in Austria is used.

9

CHAPTER 2
Blockchain – State of the art

2.1 Blockchain technology
Blockchain technology is an emerging field in the information industry, although most
projects are still developing. The advantages of a decentralized ledger all over the world
are interesting because it provides a secured, trusted and autonomous ecosystem for many
purposes. Yuan and Wang (2018) discuss existing and potential ecosystems of Bitcoin
and other cryptocurrencies in their article “Blockchain and Cryptocurrencies: Model,
Techniques, and Applications”. [YW18] The most government solutions in Blockchain
literature are about Blockchain-Based voting systems. Yu, et al. introduced a “Platform-
independent Secure Blockchain-Based Voting System” [YLS+18] and Spadafora, Longo
and Sala proposed a “A Coercion-Resistant Blockchain-Based E-Voting Protocol with
Receipts” [SLS20]. Other possible use cases for government services are discussed in
the paper “Blockchain in the Government Technology Fabric” [Anw19]. Many scientific
contributions are basic research and not focused on a specific problem. Lu, Xu, Bandara,
Chen and Zhu introduced “Patterns for Blockchain-Based Payment Applications” as an
overview of possible payment patterns and their challenges [LXB+21].

Technically speaking, a public blockchain is an authenticated data structure which can
be read by everyone with an internet connection and where everyone can insert data for
a fee. Interactions with the Blockchain are verified by the nodes and will be replicated to
every single node all over the world. If somebody wants to read the data, it´s enough to
read from one available connected node, because it´s a copy of the complete database.
The system has to verify if the node is not on a stale branch or lagging behind. Writing is
expensive because every node has to maintain the entire database. The biggest threat to
the common Blockchain systems systems based on Nakamoto consensus, are so called 51%
attacks. If one transaction validator has the majority of voting power, he can basically
decide on his own what is happening with transactions on this Blockchain by censoring
transactions or revert states which makes it vital to keep the transaction verification

11

2. Blockchain – State of the art

as decentralized as possible. This leads us to the consensus algorithms in the current
state of development. This will be explained with Ethereum as example even there exists
more blockchains with similar consensus algorithms. Ethereum seems to be the project
with the most ongoing development and fits well for this master thesis because it is well
documented, has a broad community and many ongoing projects. Although this is not a
complete list of decentralized consensus algorithms, nonetheless we will stick with the
currently most common decentralized ones. Further research about consensus algorithms
can be found in the paper “Blocks and Chains: Introduction to Bitcoin, Cryptocurrencies,
and Their Consensus Mechanisms.” [JSK+17] or more current in “Blockchain Consensus
Algorithms: A Survey” [FMHC20].

2.1.1 Proof-of-work

Proof-of-work is the system used by the leading cryptocurrencies (Bitcoin, Ethereum)
at present. The validation process is secured by computing power of the validation
nodes. The process to add new blocks to the chain is called “Mining”. Modern computers
can be used to participate in the mining process by maintaining a node of the network
and start mining Ethereum blocks. Each node in the Ethereum network collects new
transaction requests in their local mempool that have not yet been committed in a block.
Then it aggregates transactions depending on their size and propose a new block, a new
system state of the chain to collect the transaction fees including. The node has to verify
the validity of each transaction request and executes the code on the local copy of the
EVM. Then the process of producing the Proof-of-Work “certificate of legitimacy” for the
potential block starts were other nodes hear about the new block, verify the certificate
and execute the transactions on their own EVM. All transactions of the new block are
removed from the local mempool of all nodes. Because of the constantly used computing
power to maintain the blockchain (mining) even there are no transactions, the energy
consumption of PoW (Proof-of-Work) is very high [min]. Ethereums transaction costs are
called gas fees. Yang, Murray, Rimba and Parampalli analyzed Ethereums gas mechanism
in their paper “Empirically Analyzing Ethereum’s Gas Mechanism” [YMRP19].

2.1.2 Proof-of-stake

Proof-of-stake is considered as the solution for energy problems of PoW blockchains.
This consensus algorithm does not depend on computing power and therefore has a much
better power efficiency. The node operators can partake in consensus by locking some
Ether for a period of time instead of using computing power for mining constantly. The
node still needs to be online permanent but small computers with low electric power
consumption can be used for that. With PoS (Proof of Stake) rewards doesn’t depend on
computing power, the probability of being selected as a consensus leader to propose the
next block is proportional to the stake relative to the total stake of the system. To avoid
51% attacks, the coins has to be distributed well over multiple staking node operators.

As previously mentioned, the leading cryptocurrencies are currently working with PoW,

12

2.2. How can Blockchain help us to automate economic processes?

although developers are working on solutions to increase efficiency, scalability and
transaction numbers. For example, Ethereum is developing a PoS algorithm and plans
to change the current Ethereum network to use PoS instead of PoW in the near future.
With EIP-3675, the specification for the Ethereum improvement proposal to upgrade
the consensus algorithm to proof-of-stake is already available on github github [eip]. In
2017, Poon and Buterin proposed the Plasma framework which is scalable to a significant
amount of state updates per second (potentially billions) [PB17]. Another approach are
sidechain mechanisms like zkRelay presented by Westerkamp and Eberhardt [WE20].
Robinson discusses the pros and cons of using the public Ethereum blockchain as a
coordination chain for private sidechains in his paper [Rob19].

There are no governmental economic solutions in the cryptocurrency community at present
given the early stage of development. In theory, a government could use a local blockchain
to simplify some processes with their citizens. Soelman analyzed permissioned blockchains
very detailed in his work “Permissioned Blockchains: A Comparative Study” [Soe21].
For example, blockchain systems could be used for voting or to trace origin of products.
To get there, Governments all over the world need to catch up and regulate the crypto
space to build up trust and make blockchains useable for average consumers. Without
official certificates to prove that blockchains and smart contracts are safe, it is difficult
to trust the systems as a non-expert. Without the trust of governments, decentralized
economic systems cannot be realized under the current political circumstances.

This project provides a technical prove of such economic systems and offers an insight into
how it could perform. The simulated system helps politicians and citizens to understand
that such systems are already realizable, which makes it a social meaningful project to
convince people of decentralized monetary systems.

2.2 How can Blockchain help us to automate economic
processes?

Today, digitalization is at a point where the majority of businesses are participating.
Therefore, we can expand our view of automation to a financial perspective. From the
financial view, economic processes comprise a chain of transactions with two major issues,
namely security and trust. At present, third parties take care of these issues, mostly banks
or similar institutions. These third parties can be eliminated with a trustless blockchain
system like Ethereum. Transactions are directly connected to real-world events and will
be executed automatically. For example, a company could track the delivery of goods
with the help of a smart contract system, deposit the payment to the smart contract
and ensure that the payment will only be sent after the delivery is successful; otherwise,
the payment could be sent back after a specified amount of time. Nevertheless an oracle
is necessary to assess if the delivery was successful. Oracles feed smart contracts with
external information[ora]. Abdeljalil Beniiche studied and described the widely used
blockchain oracles and elaborated their potential role in "A Study of Blockchain Oracles"
[Ben20].

13

2. Blockchain – State of the art

Furthermore, from a financial view, the tax system in Austria is also a simple chain of
transactions. This leads us back to the motivation of this master thesis: with the model
of the tax system, a smart contract will be created and its limitations will be discussed.
VAT in Austria is a good example of how a smart contract could be used for automation.
If a company buys a product including VAT, the company can get the money back from
the tax office because VAT only has to be paid by customers. This means that the first
company pays the VAT to the second company, the second company pays the VAT to the
tax office and the tax office pays the VAT back to the first company. A smart contract
could reduce these three transactions to one smart transaction.

Due to the well-connected community and the larger number of research contributions,
Ethereum smart contracts will be used for this master thesis.

2.3 Ethereum smart contracts

As a result of the literature research, studies about the Ethereum blockchain have been
selected and reviewed. The paper “Blockchain for Trustworthy Coordination: A First
Study with LINDA and Ethereum” stood out with its well-structured description of
Ethereum. This chapter references section two of the mentioned research paper. [CMO18]

The Ethereum blockchain comprises a peer-to-peer network of nodes enacting a consensus
protocol that lets them globally behave as a single-state machine. For execution of
transactions, miners are responsible, which commits the results to blocks of data linked
by hash chains, following the principles of the algorithm. The transaction information is
stored in the blockchain on every running node, whereby the entire transaction history
of the Ethereum platform can be viewed. Since Ethereum is a smart contract platform,
transactions can contain more complex information than simply a value. These types
of transactions are controlled by pre-defined smart contracts, which are described in a
subsection of this chapter.

For the further part of this thesis, the abstractions used for Ethereum development are
used when speaking about blockchain.

2.3.1 Entities & accounts

Ethereum has two types of entities that are stored in a map associating entity identifiers
(addresses) to accounts (data). Entities can be end users or smart contracts. In both
cases, entities comprise a data structure containing a balance and a secured storage area.
The balance is the amount of ether, the Ethereum crypto currency owned by the account.
The secured storage area contains arbitrary user data of the account. Smart contracts
additionally expose a field containing the source code of the smart contract. The entities
are depicted in “Figure 2.1 - Ethereum components” on the left side of the image.

14

2.3. Ethereum smart contracts

Figure 2.1: Ethereum components

2.3.2 Transactions
There are three different types of transactions to be published by the user, which triggers
a gossiping algorithm to spread the information to all participants of the consensus
protocol. Depending on the specified gas fee, the transaction will be performed and
validated by the consensus protocol participants within some seconds or minutes. This
specially depends on the number of active transactions on the system. Transfers are
simple transactions were an amount of ether is sent from one account to another. Such
transaction comprises a sender address, a receiver address and the amount of ether sent.
Deployment is a transaction where a user can upload a smart contract to the network
to make it accessible for all participating accounts of the system. It includes the owner
of the smart contract and the source code. The cost of such transactions depends on
the length of the source code, because more storage space means higher transaction fees.
Finally, an invocation of a smart contract is the most flexible sort of transactions because
the details are defined in a smart contract. If a smart contract is deployed, every user is
able to execute the public methods of a smart contract. Besides the sending and receiving
account, the gas fee and the arguments defined in the smart contract are the parts of
invocation transactions.

2.3.3 Smart contracts
Smart contracts are processes executing decentralized computations on the blockchain
with the following properties:

• Stateful: each smart contract encapsulates its own state.

• User-defined: any user may publish a smart contract.

• Reactive: only users may trigger a smart contract.

• Immutable: smart contracts code cannot change.

• Trustable: no entity can tamper with the specification of a published smart
contract, no user can lie about its smart contract invocations and the side effects
caused by computations are guaranteed to produce a consistent change of the
system state.

15

2. Blockchain – State of the art

Figure 2.2: Smart contract example

• Deterministic: each computation always provides the same outputs if given same
inputs, regardless of the actual execution node.

• Decentralized: there is no single, centralized coordinator governing the distributed
execution of smart contracts, which happens concurrently.

Smart contracts are programmed with a quasi-Turing-complete language and they are
virtually capable of implementing any computation. Smart contracts are objects in the
OOP sense that interact with synchronous method calls. In “Figure 2.2 - Smart contract
example”, a simple smart contract implementation with an event is shown.

2.3.4 Consensus, miners, and blocks

The consensus protocol makes every node in the blockchain participate in validation
and consistency checks of transactions. It makes an arbitrary number of nodes perform
exactly the same state transition for exactly the same state machine and prevents faulty
nodes from creating inconsistencies.

Miners are the nodes participating on the consensus protocol. They are in charge of
validation, consistency checking and including transactions in blocks. Agreement about
the ordering of transactions is achieved by the consensus mechanism known as proof-of-
work. Miners need to compete in solving a resource-intensive computational puzzle that
grants the right to publish the new block containing the validated transactions, for which
they are rewarded.

16

2.4. Decentralized Applications (dApps)

2.3.5 Miners & gas
The blockchain assumes that miners are rational agents and it promotes honesty by
compensating their computational effort with the right to generate and claim crypto
currency for each block successfully mined. Furthermore, miners are in charge of exe-
cuting smart contracts and the deployment of messages and smart contracts. Because
computational power is needed to store data on the blockchain, users have to pay to write
into the decentralized database, which is lately reclaimed by the miners for executing
the transaction. This means that users must endow transactions with a finite amount of
gas (small amount of ether). The gas is spent while miners are executing the method
(transaction) of the smart contract. If the computation fails due to a low amount of gas,
all actions are reverted with no refund of the invested gas. Most user interfaces provide
a useful calculation for the amount of gas to be used for the desired transaction.

2.3.6 Logs & API
Ethereum provides instructions to publish logs from smart contracts to represent the
occurrence of some events to be stored within blocks to allow off-chain clients to inspect the
blockchain. The Ethereum community has produced a number of high-level programming
languages. One of the most common languages is Solidity, which has a JavaScript-like
syntax and is similar to object-oriented programming. Solidity will be used for the smart
contract implementation in this project.

2.4 Decentralized Applications (dApps)
DApps are applications interacting with a decentralized blockchain system. It is a
smartphone or browser application with a blockchain as a database in the background.
Events on the blockchain can trigger events in the application. This dApp technology
makes blockchain accessible for the many because the front end can look like well-known
applications. In this project, MetaMask is used to connect a browser to the blockchain
platform and a web3 website with JavaScript is built to make the smart contract methods
more easily accessible, as well as making the functionality of the system clearly visible.

2.5 Other smart contract systems
Besides Ethereum, there are many other smart contract systems with different approaches
in development. At present, Ethereum seems to have the most community support and
is on a good track to improve scalability issues, and it may change to a PoS concept to
erase the problem with electric power consumption. If the reader is interested in gaining
a deeper insight into the differences between smart contract systems implemented at
present, Blockgeeks published a guide describing the functionalities of Ethereum, EOS,
Stellar, Cardano, Neo and Hyperledger Fabric [Blo]. Although there are many more
blockchain projects, this offers an insight into how multiple blockchain systems could exist

17

2. Blockchain – State of the art

Figure 2.3: App and dApp comparison

for differing use cases. Because this master thesis only attempts to show the potential
of smart contracts and is not implemented for eternity, the selection of the system is
focused on the usability for programming tasks and community support.

18

CHAPTER 3
Business Cycle – Economy model

in Austria

In this master thesis, a business cycle is considered as a model of all participants of the
economy and the transactions between them. Furthermore, the research is restricted
to a single country, namely Austria. Due to this restriction, the model will not be a
closed cycle, which would have to include imports and exports of goods. Despite the
limitations, money flows in a circular way between multiple types of entities; for example,
companies, tax office, private customers and social insurance. The transactions between
these entities are defined by the law and executed by the tax office. The aim of this
chapter is to place these definitions into a business cycle model for further use in the
practical part of the thesis.

In many other studies, the term business cycle has a different meaning, and thus to avoid
confusion an explanation of what it means in other studies is provided. Many economic
studies undertake analytical research about the economy on a large scale and over a
long period of time [SLL17] [BI19]. Therefore, a business cycle is the development of
economic measures over a period of time if you assume that the economy is a repeating
process. In this master thesis, the development of economic measures is not relevant
because it is focused on the practical solution of a process. The term business cycle is
translated from the German word "Wirtschaftskreislauf" and refers to the circulation of
money in economy. Therefore, this business cycle is a model of business participants and
the transactions between them.

3.1 Participants of a business cycle
To build a fitting model for the purpose of this master thesis, a simple model of the
business participants (Figure 3.1 - Business cycle [wika]) is used and will be extended

19

3. Business Cycle – Economy model in Austria

Figure 3.1: Business cycle [wika]

for the economy in Austria. It is a highly simplified model with no regards to different
types of companies and with generalized transactions. Given that this master thesis has
limited resources and aims to prove the concept rather than deliver a complete solution,
a “full economy model” is not created; rather, it is more an abstraction of a business
cycle. The main issue with the model in Figure 3.1 is the absence of social insurance.
In Austria, a duty exists to have social insurance, which is an independent organization
beside the government. Therefore, five types of business participants are identified.

3.1.1 Government
Besides social insurance, the government is the main tax collecting point in the economic
environment. In Austria, the tax office collects several types of taxes from enterprises,
capital collecting points and individual persons. These taxes are ruled by law and can
change due to political decisions. In this section, an overview of tax types in Austria is
provided. [Fin]

Income Tax - [German] Einkommensteuer (ESt)

Income tax is mandatory for every individual person with a main residence in Austria.
The tax is based on the yearly income and higher income is taxed with higher income
tax rates. The values in “Table 1 - Income tax rates” have been in effect since 2020. For
each individual person, the tax rate is calculated for each income level. Accordingly, if
an individual person earns 21,000€, the tax rate is separated into three levels. For the
“first” 11,000€, no tax has to be paid, for the income above 11,000€ and below 18,000€
(i.e. a range of 7000€), 20% has to be paid (1,400€), and the remaining income part
from 18,000€ to 21,000€ is taxed at 35%, whereby the tax for this income part is 1,050€.

20

3.1. Participants of a business cycle

Tax level income in Euro Income Tax from 2020
11 000 and below 0%

above 11 000 to 18 000 20%
above 18 000 to 31 000 35%
above 31 000 to 60 000 42%
above 60 000 to 90 000 48%

above 90 000 to 1 000 000 50%
above 1 000 000 55%

Table 3.1: Income tax rates [Fin]

Accordingly, the sum of tax would be 2,450€ in this example, representing a calculated
tax rate of 8.57% for an income of 21,000€.

Property Income Tax - [German] Immobilienertragsteuer (ImmoESt)

In Austria, one of seven income types is renting and leasing of property. Property income
tax has some particular specifications that are not relevant for this research but is a
separated tax in law. For example, the deduction of wear is especially regulated for
property income tax. It regulates the operating life of an object regarding taxes. Property
income tax is processed like regular income tax in case of an individual or corporate
tax in case of an enterprise. Regarding technical feasibility, the actual percentages
in the calculations do not really matter, but nevertheless we keep in mind that the
project could be extended with multiple types of income tax calculations by copying the
specific contract and change the hard-coded percentages. This would lead to a specific
contracts for specific income types like property income, agriculture and forestry income,
independent work income, commercial enterprise income and so on.

Capital Return Tax - [German] Kapitalertragsteuer (KESt)

The capital return tax is a tax for earnings from private capital assets. This tax is directly
withheld from the capital collecting point (bank) and transferred to the tax office. The
taxation is carried out depending on the type of income, with 25% for savings book and
giro account interest or 27.5% for other investment income.

Corporate Tax - [German] Körperschaftsteuer (KÖSt)

Besides the income tax for individual persons, enterprises have to pay another kind of
tax to the government. Enterprises are juristic persons of private law (for example AG,
GmbH, Genossenschaften, Vereine) and juristic persons of public law (for example Gebiet-
skörperschaften wie Bund, Länder und Gemeinden, Kammern, Sozialversicherungsträger,
gesetzlich anerkannte Religionsgemeinschaften). Enterprises of public law only need to
pay the tax if they operate a commercial business. Furthermore, there are exceptions
for community services, culture supporting projects and similar activities. The rate of
corporate tax is 25% of taxable income, and the percentage is independent of the total
amount of income. Corporate tax is a linear tax rate in Austria. Unrestricted assessable

21

3. Business Cycle – Economy model in Austria

capital companies have a defined minimum tax. For easier understanding of the technical
solution, this exemption will not be implemented in the first version of the system, like
the property income tax exceptions. To simplify the programming amount of the first
implementation, the number of similar tax calculations types is kept small.

Wage Tax - [German] Lohnsteuer (LSt)

In Austria, wage tax and income tax are essentially the same and they only differ by
the agent who pays it in our model. Self-employed people have to pay income tax, in
contrast to employees and retirees, who pay wage tax. Wage tax is withheld from the
wage of the employee by the employers and directly paid to the tax office. Employees
will only receive the net of tax value and do not have to pay the tax themselves. The tax
rates are identical to income tax.

Value added tax (VAT) - [German] Umsatzsteuer (USt)

Corporations in Austria have to pay VAT for each product or service sold. Under normal
conditions, the tax rate is 20% of the amount paid. In some exceptions, the rate is
reduced to 13% (plants, arts, movies, sports, etc.) or 10% (renting, books, food, etc.).
Corporations can reduce the amount of VAT by input tax reductions. Accordingly, if a
company buys a product from another company and pays 20% VAT, they can reduce the
amount of VAT paid to the tax office from their own sales. In other words, intermediate
products that are used for the production of a product or service are free from VAT for
companies when they use input tax reduction. The input tax reduction is calculated per
quarter or month depending on the amount of sales. The VAT calculation has to be part
of a bill.

Local Tax - [German] Kommunalsteuer (KommSt)

Local tax is collected from the local authorities within the legal basis of the Austrian
government, similar to land tax. The tax rate is 3% of the defined basis assessment. All
enterprises located in the area of local authorities are subject to local tax. Unlike land
tax, local tax is not set by the local authorities themselves.

Insurance Tax - [German] Versicherungssteuer (VersSt)

Insurance tax has to be calculated by the insurer and paid to the tax office. The tax rate
is based on the insurance type; for example, social insurance has a very low tax rate (1%
to 2.5%), while property insurance has a higher rate (11%). In case of insurance, this
master thesis will focus on social insurance corporations due to their special importance
in Austria.

The following taxes are specialized on specific products and will not be part of the im-
plementation. However, the implementation needs to provide a solution to enable im-
plementations of specialized tax for multiple industries. The execution is like the local
tax, where a percentage of a defined basis assessment is paid to the tax office but in this
cases the defined basis assessment is an external value and would need an oracle to be
fully automated. Another option is an interface for the user to input the corresponding

22

3.1. Participants of a business cycle

amounts. Because these kinds of taxes are similar in execution (i.e. paying a tax for an
amount of product), only a brief explanation is provided.

Alcohol Tax - [German] Alkoholsteuer

Alcoholic goods produced in or imported to Austria are subject to alcohol tax.

Beer Tax - [German] Biersteuer

Similar to alcohol tax, all beer produced in or imported to Austria is subject to beer tax.

Digital Tax Law - [German] Digitalsteuergesetz 2020

Since January 2020, online advertising earnings from large advertising platforms are
subject to digital tax.

Natural Gas Tax - [German] Erdgasabgabe

Natural gas used in Austria is subject to natural gas tax. The amount has to be calculated
and reported to the tax office.

Flight Tax - [German] Flugabgabe (FlugAbgG)

Aircrafts operators have to pay flight tax for each passenger leaving an Austrian airport.

Land Acquisition Tax - [German] Grunderwerbsteuer (GrESt)

The acquisition of domestic estate is subject to land acquisition tax. The tax rate is
essentially based on the money consideration, although in some cases it is based on the
value of the estate.

Land Tax - [German] Grundsteuer (GrSt)

Land tax is set and collected yearly by the local authorities. Real estate is subject to
land tax. To include this tax in our model, multiple types of government agents are
necessary. Besides the central Austrian tax office – which collects most other taxes –
multiple local authorities collect land tax with specific tax rates in a framework provided
by the Austrian government.

Coal Tax - [German] Kohleabgabe

Like natural gas, coal used in Austria is subject to coal tax. The amount has to be
calculated and reported to the tax office.

Motor Vehicle Tax - [German] Kraftfahrzeugsteuer (KfzSt)

Motor vehicles with a maximal acceptable weight over 3.5 tons are subject to motor
vehicle tax. The tax rate is based on the maximal acceptable weight of the vehicle and it
increases for heavier machines.

Petroleum Tax - [German] Mineralölsteuer (MÖSt)

Like natural gas and coal, petroleum used in Austria is subject to petroleum tax. The
amount has to be calculated and reported to the tax office.

23

3. Business Cycle – Economy model in Austria

Norm Consumption Tax - [German] Normverbrauchsabgabe (NoVA)

Every vehicle that is licensed in Austria for the first time is subject to norm consumption
tax.

Advertising Tax - [German] Werbeabgabe

Commercial advertising effort is subject of advertising tax. The tax rate is 5% of the
defined basis assessment. It has to be paid by the advertiser, and if this is not possible
because it is not located in Austria, the purchaser has to pay the tax. Furthermore, if the
purchaser is not reachable, the one who benefits from the advertisement is responsible.

Summing up, different types of government agents are necessary to model the government
participants. On the one hand, there is the Ministry of Finance, which collects tax
carried out by the tax office. On the other hand, there are multiple local authorities
(municipalities) guided by the laws introduced by the Ministry of Finance.

3.1.2 Social insurance

Although insurance is a much more complex topic and there are more insurance types
available in Austria, this implementation will focus on social insurance in Austria. Social
insurance is mandatory for each person with an income living in Austria and it is regulated
by law, but is executed by independent social insurance institutions. In Austria, there
are several social insurance institutions depending on the working condition of the person.
For example, a self-employed person is insured with social insurance for the self-employed
(SVS), whereas an employee is insured with the Austrian health insurance (ÖGK). Since
01/01/2020, Austria has reduced the number of social insurance institutions to five (ÖGK,
SVS, BVAEB, PVA, AUVA).

A social insurance institution in Austria helps the insurer in case of health problems
and collects money for his/her pension. Accordingly, the insurance institutions collect
money from their insurer and use it to pay some bills. The social insurance contribution
is regulated like a tax on income. Along with the fact that social insurance institutions
have to pay tax to the government, these are the transactions that are implemented in
this research. The process how of social insurance institutions work is not part of the
research in this thesis.

The social insurance rate is about 40% of the defined basis assessment (monthly earnings),
of which a part is paid by the employer and a part is deducted from the employee’s salary.
The maximal defined basis assessment is 5,370 € per month.

Employee share for social insurance = 18.12 %

Employer share for social insurance = 21.23 %

For the sake of convenience, not all five social insurances are implemented in the project,
although the code provides interfaces to do so.

24

3.1. Participants of a business cycle

3.1.3 Individual person
In case of employment, many taxes in Austria are carried out between enterprises
and the government, which means that an individual person does not has as many
transactions in the system. Neither way an individual person can buy goods or services
from an enterprise to trigger tax events and needs an overview of his personal income
tax calculation. Furthermore, they are beneficiary of the social insurance institution
therefore the customer of them. The implemented agent is a “user-like” agent and is
focused on simple usability to support availability for many individuals. A government
cannot expect financial expertise from every individual person in Austria.

3.1.4 Enterprise
Enterprises are the economic participants with the most ingoing and outgoing transactions.
In this thesis, commercial companies are mainly considered because they are more involved
in tax issues than voluntary service institutions or other non-financial enterprises. Besides
the tax regulation already explained in the government description, enterprises interact
with all other participants or even other enterprises in conducting their business, selling
products or services. Besides calculating VAT on each transaction, a sales history is
needed for some tax calculations. This implementation assumes that all transactions are
operated within the Ethereum network and without hard cash. This is a major political
barrier but it is not important for a feasibility study.
By reason that enterprises can exist with many different characteristics, the imple-
mentation is a simplification of the entire reality with the possibility to extend. Sole
proprietorship, partnership (OG, KG), corporation (GmbH, AG) and other corporate
forms are treated equally.

3.1.5 Capital collecting point
In this thesis, capital collecting points, investment associations and other insurance
companies than social insurance will not be considered for the implementation, for
reasons of simplification.
In the model, a capital collecting point is an entity that saves or lends money from
other business participants. They earn interest for savings or have to pay interest for
lent money. The bank is responsible for capital return tax. Because transactions are no
longer executed by banks, the capital collecting points do not play such an important
role in the model but need to exist for money-lending systems and all other financial
products. In further research, it could be investigated how capital return tax could be
levied directly from the individual and how a blockchain system could eventually replace
individual processes of our current bank system. Because this thesis investigates how to
automate the actual economy system, capital collecting points remains in the model and
the impacts on them are discussed. If financial transactions were invariably executed by
the blockchain, financial institutions could focus more on other products and services
like money lending and fund investments.

25

3. Business Cycle – Economy model in Austria

Figure 3.2: Basic transaction model

3.2 Economic interactions

In this chapter, the identified transactions are grouped by seven different transaction
groups and modeled separately. The models are created from the view of the money flow.
Accordingly, an arrow from an individual person to an enterprise represents a money
flow from a person to a company, for example. It is important to mention that one
single entity in real life is able to appear in different roles in our model depending on the
actual interaction. A bank is a capital collection point in case of savings and interests,
but it is an enterprise in case of selling other services or receiving services. This model
defines roles that can be occupied by real-life entities for automating their transactions.
Identification of single participants and fraud control (tax evasion) is not the goal of this
thesis. Its assumed that an enterprise account is an enterprise in real life. In further
research, identification methods and security issues should be discussed.

3.2.1 Basic transactions

First, the basic transactions that are necessary for calculating taxes are modeled. Capital
collection points collect money from the other business participants and pay interest
on the money collected. Loans are not part of the model because they are not needed
for simple tax calculations. In this master thesis, banking is simplified to the most
rudimentary function and is not implemented in the smart contract. Decentralized
finance [con] is a separate topic with already-implemented solutions in the Ethereum
environment.

Enterprises pay wages to individual persons, which are the basis for income tax of
individuals.

Enterprises and individual persons purchase products or services from business entities.

26

3.2. Economic interactions

Figure 3.3: Transaction model income taxes

3.2.2 Income taxes

The calculation of the income tax depends on the income type. Wages are taxed
directly, which means that enterprises have to pay wage tax for each employed individual.
Enterprises have to pay corporate tax based on their yearly profits. The profit or income
is estimated in the first instance and divided into a monthly fee. The total amount is
corrected with the tax adjustment in the following year. The tax adjustment also applies
to individual persons for reporting special spending or earnings. With a direct calculation
of tax, this master thesis aims to supersede yearly tax adjustments.

3.2.3 Value added tax

VAT is added to each transaction and forwarded from the vendor to the tax office.
Enterprises are able to recall their VAT expenses. VAT is a consumer tax, and therefore
it only has to be paid by individual persons. The automated tax service should be able to
forward and recall the VAT automatically without any intervention from the participants.

3.2.4 Social insurance

Similar to income tax, social insurance fee is based on the income of employees. The
model is simplified because this master thesis does not aim to depict the total degree
of social insurance companies in Austria. There are many differences between social
insurance companies in Austria, but the fee system is very similar. The fees are all paid
to an entity based on wages and respective income.

Because social insurance is subject to insurance tax, a portion of insurance fees are
transferred to the tax office.

27

3. Business Cycle – Economy model in Austria

Figure 3.4: Transaction model VAT

Figure 3.5: Transaction model social insurance

28

3.2. Economic interactions

Figure 3.6: Transaction model local tax

Figure 3.7: Transaction model capital return tax

3.2.5 Local tax

The local tax office is responsible for local tax based on wages and land tax based on
property. While local tax can be calculated automatically with wage transactions, land
tax has to be calculated separately because it depends on an external factor. Like
individual taxes, the land tax calculation is not part of the experiment but a possibility
to transfer the tax amount is present.

3.2.6 Capital return tax

Capital return tax is processed between the tax office and the capital collecting point. It
is removed from the interests and redirected by the bank.

3.2.7 Individual taxes

Finally, some taxes for particular industry sectors are left. These taxes are calculated
based on external values like alcohol or oil production or shipping. Because implementing
interfaces for all kinds of special taxes exceeds the scope of this thesis, the amount of
individual taxes has to be calculated externally. The system provides a transaction with
the tax amount as an input to record the expanse.

29

3. Business Cycle – Economy model in Austria

Figure 3.8: Transaction model individual taxes

3.3 Class diagram
In the next step, a class diagram is developed with the findings of the transaction models.
The programming systematics of the Solidity programming language are considered in
the creation of the class diagram. To reduce transaction fees, the amount of transactions
is kept small. Transact every small tax amount to the tax office would lead to dispropor-
tionate transaction fees. Smart contracts are able to store ether without an additional
transaction. Therefore, the tax amount is kept on the smart contract and an authority
collects it afterwards. In the case of multiple tax offices (national, local), the contract has
to ensure that only the authorized entity is able to collect the associated tax money. A
detailed description of each class is presented in the implementation part of the thesis.

3.4 Limitations of the model
This model is a simplified meta model of the Austrian economy and it does not represent
every detail of each entity. However, the basic concepts of how tax is paid from business
entities and individual persons to the national tax office, local tax office and social
insurance are implemented entirely to prove the technical possibilities.

Furthermore, trade between country borders is not included in the project at all, thus
assuming that the economy is a closed system without the need for external interfaces.
This is important for calculation of taxes. For example, income tax is calculated based
on all income transferred through the system. Income outside the system (cash) cannot
be considered by the calculation method. This would require some input methods to
manually change the income value, which is not the intention of an automated tax
system. Besides trust issues, this makes such projects politically very disputable because
governments would have to force everybody to use it.

30

3.4. Limitations of the model

Figure 3.9: Class diagram

31

CHAPTER 4
Implementation – Smart contract

The smart contract is written on the Ethereum blockchain because it has the most
developing tools and is supported by a broad development community. Only a few
technologies available on Ethereum that are used for this master thesis are discussed.
Ethereum is a global open-source platform with multiple program languages, development
environments and a wide range of tools, but it is in an early stage of development.

4.1 Technologies
Solidity is the most popular program language for Ethereum. It is an object-oriented
program language inspired by JavaScript. Solidity is compiled to bytecode that is
executable on the Ethereum virtual machine.
Remix IDE is a browser-based IDE for Solidity dApps. It is used to write and compile
the Solidity code and it is able to deploy the contract and run transactions based on the
contract functions.
http://remix.ethereum.org
Ganache is a tool to create a local Ethereum blockchain for testing purposes.
https://www.trufflesuite.com/ganache
Etherscan is used for code verification. The code deployed of a contract ID can be
viewed and verified by users.
https://kovan.etherscan.io/address/0x52B0a2531Bd462b67D9c959AC0Ac7c17f2851717#code

4.2 Concept
First of all, programming a smart contract means special discipline for the developer. It
has to be clear that data stored in objects will be stored on the blockchain and changing

33

http://remix.ethereum.org
https://www.trufflesuite.com/ganache
https://kovan.etherscan.io/address/0x52B0a2531Bd462b67D9c959AC0Ac7c17f2851717#code

4. Implementation – Smart contract

anything will require a chargeable transaction. The more data that is stored, the higher
the price for the transaction. Furthermore, the smart contract needs to be deployed on
the blockchain with a chargeable transaction based on the length of the compiled code.
Once deployed on main net, the smart contract will be accessible as long as the Ethereum
network exists and it cannot be deleted or changed. The only way to “update” a smart
contract is to deploy a new one and tell people to use the new contract address. Due to
the transactions with money, a smart contract should not be able to fall into an unstable
state or give any possibility to misuse the functionality.

The implementation is divided into multiple contracts, which always implement all
previous contracts. As a result, the order of the contracts is important: if a contract
calls a function from another contract, it has to be in one of the previous contracts. This
means that the basic structure of the implementation has to be in the first contracts and
the more complex functions come later.

4.3 Code description

4.3.1 Libraries

For safe integer calculations, the library safemath is added to the contract at the beginning.
It provides functions to add, subtract, divide or multiply integer values and rejects faulty
transactions due to integer overflow. The blockchain would start to count from zero
again after an overflow that is fatal with array IDs.

BokkyPooBahsDateTimeLibrary is used for date calculations. Taxes strongly depend on
our calendar, but Ethereum only works with UNIX timestamps. The functions in this
library are able to convert UNIX timestamps to calendar dates, and vice versa. Given
that UNIX to calendar date conversion is not trivial due to leap years, the advantage
of a community-driven open-source platform provides the possibility to import these
functions.

4.3.2 Contract ownable

In our scenario, the smart contract is owned by the national tax office, which means that
there are functions that are only executable by the address of the national tax office.
Accordingly, the smart contract has to be ownable by an address. In the constructor, the
ownership of the smart contract is set to the sender address, namely the deploy address.
In this contract, it is not possible to change the owner address to another Ethereum key,
and the deploy address will always remain the contract owner. The onlyOwner modifier
can be used in other functions to prevent non-owner addresses from using it. Public view
functions are user-created to view the data stored in the blockchain. In this case, the
owner address is public for every Ethereum address.

1 constructor () internal {
2 _owner = msg.sender;

34

4.3. Code description

3 emit OwnershipTransferred(address(0), _owner);}

Listing 4.1: Contract ownable

4.3.3 Structs
This contract represents the entire data structure for all following functions. It defines
all objects stored on the blockchain. To optimize transaction costs, mappings are used to
implement the dependencies between objects and store information about addresses.

First, the objects that are save later in a list are defined. The bill object represents
the data of a business transaction. Accountants usually collect this information for tax
calculations of their customers. In our case, the data of a bill is stored on the blockchain
and can be used for tax calculations by the contract itself. A bill has an amount, a VAT
percentage, a date and a Boolean value concerning whether it has already been paid or
not. Objects to store the base value of income per year, corporate income per year and
the base value of the monthly insurance calculation are created. Essentially, the monthly
insurance object stores the gross value of income and the yearly income object the net
value of income.

1 struct Bill {
2 uint256 amount;
3 uint32 salesTax;
4 uint256 date;
5 bool paid;
6 }
7
8 struct YearlyIncome {
9 uint year;

10 uint256 incomeSum;
11 }
12
13 struct CorporateIncome {
14 uint year;
15 int256 incomeSum;
16 bool paid;
17 }
18
19 struct MonthlyInsurance {
20 uint year;
21 uint month;
22 uint256 insuranceSum;
23 }

Listing 4.2: Struct objects

Furthermore, two global variables for the sum of insurance fees and local taxes stored on
the contract are defined. If social insurance fees are collected from wage transactions,
the taxes are not directly directed to the social insurance; instead, they are kept on the
contract and can be collected by social insurance any time. The amount of total social

35

4. Implementation – Smart contract

insurance fees and local taxes can only be collected from the responsible social insurance
or local tax office. Not even the contract owner is able to collect those ethers.

Now the lists to store multiple objects in the smart contract are created. To add an
object to a list, a chargeable transaction on the Ethereum blockchain is necessary. This
is essentially how to define the database in a smart contract. Objects stored in this list
will last there and can be only changed by other contract function (internal). Therefore,
developers have to be particularly careful with functions accessing this list. The safemath
library is especially for list operations, because an integer overflow would point to an
incorrect ID in the array list.

1 YearlyIncome[] internal yearlyIncome;
2
3 CorporateIncome[] internal corporateIncome;
4
5 MonthlyInsurance[] internal monthlySocialInsurance;

Listing 4.3: Object lists

In this implementation, the contract owner determines which Ethereum public keys are
individual persons, businesses, social insurances or local tax offices. This information
is saved in a mapping from the address to a Boolean value. Moreover, an individual
person has a relation to a social insurance address and a business address to a local tax
office address. For each social insurance address and local tax office address, a sum of
the collectible ether is stored.

Finally, the references from addresses to the listed objects are implemented. A bill has an
owner address and a receiver address. For list operations, the counts of bills of an owner
address and receiver address are stored. The other list objects each have a referring
address, as well as the count for list operations.

4.3.4 Modifier
A modifier can be used in functions to restrict access to them. Functions for business
addresses, social insurance addresses and local tax offices are defined. Furthermore, the
access to some functions for a specific bill ID is restricted. To prevent functions from
encountering an error due to an invalid bill ID, the modifier isValidBill checks this.

1 modifier onlyBusinessAddress() {
2 require (businessAddresses[msg.sender] == true, "Only business

addresses can access this function");
3 _;
4 }
5
6 modifier onlySocialInsuranceAddress() {
7 require (socialInsuranceAddresses[msg.sender] == true, "Only social

insurance addresses can access this function");
8 _;
9 }

10

36

4.3. Code description

11 modifier onlyLocalTaxOfficeAddress() {
12 require (localTaxOfficeAddresses[msg.sender] == true, "Only tax

office addresses can access this function");
13 _;
14 }
15
16
17
18 modifier onlySeller(uint _billID) {
19 require (billToOwner[_billID] == msg.sender, "Only bill owner can

access this function");
20 _;
21 }
22
23 modifier onlyBillReceiver(uint _billID) {
24 require (billToReceiver[_billID] == msg.sender, "Only bill reveiver

can access this function");
25 _;
26 }
27
28 modifier isValidBill(uint _billID) {
29 require(_billID < bills.length, "Invalid bill ID");
30 _;
31 }

Listing 4.4: Modifier

4.3.5 Contract owner
This contract contains all functions which can be only executed by the contract owner,
the tax office. The contract provides views to show the different amounts of ether stored
on the contract. The total contract balance, the total insurance fee balance and the total
local tax balance.

The tax office is able to withdraw the total contract balance excluding social insurance
fees and local taxes.

1 function contract_withdraw() external onlyOwner {
2 address payable _owner = contract_owner();
3 _owner.transfer(address(this).balance.sub(socialInsuranceFeeSum.add(

localTaxOfficeSum)));
4 }

Listing 4.5: Withdraw balance

Furthermore, the creation of the different address types is defined. To add a business
address, the address cannot already be an individual person address and a valid local
tax office address need to be chosen. A social insurance and a local tax office address
cannot already be an individual person address. Finally, an individual person address
may not already be a business, social insurance or local tax office address, and a valid
social insurance address has to be added to the individual person address.

37

4. Implementation – Smart contract

The withdraw functions for social insurance and local tax office addresses are implemented.
Social insurance and local tax office addresses are able to withdraw the taxes collected
from their customers. In case of social insurance, a fraction of the collected sum is paid
to the tax office as insurance tax. The rest is transferred to the address of the social
insurance or local tax office.

To allow the public to view the type of an address, public functions are defined.

4.3.6 Corporate tax

Corporate tax contracts are the first contracts for tax calculations. Corporate tax is
calculated on a yearly basis depending on the revenue of a business address. Accordingly,
the bills paid to the business address are added to the corporate income sum, paying
wage and bills is subtracted from the corporate income sum. 25% of the total income
sum has to be paid to the tax office. This also means that the corporate tax can only be
calculated for past years and therefore it can only be paid after a year has passed.

1 function payCorporateTax(uint _corporateIncomeID) external payable
onlyBusinessAddress{

2 require(corporateIncome[_corporateIncomeID].paid == false);
3 require(corporateIncomeToReferringAddress[_corporateIncomeID] == msg.

sender);
4 require(BokkyPooBahsDateTimeLibrary.getYear(block.timestamp) >

corporateIncome[_corporateIncomeID].year);
5
6 //Calculate value for transaction
7 require(msg.value == _calculateCorporateTax(_corporateIncomeID) * 1

wei, "Not enough value in the transaction");
8
9 corporateIncome[_corporateIncomeID].paid = true;

10 }
11
12 function _calculateCorporateTax(uint _corporateIncomeID) internal view

returns(uint256){
13 uint corporateTaxRate = 2500; //25,00%
14 if(corporateIncome[_corporateIncomeID].incomeSum <= 0){
15 return 0;
16 }else{
17 uint256 returnValue = uint256(corporateIncome[_corporateIncomeID

].incomeSum);
18 return returnValue.div(100).mul(corporateTaxRate).div(100);
19 }
20 }

Listing 4.6: Corporate tax calculation

The referring corporate income year is detected by the actual pay date of ingoing or
outgoing transactions. If no corporate income year object exists for the current year, it
is created. The history of past year will still be visible.

38

4.3. Code description

For the table views of corporate income years, functions to show the content of the
corporate income list are defined.

4.3.7 Social insurance
Social insurance fees are calculated based on monthly income of an individual person
address. The fee comprises an employer and an employee share and it has a monthly
maximum basis assessment of 5,370€. The sum of all wage transactions in a month is
stored in the monthly social insurance income sum. In case the total sum is above 5,370€,
no more social insurance fees are subtracted from or added to the wage. The employee
share is added to the necessary transaction value of the outgoing wage transaction and
the employer share is subtracted from the incoming transaction value to the individual
person address. For example, if an employer creates a transaction to pay 1 ether to a
person, he has to pay 1.2123 ethers for the transaction and the employee would receive
0.8188 ethers in his wallet. The rest is stored on the contract and can be collected by
the referring social insurance address.

1 function _socialInsuranceFeeCalculation(uint256 _incomeSum, uint256
_grossValue) internal pure returns(uint256, uint256){

2 uint employeeShareFee = 1812; //18,12%
3 uint employerShareFee = 2123; //21,23%
4 uint256 employeeShare = 0;
5 uint256 employerShare = 0;
6 uint256 maxBasisAssessment = 25000000000000000000; //25 ether
7 if(_incomeSum < maxBasisAssessment){
8 if(_grossValue.add(_incomeSum) <= maxBasisAssessment){
9 employeeShare = _grossValue.div(100).mul(employeeShareFee).

div(100);
10 employerShare = _grossValue.div(100).mul(employerShareFee).

div(100);
11 }
12 else{
13 employeeShare = maxBasisAssessment.sub(_incomeSum).div(100).

mul(employeeShareFee).div(100);
14 employerShare = maxBasisAssessment.sub(_incomeSum).div(100).

mul(employerShareFee).div(100);
15 }
16 }
17 return (employeeShare ,employerShare);
18 }
19
20 function _calculateSocialInsuranceFee(address _receiverAddress, uint256

_grossValue) internal returns(uint256, uint256){
21 uint[] memory referringMonthlySocialInsuranceList =

_getMonthlySocialInsuranceByReceiver(_receiverAddress);
22 (bool currentSocialInsuranceIDExist, uint currentSocialInsuranceID) =

_getCurrentMonthlySocialInsurance(
referringMonthlySocialInsuranceList);

23 if(currentSocialInsuranceIDExist == false){
24 currentSocialInsuranceID = _createMonthlySocialInsurance(

_receiverAddress);

39

4. Implementation – Smart contract

25 }
26 (uint256 employeeShare, uint256 employerShare) =

_socialInsuranceFeeCalculation(monthlySocialInsurance[
currentSocialInsuranceID].insuranceSum, _grossValue);

27 monthlySocialInsurance[currentSocialInsuranceID].insuranceSum =
monthlySocialInsurance[currentSocialInsuranceID].insuranceSum.add
(_grossValue);

28 return (employeeShare, employerShare);
29 }

Listing 4.7: Social insurance calculation

The current social insurance month is detected by the date of the wage transaction. If
no social insurance month object for the referring individual person address exists, a new
one is created.

For the table views of social insurance months, functions to show the content of the social
insurance month list are defined.

4.3.8 Income tax
Income tax is calculated based on the yearly income of an individual person address.
The income tax rate increases with higher income. For simplification reasons, only three
income levels are implemented, even if there are more in reality. Income from 0 ether to
0.5 ethers is tax free, while income above 0.5 and below 1 ether is taxed at 25%. From 1
to 2 ethers, the income tax is 35%, and the income tax for everything above 2 ethers is
50%. This leads to a higher total tax rate compared to reality but makes it easier to test
even with smaller amounts of ether. All incoming wage transactions are considered as
income tax events and the tax is directly deducted from the transaction value.

1 function _calculateIncomeTax(address _receiverAddress, uint256
_grossValue) internal returns(uint256){

2 uint[] memory referringYearlyIncomeList = _getyearlyIncomeByReceiver
(_receiverAddress);

3 (bool currentIncomeYearExist, uint currentIncomeID) =
_getCurrentIncomeYear(referringYearlyIncomeList);

4 if(currentIncomeYearExist == false){
5 currentIncomeID = _createYearlyIncome(_receiverAddress);
6 }
7 uint256 netValue = _taxCalculation(yearlyIncome[currentIncomeID].

incomeSum, _grossValue);
8 yearlyIncome[currentIncomeID].incomeSum = yearlyIncome[

currentIncomeID].incomeSum.add(_grossValue);
9 return netValue;

10 }
11
12 function _taxCalculation(uint256 _incomeSum, uint256 _grossValue) private

pure returns(uint256){
13 uint256 netValueLevel0 = 0;
14 uint256 incomeLevel1 = 500000000000000000;
15 uint256 incomeLevel2 = 1000000000000000000;

40

4.3. Code description

16 uint256 incomeLevel3 = 2000000000000000000;
17 uint256 netValueLevel1 = 0;
18 uint256 netValueLevel2 = 0;
19 uint256 netValueLevel3 = 0;
20 uint256 newIncomeSum = _incomeSum.add(_grossValue);
21
22 //Income level 0 and 1
23 if(newIncomeSum > incomeLevel1){
24 if(incomeLevel2 > _incomeSum){
25 if(_incomeSum >= incomeLevel1){
26 if(newIncomeSum < incomeLevel2){
27 netValueLevel1 = _grossValue.div(100).mul(75);
28 }else{netValueLevel1 = incomeLevel2.sub(_incomeSum).div

(100).mul(75);
29 }
30 }else{
31 netValueLevel0 = incomeLevel1.sub(_incomeSum);
32 if(newIncomeSum < incomeLevel2){
33 netValueLevel1 = _grossValue.sub(netValueLevel0).div

(100).mul(75);
34 }else{netValueLevel1 = incomeLevel2.sub(incomeLevel1).div

(100).mul(75);
35 }}}
36 }else{netValueLevel0 = _grossValue;}
37
38 //Income level 2
39 if(newIncomeSum > incomeLevel2){
40 if(incomeLevel3 > _incomeSum){
41 if(_incomeSum >= incomeLevel2){
42 if(newIncomeSum < incomeLevel3){
43 netValueLevel2 = _grossValue.div(100).mul(65);
44 }else{netValueLevel2 = incomeLevel3.sub(_incomeSum).div

(100).mul(65);
45 }
46 }else{
47 if(newIncomeSum < incomeLevel3){
48 netValueLevel2 = newIncomeSum.sub(incomeLevel2).div

(100).mul(65);
49 }else{netValueLevel2 = incomeLevel3.sub(incomeLevel2).div

(100).mul(65);
50 }}}}
51
52 //Income level 3
53 if(newIncomeSum > incomeLevel3){
54 if(incomeLevel3 > _incomeSum){
55 netValueLevel3 = newIncomeSum.sub(incomeLevel3).div(100).mul

(50);
56 }else{netValueLevel3 = _grossValue.div(100).mul(50);
57 }}
58 return netValueLevel0 + netValueLevel1 + netValueLevel2 +

netValueLevel3;
59 }

Listing 4.8: Income tax calculation

41

4. Implementation – Smart contract

The current income year is detected by the date of the wage transaction. If no income
year object for the referring individual person address exists, a new one is created.

For the table views of income years, functions to show the content of the yearly income
list are defined.

4.3.9 Local tax
Local tax is added to wage transactions based on the gross value similar to the employer
share of social insurance. The added amount is 3% of the gross transaction value.

1 function _calculateLocalTaxAmount(uint256 _grossValue) internal pure
returns(uint256){

2 uint localTaxPercent = 3; //3%
3 uint256 localTaxAmount = _grossValue.div(100).mul(localTaxPercent);
4 return localTaxAmount;
5 }

Listing 4.9: Local tax calculation

4.3.10 Wage
The pay wage function combines all tax functions. The local tax and employer share of
social insurance are calculated and added to the required transaction value. Furthermore,
the employee share and income tax are subtracted from the transferred value. This
function is for business addresses to pay wages to individual person addresses.

1 function payWage(address payable _receiverAddress, uint256 _grossValue)
external payable onlyBusinessAddress returns(uint256) {

2 require(individualPersonAddresses[_receiverAddress] == true);
3
4 //Calculate social insurance
5 (uint256 employeeShare, uint256 employerShare) =

_calculateSocialInsuranceFee(_receiverAddress, _grossValue);
6 //Calculate local tax
7 uint256 localTaxAmount = _calculateLocalTaxAmount(_grossValue);
8 //Required value is raised by social insurance employee share and

local tax
9 require(msg.value == _grossValue.add(employerShare).add(

localTaxAmount) * 1 wei, "Not enough value in the transaction");
10 //Calculate net value of transaction (income tax and social insurance

employee share)
11 uint256 netValue = _calculateIncomeTax(_receiverAddress, _grossValue.

sub(employeeShare));
12
13 //Add social insurance fees to social insurance sums
14 address socialInsuranceAddress = individualPersonToSocialInsurance[

_receiverAddress];
15 uint256 socialInsuranceFee = employeeShare.add(employerShare);
16 socialInsuranceAddressSum[socialInsuranceAddress] =

socialInsuranceAddressSum[socialInsuranceAddress].add(
socialInsuranceFee);

42

4.3. Code description

17 socialInsuranceFeeSum = socialInsuranceFeeSum.add(socialInsuranceFee)
;

18
19 //Add local tax to local tax office sums
20 address localTaxOfficeAddress = businessToLocalTaxOffice[msg.sender];
21 localTaxOfficeAddressSum[localTaxOfficeAddress] =

localTaxOfficeAddressSum[localTaxOfficeAddress].add(
localTaxAmount);

22 localTaxOfficeSum = localTaxOfficeSum.add(localTaxAmount);
23
24 //Reduce corporate tax income by total paid amount
25 _subCorporateTaxValue(msg.sender, _grossValue.add(employerShare).add(

localTaxAmount) * 1 wei);
26
27 _receiverAddress.transfer(netValue * 1 wei);
28
29 return netValue;
30 }

Listing 4.10: Pay wage

4.3.11 Bills
Business addresses are able to create bills for a receiving address with an amount, a VAT
rate and a receiver address.

1 function _createBill (uint256 _amount, uint32 _salesTax, address
_receiver) private returns(uint) {

2 //Increase array length
3 bills.length = bills.length.add(1);
4 uint billID = bills.length.sub(1);
5 //Insert bill data
6 bills[billID].amount = _amount;
7 bills[billID].salesTax = _salesTax;
8 bills[billID].date = now;
9 bills[billID].paid = false;

10
11 //Mapping to bill owner
12 billToOwner[billID] = msg.sender;
13 //Mapping to bill receiver
14 billToReceiver[billID] = _receiver;
15
16 //Increase bill counts
17 ownerBillCount[msg.sender] = ownerBillCount[msg.sender].add(1);
18 receiverBillCount[_receiver] = receiverBillCount[_receiver].add(1);
19
20 return billID;
21 }

Listing 4.11: Pay bill

Only the receiver address can pay the bill. The VAT is calculated depending on the
type of receiver address. If the receiver is a business address, no VAT is added to the

43

4. Implementation – Smart contract

transaction; otherwise, the VAT is added to the bill amount, stored on the contract and
can be collected by the tax office. It is never transferred to the bill owner.

For the table views of bills, functions to show the content of the bill list are defined.

4.3.12 Individual taxes
Individual taxes are not implemented in the deployed contract due to a length limit
of contracts. This kind of taxes would be calculated outside of the system and paid
directly to tax office, local tax office or social insurance. Furthermore the contract could
implement interfaces for adding transactions outside of the system. If a bill is payed cash,
the business address would have to add the value for tax calculation without any ether
transaction.

44

CHAPTER 5
Implementation – Website

To access the smart contract functions, a website with some sort of Ethereum wallet
implementation is necessary. In fact, there are multiple ways to access the functions even
without a website. This thesis is focused on a simple implementation with JavaScript
and MetaMask to show the possibilities of the implemented smart contract.

5.1 Technologies
Bootstrap is a free, front-end CSS framework for faster and easier web development. It
includes HTML-and CSS-based design templates for typography, forms, buttons, tables,
navigation, modals, image carousels and many others, as well as optional JavaScript
plugins. The sb-admin template is used to design the website. [Stab]

MetaMask is a browser extension that acts as a bridge between internet browsers,
Ethereum and decentralized applications built on the Ethereum network. It enables users
to execute Ethereum dApps in their internet browser directly without running a full
Ethereum node. MetaMask allows users to store, send, receive, and facilitate interactions
with the Ethereum network. MetaMask is a web browser extension for Google Chrome,
Opera, Firefox, and Brave. [gol]

JavaScript is used to connect to an Ethereum wallet via MetaMask and implement the
functions in the bootstrap template.

5.2 Concept
Essentially a simple website with tables to view the data on the smart contract and forms
to execute functions with input values is necessary. Besides the introduction page, all
other pages need a connected MetaMask wallet to be accessible. If MetaMask is not yet

45

5. Implementation – Website

Figure 5.1: Website

Figure 5.2: All bills

installed, the page will lead the user to the MetaMask download page. The views and
functions are shown on thirteen pages.

Website link: http://www.smarteconomy.at

5.2.1 All bills

The ‘all bills’ view shows all bills in the list stored on the smart contract. It includes all
properties of a bill and the bill ID. As the bills are public, anyone with a connection to
the Ethereum network is able to view the bills.

46

http://www.smarteconomy.at

5.2. Concept

Figure 5.3: Create bills

5.2.2 My bills
’My bills’ essentially shows the same data as the ‘all bills’ view but filters it by the
receiver. This means that only the received bills of the connected address are displayed.
Furthermore, the user is able to pay his unpaid bills with a button to generate a
transaction.

5.2.3 Create bills
On this page, business addresses can see their created bills and create new bills. To
create a bill, users have to insert a receiver address, a gross value of the product sold and
the VAT percentage.

5.2.4 All income tax / My income tax
The tables in the income tax pages shows the yearly income objects stored on the
blockchain. With the ID, the year, the current income sum and the referring individual
person address are displayed. The only difference between “All income tax” and “My
income tax” is that the latter only shows the data of the currently-connected address.

5.2.5 All social insurance / My social insurance
On these pages, the monthly income sum for social insurance calculations is displayed.
The ID, year, month, gross value of income and the referring address are shown. Only

47

5. Implementation – Website

Figure 5.4: My corporate tax

Figure 5.5: Pay wage

individual person addresses have social insurance months. The “My social insurance”
page only shows months of the connected Ethereum address.

5.2.6 All corporate tax
For business addresses, the total corporate income is stored during a year. This page
shows all business addresses with a corporate income. ID, year, total income sum and
the referring business address are displayed in the table. A negative sum means that the
business address had more expenditures than earnings.

5.2.7 My corporate tax
Corporate income tax is calculated with the yearly income, which means that it is possible
to calculate the total sum at earliest after a year ends. This is implemented into the pay
transaction in the table. A business address can only pay corporate taxes of past years.

5.2.8 Pay wage
With this function, business addresses are able to pay wage to an individual person
address with all tax calculations included. The user has to insert a receiver address and
a gross value. The function calculates the employer share and adds it to the transaction
value. Furthermore, the employee share is deducted from the transferred amount.

48

5.3. Code description

Figure 5.6: Contract balance

5.2.9 Tax office

The following functions enable the tax office (contract owner) to create new addresses to
participate in the system. Social insurance addresses and local tax office addresses can
be created without any other information besides the public Ethereum address.

A business address always needs a valid local tax office address for local tax purposes.
Business addresses cannot be constructed without a referring local tax office.

Individual person addresses always need a valid social insurance address.

Finally, the contract owner is able to view the total contract balance, the social insurance
share and the local tax share. The total contract balance reduced by the social insurance
share and local tax share can be transferred to the contract owner address with the
withdraw contract balance function.

5.2.10 Social insurance

Social insurance addresses can view and withdraw their social insurance fees received on
this page.

5.2.11 Local tax office

Local tax office addresses can view and withdraw their local taxes received on this page.

5.3 Code description
In this section, the JavaScript code to unite the smart contract with the webpages is
described. The smart contract file implements the connection between MetaMask and
the smart economy contract. Furthermore, function files for each page are implemented.

49

5. Implementation – Website

5.3.1 smartContract
Upon page load, MetaMask is connected to the smart contract, if this has not already
taken place on a previous page.

The checkMetaMask function checks whether MetaMask is running and it triggers an
access request to allow the website to use a MetaMask wallet. If the request is successful,
the connection is established.

1 async function checkMetaMask() {
2 // Modern dapp browsers...
3 if (window.ethereum) {
4 window.web3 = new Web3(ethereum);
5 try {
6 // Request account access if needed
7 await ethereum.enable();
8 // Acccounts now exposed
9 connectMetaMask();

10
11 } catch (error) {
12 // User denied account access...
13 window.location = "/html_error/error_metamask_login.html";
14 }
15 }
16 // Legacy dapp browsers...
17 else if (window.web3) {
18 window.web3 = new Web3(web3.currentProvider);
19 // Acccounts always exposed
20 connectMetaMask();
21 }
22 // Non-dapp browsers...
23 else {
24 window.location.href = "/html_error/error_metamask_install.

html";
25 console.log(’Non-Ethereum browser detected. You should consider

trying MetaMask!’);
26 }
27 }

Listing 5.1: Check MetaMask

With MetaMask running, the web3 account can be used to create the smart contract.

Contract ID is loaded and an interval for a check whether MetaMask is still running is
implemented.

To select the correct contract ID, the network currently connected to MetaMask has to
be identified. With this information, the referring contract ID stored in a global variable
is redirected to the contract function.

1 function setContractID() {
2 web3.version.getNetwork((err, netId) => {
3 switch (netId) {
4 case "1":

50

5.3. Code description

5 document.getElementById("conntectedTo").innerHTML = ’
Connected to mainnet’;

6 console.log(’Connected to mainnet’);
7 setContract(0);
8 break
9 case "2":

10 document.getElementById("conntectedTo").innerHTML = ’
Connected to the deprecated Morden test network’;

11 console.log(’Connected to the deprecated Morden test network.
’);

12 setContract(0);
13 break
14 case "3":
15 document.getElementById("conntectedTo").innerHTML = ’

Connected to the ropsten test network’;
16 console.log(’Connected to the ropsten test network.’);
17 setContract(contractIDRopstenNetwork);
18 break
19 case "4":
20 document.getElementById("conntectedTo").innerHTML = ’

Connected to the Rinkeby test network’;
21 console.log(’Connected to the Rinkeby test network.’);
22 setContract(0);
23 break
24 case "42":
25 document.getElementById("conntectedTo").innerHTML = ’

Connected to the Kovan test network’;
26 console.log(’Connected to the Kovan test network.’);
27 setContract(contractIDKovanNetwork);
28 break
29 default:
30 document.getElementById("conntectedTo").innerHTML = ’

Connected to an unknown network’;
31 console.log(’Connected to an unknown network.’);
32 setContract(contractIDLocalNetwork);
33 }
34 });
35 }

Listing 5.2: Set contract ID

The functions of the contract are defined in a separate file called ABI, which is generated
by the Ethereum compiler. With the ABI and the contract ID, the connection is
established and the contract functions can be used with JavaScript.

Finally, data for the current page is loaded with page-specific functions.
1 function loadData() {
2 var url = window.location.pathname;
3 var filename = url.substring(url.lastIndexOf(’/’) + 1);
4 if (filename == "index.html") {
5 //no data to load
6 } else if (filename == "main_bills.html") {
7 loadBillData();

51

5. Implementation – Website

8 } else if (filename == "main_myBills.html") {
9 loadMyBillData();

10 } else if (filename == "main_createBill.html") {
11 loadBillData();
12 } else if (filename == "main_taxOffice.html") {
13 //no data to load
14 } else if (filename == "main_payWage.html") {
15 //no data to load
16 } else if (filename == "main_myIncomeTax.html") {
17 loadMyIncomeData();
18 } else if (filename == "main_mySocialInsuranceFees.html") {
19 loadMySocialInsuranceData();
20 } else if (filename == "main_allIncomeTax.html") {
21 loadAllIncomeData();
22 } else if (filename == "main_allSocialInsuranceFees.html") {
23 loadAllSocialInsuranceData();
24 } else if (filename == "main_allCorporateTax.html") {
25 loadAllCorporateIncomeData();
26 } else if (filename == "main_myCorporateTax.html") {
27 loadMyCorporateIncomeData();
28 }
29 }

Listing 5.3: Load data

In the following page functions, the dltConnection object is used to call the functions
that are defined in the smart contract.

5.3.2 billFunctions
First, all bill IDs from the blockchain with the getAllBills function are read. For each
bill ID, all variables are loaded.

1 function displayBills(_billIDs) {
2 billIDs = _billIDs;
3 var listLength = billIDs.length;
4 dataTableData = [];
5 itemsProcessed = 0;
6 billIDs.forEach(function (billID) {
7 dltConnection.getBillValue(billID, function (error, result) {
8 var billValue = result;
9 dltConnection.getBillSalesTax(billID, function (error, result) {

10 var billSalesTax = result;
11 dltConnection.getBillSum(billID, function (error, result) {
12 var billSum = result;
13 dltConnection.getBillDate(billID, function (error, result) {
14 var billDate = result;
15 dltConnection.getBillPaid(billID, function (error, result) {
16 var billPaid = result;
17 dltConnection.getBillOwner(billID, function (error, result) {
18 var billOwner = result;
19 dltConnection.getBillReceiver(billID, function (error, result) {
20 var billReceiver = result;

52

5.3. Code description

21 addDataObjects(error, billID, billValue, billSalesTax, billSum,
billDate, billPaid, billOwner, billReceiver, listLength);

22 });});});});});})});
23 });
24 }

Listing 5.4: Bill functions

Data objects are added to the HTML table.

5.3.3 myBillFunctions
This implementation is similar to billFunctions but it only shows bills with the connected
wallet as the bill receiver. Furthermore, a pay bill button is added, which executes the
payBill smart contract function.

5.3.4 createBillFunctions
This implementation is similar to billFunctions, but it only shows bills with the connected
wallet as the bill owner. Furthermore, business addresses can create new bills with the
createBill smart contract function.

1 function createNewBill() {
2 var inputReceiverAddress = document.getElementById(’inputReceiverAddress’

).value;
3 var inputBillValue = document.getElementById(’inputBillValue’).value;
4 var inputTaxPercent = document.getElementById(’inputTaxPercent’).value;
5
6 if (isNumeric(inputBillValue) && isNumeric(inputTaxPercent) &&

inputReceiverAddress != "") {
7 var billValue_wei = inputBillValue * 1000000000000000000;
8 dltConnection.createBill(billValue_wei, inputTaxPercent,

inputReceiverAddress, { from: userAccount }, function (error,
result) {

9 if (error) console.log(error);
10 });
11 }
12 }

Listing 5.5: Create Bill functions

5.3.5 allIncomeFunctions / myIncomeFunctions
The income pages are views only and they display all income objects or only the income
objects of the connected wallet.

5.3.6 allSocialInsuranceFunctions / mySocialInsuranceFunctions
The social insurance pages are view-only and they display all social insurance objects or
only the social insurance objects of the connected wallet.

53

5. Implementation – Website

5.3.7 allCorporateTaxFunctions
This page is a view-only and it displays all corporate income objects.

5.3.8 myCorporateTaxFunctions
This implementation is similar to allCorporateTaxFunctions, but it only shows corporate
income from the connected wallet. Furthermore, a pay corporate tax button is added,
which executes the pay corporate tax smart contract function for a previous year.

1 function payCorporateTax(_incomeID, _corporateTaxValue) {
2 dltConnection.payCorporateTax(_incomeID, { from: userAccount, value:

_corporateTaxValue }, function (error, result) {
3 if (error) console.error(error);
4 });
5 }

Listing 5.6: Pay corporate tax

5.3.9 payWageFunctions
The pay wage function executes the smart contract function for wage transactions.

1 function payWage() {
2 var inputReceiverAddress = document.getElementById(’inputReceiverAddress’

).value;
3 var inputWageValue = document.getElementById(’inputWageValue’).value;
4
5 if (isNumeric(inputWageValue) && inputReceiverAddress != "") {
6 var wageValue_wei = inputWageValue * 1000000000000000000;
7
8 dltConnection.getSocialInsuranceEmployerShare(wageValue_wei,

inputReceiverAddress, function (error, result) {
9 var wageValueEmployerShare_wei = result;

10 dltConnection.getLocalTaxAmount(wageValue_wei, function (error,
result) {

11 var wageValueLocalTax_wei = result;
12 var wageValueNet_wei = (wageValue_wei * 1) + (

wageValueEmployerShare_wei * 1) + (wageValueLocalTax_wei

* 1);
13 console.log(wageValueNet_wei);
14
15 dltConnection.payWage(inputReceiverAddress, wageValue_wei, {

from: userAccount, value: wageValueNet_wei }, function (
error, result) {

16 if (error) console.error(error);
17 });
18 });
19 });
20
21 }
22 }

Listing 5.7: Pay wage function

54

5.3. Code description

5.3.10 taxOfficeFunctions
The tax office function allows the contract owner to check and add business, social
insurance, local tax office and individual person addresses.

1 function addBusinessAddress() {
2 var inputBusinessAddress = document.getElementById(’inputBusinessAddress’

).value;
3 var inputLocalTaxOfficeAddress = document.getElementById(’

inputReferringLocalTaxOfficeAddress’).value;
4
5 dltConnection.addBusinessAddress(inputBusinessAddress,

inputLocalTaxOfficeAddress, { from: userAccount}, function (error,
result) {

6 if (error) console.error(error);
7 });
8 }
9

10 function isBusinessAddress() {
11 var inputIsBusinessAddress = document.getElementById(’

inputIsBusinessAddress’).value;
12 dltConnection.getBusinessAddressState(inputIsBusinessAddress, { from:

userAccount }, function (error, result) {
13 if (error) console.error(error);
14 var isBusinessAddress = result;
15 if (isBusinessAddress == true) {
16 document.getElementById(’inputIsBusinessAddress’).style.

backgroundColor = "green";
17 } else {
18 document.getElementById(’inputIsBusinessAddress’).style.

backgroundColor = "red";
19 }
20 });
21 }

Listing 5.8: Business address functions

The contract owner is able to view contract balances and withdraw the tax office share
of the contract balance.

1 function getContractBalance() {
2 dltConnection.contract_getContractBalance({ from: userAccount }, function

(error, result) {
3 if (error) console.error(error);
4 var contractBalance_ether = result / 1000000000000000000;
5 document.getElementById(’contractBalance’).value =

contractBalance_ether + " ether";
6 });
7 }
8
9 function getInsuranceFeeBalance() {

10 dltConnection.contract_getSocialInsuranceFeeBalance({ from: userAccount
}, function (error, result) {

11 if (error) console.error(error);

55

5. Implementation – Website

12 var contractBalance_ether = result / 1000000000000000000;
13 document.getElementById(’socialInsuranceFeeBalance’).value =

contractBalance_ether + " ether";
14 });
15 }
16
17 function getLocalTaxBalance() {
18 dltConnection.contract_getLocalTaxOfficeBalance({ from: userAccount },

function (error, result) {
19 if (error) console.error(error);
20 var contractBalance_ether = result / 1000000000000000000;
21 document.getElementById(’localTaxBalance’).value =

contractBalance_ether + " ether";
22 });
23 }
24
25 function withdrawBalance() {
26 dltConnection.contract_withdraw({ from: userAccount }, function (error,

result) {
27 });
28 }

Listing 5.9: Balance functions

5.3.11 socialInsuranceFunctions
Social insurance addresses can view and withdraw their share of the contract balance.

5.3.12 localTaxOfficeFunctions
Local tax offices can view and withdraw their share of the contract balance.

56

CHAPTER 6
Tests and emulation

6.1 Test data description
To test the smart contract, we use the latest data of the Austrian statistic office “Statistik
Austria” from 2018.

6.1.1 Business participant numbers
The business participants comprise one tax office, multiple local tax offices, social
insurances, businesses and individuals. These entities can be quantified from the Austrian
statistics, whereby in 2018 Austria had 8,822,267 residents. Not all residents are
directly business participants and need a registered address. A bill can be paid with an
unregistered address. Only if a business wants to skip VAT it does need a registered
address.

To receive a wage or salary, a person needs an individual person address to calculate
social insurance fees. To create a new individual person address, the tax office has
to register an address and set a social insurance address, which is responsible for the

Year 2018
Residents 8,822,267
Employees 3,044,226
Companies 346,469
Tax office 1

Social insurances 5
Local tax offices 2095

Table 6.1: Business participant numbers

57

6. Tests and emulation

Figure 6.1: Transactions in Austria [Moh]

individual and receive the fees. Therefore, every employed person in Austria would need
such an address. In 2018, the average number of employed persons was 3,044,226 people.

To pay a wage or salary, create bills and pay tax-reduced bills, a company has to be
registered as a business address. To register an address as a business, a responsible local
tax office address has to be set. In 2018, the total number of companies in Austria was
346,469.

The contract owner address represents the tax office. There is only one tax office in
Austria, which collects sales, income and corporate tax.

Each individual person address is connected to a social insurance address, which collects
the social insurance fee. Following the consolidation of the social security agencies, there
are currently five in existence.

For local taxes, a business address has to be connected to a local tax office address. Each
local community in Austria is represented by one local tax office address. There are
2,095 local communities in Austria.

6.1.2 Transactions
The smart contract provides the five key functions of the defined economy model. These
transactions are relevant for tax calculation and collection. Therefore, data for these
transactions in the Austrian economy is needed to assess the capabilities of the current
state of development. The functions are pay wage, create bill, pay bill, pay corporate
tax, and withdraw taxes.

58

6.2. Test environment

Figure 6.2: Transactions in Europe [staa]

Pay wage is usually paid monthly, whereby one transaction per employee and month can
be assumed. With 3,044,226 employees, this makes 36.53 million transactions per year.

Because Statistik Austria does not provide data about the number of transactions, the
number of cashless transactions and the proportion compared to cash transactions is used
for the calculation. With 1.95 billion cashless transactions and a share of 20%, the
estimated total number of transactions per year is 9.75 billion transactions in Austria.

Corporate tax has to be paid by a company once a year, making 346,469 such transactions
per year.

Because the taxes are collected as a total sum by a few tax entities, these transactions
have only little influence. If tax collection points collect taxes once a month, there will
be about 100 transactions per year.

6.2 Test environment
Blockchain systems are well suited for emulation purposes because for test purposes it

59

6. Tests and emulation

Transaction Estimation
Pay wage 36,530,712

Create bill (cashless only) 1,952,000,000
Pay bill (cashless only) 1,952,000,000

Create bill (total transactions) 9,760,000,000
Pay bill (total transactions) 9,760,000,000

Pay corporate tax 346,469
Withdraw taxes 100

Table 6.2: Transaction numbers

does not make a difference if the blockchain runs on multiple machines or a local test
environment. The limitation of block size and block time is equal regardless of whether
the system runs on one or multiple machines. “Speeding up” the chain is limited to the
computing power of the local machine. The minimum block time of the Ganache client
is 1 second, which is about fifteen times faster than the original Ethereum blockchain.

The following tools are used to run a local Ethereum blockchain and run automated
transactions on the smart contract.

Ganache is a tool to create a local Ethereum blockchain for testing purposes.

https://www.trufflesuite.com/ganache

Visual Studio Code is a code editor with blockchain extensions.

https://code.visualstudio.com

Truffle Suite is a development framework for smart contracts. It provides automated con-
tract testing, which allows programming and executing contract functions in JavaScript.

https://www.trufflesuite.com/truffle

Due to limitations of computing power, time and tool support, the tests focus on following
objectives:

• Is the current Ethereum blockchain able to carry out a sufficient number of trans-
actions needed by the Austrian economy per year?

• Which modifications are necessary to test multiple year usage of the smart contract
on a local network?

• Are smart contracts suitable to implement tax laws?

60

https://www.trufflesuite.com/ganache
https://code.visualstudio.com
https://www.trufflesuite.com/truffle

6.3. Test description

6.3 Test description
6.3.1 Basic function tests
Tests the contract with a small number of transactions to validate the functionality of
the contract. The Ganache test chain can be set to automine for this test. With this
setting, the blockchain creates a new block for every transaction without a time delay.
Because the performance is not tested in this part, automining is used for faster test
results. Furthermore, the test code awaits the result of the transaction call, which means
that it is not possible to have multiple transactions in a single block.

Before the transactions can be executed, the smart economy environment has to be
initialized. This means that the contract owner address (accounts[0]) proves other
addresses to be able to use the smart contract functions. First, tax office and social
insurance addresses are necessary for the creation of business and individual addresses.

1 it("Initialize smart contract environment - Create business address", async
() => {

2 let instance = await SmartEconomyContract.deployed();
3
4 await instance.addBusinessAddress(accounts[4],localTaxOfficeAddress, {

from: accounts[0]});
5 var isBusinessAddress = await instance.getBusinessAddressState(accounts

[4], {from: accounts[4]});
6 businessAddress= accounts[4];
7
8 assert.equal(isBusinessAddress, true);
9 console.log("Log: Business address created - getBusinessAddressState

returns " + isBusinessAddress);
10 });

Listing 6.1: Create business address

In each test, the transaction is executed first, and the taxes are withdrawn from tax
entities afterwards to check whether the correct amount was transferred.

The pay wage function transfers wage from a business address to an individual person
address and collects income tax, social insurance fees, local tax and thereby also insur-
ance taxes via the social insurance address. The insurance tax is deducted from the
withdrawable social insurance fee balance of a social insurance address.

1 it("Execute transactions - Pay wage", async () => {
2 let instance = await SmartEconomyContract.deployed();
3
4 var wageValue_wei = 1000000000000000000n;
5 var wageValueEmployerShare_wei = await instance.

getSocialInsuranceEmployerShare(wageValue_wei.toString(),
individualPersonAddress, {from: businessAddress});

6 var wageValueLocalTax_wei = await instance.getLocalTaxAmount(
wageValue_wei.toString(), {from: businessAddress});

7 var wageValueNet_wei = wageValue_wei + BigInt(wageValueEmployerShare_wei)
+ BigInt(wageValueLocalTax_wei);

61

6. Tests and emulation

8
9 var transactionData = await instance.payWage(individualPersonAddress,

wageValue_wei.toString(), {from: businessAddress, value:
wageValueNet_wei.toString()});

10
11 assert.equal(transactionData[’receipt’][’status’], true);
12 console.log("Log: Transaction pay wage sent. Transaction value = " +

wageValueNet_wei + " wei");
13 });

Listing 6.2: Pay wage

The bill function is tested with an individual receiver and a business receiver because
they have to pay different prices. An individual receiver has to pay VAT, while a business
address does not.

1 it("Execute transactions - Create bill to individual person", async () => {
2 let instance = await SmartEconomyContract.deployed();
3
4 var billValue_wei = 1000000000000000000n;
5 var inputTaxPercent = 20;
6
7 var transactionData = await instance.createBill(billValue_wei.toString(),

inputTaxPercent.toString(), individualPersonAddress, { from:
businessAddress });

8
9 assert.equal(transactionData[’receipt’][’status’], true);

10 console.log("Log: Bill created from business address to individual person
");

11 });

Listing 6.3: Create bill

1 it("Execute transactions - Pay bill individual person address", async () =>
{

2 let instance = await SmartEconomyContract.deployed();
3
4 //Includes sales tax percent
5 var billValue_wei = 1200000000000000000n;
6 var _billID = 0;
7
8 var transactionData = await instance.payBill(_billID, { from:

individualPersonAddress, value: billValue_wei.toString() });
9

10 assert.equal(transactionData[’receipt’][’status’], true);
11 console.log("Log: Bill paid by individual person address - value = " +

billValue_wei + " wei");
12 });

Listing 6.4: Pay bill

After the bills have been created, the receiver pays them and the VAT is directed to the
tax office.

62

6.3. Test description

6.3.2 Test environment limitation tests
Tests the limitations of the test environment by increasing the number of transactions.
The test chain is set to the minimum block time of one second. Some functions of the
smart contract need to read the transaction value from a smart contract view, which slows
down the transaction creation. Therefore, hardcoded values are used for the transaction
values to create more transactions in a shorter time. The local testing machine is limited
by the processing time of function calls. The processing time is divided into multiple
machines (nodes) in the decentralized main net of Ethereum. Therefore, the limitation
of computing power is a limitation for the test environment and different to the live
network.

1 it("Execute transactions - Pay wage", async () => {
2 let instance = await SmartEconomyContract.deployed();
3 const Contract = new web3.eth.Contract(instance.abi, instance.address);
4
5 var wageValue_wei = "1000000000000000000";
6
7 for (let i = 10; i < 30; i++) {
8 var wageValueNet_wei = 1242300000000000000n;
9 Contract.methods.payWage(accounts[i+30], wageValue_wei).send({from:

accounts[i], value: wageValueNet_wei.toString(), gas: 575000});
10 console.log("Log: Pay wage from: " + accounts[i] + " to: " + accounts[i

+30] + " wei: " + wageValueNet_wei.toString());
11 }
12
13 console.log("Log: Pay wage finished");
14 });

Listing 6.5: Pay wages

1 it("Execute transactions - Create bills", async () => {
2 let instance = await SmartEconomyContract.deployed();
3 const Contract = new web3.eth.Contract(instance.abi, instance.address);
4
5 var billValue_wei = 1000000000000000000n;
6 var inputTaxPercent = 20;
7
8 for (let i = 10; i < 15; i++) {
9 Contract.methods.createBill(billValue_wei.toString(), inputTaxPercent.

toString(), accounts[i+30]).send({ from: accounts[39-i], gas:
375000 });

10 console.log("Log: Create bill from: " + accounts[39-i] + " to: " +
accounts[i+30] + " wei: " + billValue_wei.toString() + " - " +
inputTaxPercent + "% tax");

11 }
12
13 console.log("Log: Create bills finished");
14 });

Listing 6.6: Create bills

63

6. Tests and emulation

1 it("Execute transactions - Pay bills", async () => {
2 let instance = await SmartEconomyContract.deployed();
3 const Contract = new web3.eth.Contract(instance.abi, instance.address);
4
5 var billValue_wei_ind = 1200000000000000000n;
6
7 for (let i = 0; i < 5; i++) {
8 var billReceiver = await instance.getBillReceiver(i, {from: accounts

[0]});
9

10 Contract.methods.payBill(i).send({ from: billReceiver, value:
billValue_wei_ind.toString(), gas: 555000});

11 console.log("Log: Pay bill individual receiver: " + billReceiver + "
wei: " + billValue_wei_ind.toString());

12 }
13 console.log("Log: Pay bills individual finished");
14 });

Listing 6.7: Pay bills

Ganache test client is able to create 100 Ethereum addresses for test usage. We use
this addresses for the limitation test. Furthermore, the transactions are called without
awaiting the result, which allows the system to put multiple transactions into one block.
To avoid errors due to unfinished transactions in a transaction chain, timeouts are used
to slow down the transaction execution time.

The limitation test comprises the following series of transactions in a loop.

6.3.3 Gas consumption tests
Tests the gas consumption of the contract. An Ethereum block is limited by the amount
of gas used by the transactions executed. To calculate how many transactions fit into
one Ethereum block, the average gas consumption is necessary. Ethereum’s block gas
limit is 12,500,000.

For this purpose, single transaction calls are created to compare the transaction costs in
the Ganache client.

6.3.4 Multiple year tests
In this test, the smart contract is modified to analyze how the contract behaves over
several years. The “now” function of Solidity returns the current time. This function
defines the pay dates that are used for further tax calculations. Therefore, the “now”
function is replaced with a function that returns dates in the future instead of the current
time. The future time is calculated with the number of seconds that have passed since
the contract creation. The limitation test is adapted for the multiple year usage. This
means that the multiple year test code is a collection of the previous functions and it can
be viewed in the attached code.

64

6.4. Test report

1 function getGeneratedDate(uint currentTime) public view returns(uint date)
{

2 uint timeDiff = currentTime.sub(contractCreationDate);
3 return contractCreationDate.add(timeDiff.mul(70000));
4 }

Listing 6.8: Modified date function

6.4 Test report

6.4.1 Basic function test

To check the results of the basic function test, we look at the results and recalculate the
transaction amounts manually. All functions except the pay corporate tax function are
executed at least once and taxes are withdrawn from the contract immediately afterwards.
The pay corporate tax function is only accessible after a year has passed, which cannot
be done in this test. With a fresh Ganache workspace, 100 new Ethereum addresses are
set to a balance of 100 Ethereum to make changes of address balances comprehensible.
The manually-calculated balances minus transaction costs have to be equal to the address
balances after a basic function test run.

1 Contract: Smart economy basic function test
2 Log: Local tax office address created - getLocalTaxOfficeAddressState returns

true
3 - Initialize smart contract environment - Create local tax office address

(836ms)
4 Log: Social insurance address created - getSocialInsuranceAddressState

returns true
5 - Initialize smart contract environment - Create social insurance address

(1246ms)
6 Log: Individual person address created - getIndividualPersonAddressState

returns true
7 - Initialize smart contract environment - Create individual person

address (1262ms)
8 Log: Business address created - getBusinessAddressState returns true
9 - Initialize smart contract environment - Create business address (1126ms

)
10 Log: Business address 2 created - getBusinessAddressState returns true
11 - Initialize smart contract environment - Create second business address

(1020ms)
12 Log: Transaction pay wage sent. Transaction value = 1242300000000000000 wei
13 - Execute transactions - Pay wage (2008ms)
14 Log: Withdrawed tax office (income tax) = 79700000000000000 wei
15 - Execute transactions - Withdraw tax office balance (income tax) (1796ms

)
16 Log: Withdrawed local tax office (local tax) = 30000000000000000 wei
17 - Execute transactions - Withdraw local tax office balance (local tax)

(362ms)
18 Log: Withdrawed social insurance (social insurance fee) = 393500000000000000

wei

65

6. Tests and emulation

19 - Execute transactions - Withdraw social insurance balance (social
insurance fee) (483ms)

20 Log: Withdrawed tax office (insurance tax) = 5902500000000000 wei
21 - Execute transactions - Withdraw tax office balance (insurance tax) (855

ms)
22 Log: Bill created from business address to individual person
23 - Execute transactions - Create bill to individual person (1234ms)
24 Log: Bill created from business address to business address 2
25 - Execute transactions - Create bill to business address (1143ms)
26 Log: Bill paid by individual person address - value = 1200000000000000000 wei
27 - Execute transactions - Pay bill individual person address (938ms)
28 Log: Withdrawed tax office (sales tax) = 200000000000000000 wei
29 - Execute transactions - Withdraw tax office balance (sales tax) (1721ms)
30 Log: Bill paid by business address - value = 1000000000000000000 wei
31 - Execute transactions - Pay bill business address (1237ms)
32 Log: Withdrawed tax office (zero) = 0 wei
33 - Execute transactions - Withdraw tax office balance (no sales tax

business to business) (1883ms)
34
35
36 16 passing (23s)

Listing 6.9: Basic function test log

After the run, the transactions can be viewed in the Ganache client and the addresses
values changed to a new state. Due to the automining property, there is only one
transaction in each block. The balances of the addresses are changed to new values,
which are compared with the manually-calculated values.

Manual calculation Pay wage 1 ETH

Employee share for social insurance (18.12% of gross value) = 0.1812 ETH

Employer share for social insurance (21.23% of gross value) = 0.2123 ETH

Insurance tax from social insurance to tax office (1.5% of employee + employer share) =
0.0059025 ETH

Local tax for local tax office (3% of gross value) = 0.03 ETH

Income tax (25% of 1 ETH minus employee share and 0.5 ETH tax free) – 0.3188/4 =
0.0797 ETH

Manual calculation Pay bill individual 1 ETH

VAT (20% of price) = 0.2 ETH

Manual calculation Pay bill business 1 ETH

No directly paid tax (but used for corporate tax calculation at end of year)

Comparing the results of the calculation and the balance of the addresses, it can be
observed that the balances of the tax office address and the business address are too low.
These missing values are the transaction costs for proving addresses in case of the tax

66

6.4. Test report

Figure 6.3: Ganache - Basic function test

ETH address Type Start value Contract creation Pay wage
Pay bill individual Pay bill business End value

Index 0 Tax Office 100 ETH -0.1071469 +0.2
+0.2 100.1784781 ETH

Index 1 Local Office 100 ETH +0.03
100.03 ETH

Index 2 Insurance 100 ETH +0.3875975
100.3875975 ETH

Index 3 Individual 100 ETH +0.7391
-1.2 99.5391 ETH

Index 4 Business 100 ETH -1.2423
+1 +1 100.7577 ETH

Index 5 Business 100 ETH
-1 99 ETH

Table 6.3: Manual calculation

67

6. Tests and emulation

Figure 6.4: Ganache - Limitation test

office, paying wage and creating bills in case of the business address (0.01 ETH). Due to
the high transaction costs of the contract creation, it has been added to the calculation.
The contract is designed to spare individual person addresses from transaction costs as
much as possible, which is the reason why the tax office and business addresses have
to carry the most transaction costs. Only paying a bill is a charged transaction with a
relatively low gas usage.

6.4.2 Limitation test

First, the limitation test is executed with two runs, and afterwards the number of runs is
increased as far as possible to gain an idea of what the test environment is capable of.
Due to the disabled automine function and the asynchrony transaction calls, multiple
transactions per block are possible.

Looking at the timestamp of the blocks, it takes about 3 seconds for each block if
transactions are executed, which is the limit for the test environment of this master

68

6.4. Test report

Figure 6.5: Limitation test error

Figure 6.6: Ganache - Consumption test

thesis. Because the block time of the live Ethereum chain is between 10 and 20 seconds,
the test environment is faster, but not able to emulate a much larger time frame in a
shorter time than the original chain.

Increasing the number of runs leads to an error at a transaction call because the EVM
cannot catch up with the incoming transaction calls. For the multiple year test, the
number of transactions is reduced to obtain fewer transactions over a longer period of
time.

6.4.3 Gas consumption test
For each function, the gas consumption is tested to ascertain how much computing
power of the blockchain is necessary to run the smart contract. Because the contract
creates storing objects for addresses per months or per year, varieties between multiple
transaction calls are expected.

Gas price: 20000000000 wei (0.00000002 ETH)

69

6. Tests and emulation

Figure 6.7: Ganache - Consumption test

Figure 6.8: Ganache - Consumption test

70

6.4. Test report

Transaction Gas used* Costs* Gas used Costs
Contract creation 5357346 0.10715 ETH

Create local tax office address 45608 0.00091 ETH
Create social insurance address 46579 0.00093 ETH

Create individual person address 69017 0.00138 ETH
Create business address 67053 0.00134 ETH

Pay wage 487187 0.00974 ETH 119000 0.00238 ETH
Create bill 198207 0.00396 ETH 153207 0.00306 ETH

Create bill business 168207 0.00336 ETH 153207 0.00306 ETH
Pay bill 81530 0.00163 ETH 81542 0.00163 ETH

Pay bill business 183911 0.00368 ETH 102903 0.00206 ETH
Withdraw tax office balance 32418 0.00065 ETH

Withdraw local tax office balance 21287 0.00043 ETH
Withdraw social insurance balance 21972 0.00044 ETH

Table 6.4: Gas usage

*The first transaction per receiver is more expensive due to object creation in the smart
contract.

Because the pay wage transaction triggers the most tax events, it needs the most
computing power and therefore consumes the most gas. In return, the other functions
are relatively cheap in comparison with a simple transaction, which has a minimum gas
limit of 21,000.

6.4.4 Multiple year test
To test the tax calculation over an entire year, the now function was replaced with a time
multiplier of 70,000 and the waiting time in the limitation test is adjusted. After the test
runs, the blockchain status can be viewed by adding the contract address to the smart
economy website code and a connection to the local testnet via MetaMask. By adding
the private keys of the test environment, further transactions like paying corporate tax
are executed and tested.

71

6. Tests and emulation

Figure 6.9: Multiple year test results

Figure 6.10: Multiple year test results

Figure 6.11: Multiple year test results

72

6.4. Test report

Figure 6.12: Multiple year test results

73

CHAPTER 7
Analysis

In this part, the technical aspects of the implementation are analyzed with the findings
of the tests. First, the functionality of the smart contract implementation is analyzed,
before the two research questions of the testing part are examined.

• Is the current Ethereum blockchain able to carry out a sufficient number of trans-
actions needed by the Austrian economy per year?

• Which modifications are necessary to test multiple year usage of the smart contract
on a local network?

• Are smart contracts suitable to implement tax laws?

7.1 Functionality
The functionality of the smart contract behaves as expected with the performed tests.
The report of the basic function test shows how the cash flow is redirected to the correct
addresses and how the tax calculation is undertaken. The monthly social insurance
calculation base and the yearly income of individual person addresses are stored correctly
in the blockchain and can be viewed on the website. Business addresses are able to create
bills, pay wages and pay their yearly corporate tax as expected. The yearly corporate
income is also stored on the blockchain and can be viewed. If a bill receiver pays the
bill, the price is calculated correctly for individual person addresses with VAT or without
VAT for business addresses. The tax office address, local tax office and social insurance
addresses are able to view and withdraw the collected taxes from the smart contract. This
closes the part of the business cycle, which was the goal of this thesis. The smart contract
shows that it is possible to implement a smart economy platform with an integrated tax
system. The next step of testing would be with multiple test users and more optimization
steps of the smart contract, although this is not possible with the resources of this master

75

7. Analysis

thesis and thus is left to further research. Although the functionality is an important
aspect of this research, this does not mean that the blockchain is capable of processing a
sufficient number of transactions for an entire country.

7.2 Live performance estimation
For the live performance estimation, the gas usage of our test environment is used to
calculate the number of transactions per block. Due to the low amount of transaction
numbers compared with the other functions, contract creation, withdraw tax and pay
corporate tax are not taken into account. The current gas limit is 12,500,000. For the
pay wage function, the expensive gas price is used because the smart contract creates an
object each month, which means that the transaction in each month will have a higher
gas price. For the other functions, an average value between the higher and the lower
gas amount is used.

Transaction Gas usage Transactions per block
Blocks per year Transactions per year Transactions in Austria

Pay wage 480,000 26
2,339,650 60,830,900 36,530.712
Create bill 170,000 73
2,339,650 170,794,450 9,760,000,000*
Pay bill 81,600 153

2,339,650 357,966,450 9,760,000,000*
Pay bill business 130,000 96

2,339,650 224,606,400 9,760,000,000*

Table 7.1: Live performance estimation

*Only cashless transactions 1,952,000,000.

The calculation shows that the blockchain would be capable of processing the wage
transaction, but it would need more than the half of the total transaction power to do so.
Comparing the numbers of sale transactions, the weakness of the current live network is
clearly visible. The current Ethereum implementation has a scalability problem and is
not ready for mass adoption. The relatively low number of feasible transactions already
leads to high gas prices, which means expensive transactions for every user. The miners
always process transactions with a higher gas price first. A high demand leads to an
increase of gas price because users have to bid a higher price to receive faster transactions.
It does not slow down the blockchain as a whole given that the gas limit is separated
from the gas price. Such expensive transactions are a major problem for the network
because it makes it less usable for casual users and more complex smart contracts with
high gas usage. In summary, the current Ethereum blockchain is unable to carry out a
sufficient number of transactions needed by the Austrian economy per year.

76

7.3. Long-term test analysis

7.3 Long-term test analysis
The modification of the elapsed time since contract creation works well by creating a
new function that returns a later date. The modified contract has an adjustable time
multiplier for the time since contract creation. In this master thesis, this is used to
test contract functions that are only accessible after a year has passed, but with more
qualitative data from the government and enhancements of the smart contract code
for a specific problem statement it also could be used as a tool to simulate economy
effects or analyze tax law changes. The number of transactions is still restricted by the
capabilities of the testing environment, although the time between the transaction can be
adjusted freely. Because the smart contract works with the current block time and some
functions depending on this time, it is the only possibility to show the full capabilities
of the smart contract in a reasonable amount of time. In summary, the analysis shows
that theoretically a smart economy system could work but practically the network is not
capable of processing such a high number of transactions.

7.4 Smart contracts and tax law
From the view of programming, the smart contract programming language solidity
provides the functionality to execute automated tax calculation and transfer. A smart
contract is able to comprise the main transactions of the Austrian tax system. Despite this,
a solution for better performance and automated external input is needed. The entire tax
system of a single country seems to complex for implementing on a global permissionless
blockchain, mainly because the largest part of tax transactions are located in Austria
and there is no need for publishing globally. Therefore a permissioned blockchain for
local purposes would make sense.

77

CHAPTER 8
Conclusion and outlook

First of all, it is important to mention that the real taxation system in Austria is more
complex than the implementation. Given the diverse business entities in an economy,
there are exceptions for specific industries. Furthermore, the thesis completely ignores
imports and exports that have their own tax laws. The focus of this thesis is not to
implement the total complexity of the tax law, but rather it shows that it is technically
possible to implement a simpler version of it. For developing the total complexity of the
current law, more specific entities and multiple smart contracts are necessary. Based on
this concept, the development of more specific tax functions is possible because the basic
functionality for all relevant transaction is already implemented and works well. The
implementation simplifies the economic processes to a level that includes all transactions.
Therefore, the VAT percentage has to be inserted by the business address owner when
creating a bill. This input needs knowledge about the tax law, whereby a business address
owner needs an accountant for this purpose. In a more complex version, this input should
also be automatically selected to reduce this source of errors. In my opinion, the current
tax law is not suitable to be processed automatically. If someday taxes will become an
automated process, there may be a shift how thinking about tax calculation from a legal
prospect to a more logical, code-like approach. Despite the incapability with specialties
of the tax laws, the created business cycle model from the beginning of the thesis is fully
implemented and works flawlessly. Due to the current byte limit of a single contract, it
is necessary to divide the code to multiple smart contracts and implement interfaces to
connect them. Because the implementation is close to this byte limit, this is necessary
for every extension of the code. Thinking bigger, each European country could have such
smart contracts with interfaces for other countries to simplify the taxation across country
borders.

The truffle testing environment with visual studio code is a suitable way to test the
contract by creating automated transaction calls. The tests of the thesis can prove the
functionality, but by including an economical database an accurate simulation of the

79

8. Conclusion and outlook

cash flow is possible. Even with the simple test data, it is interesting how the money is
distributed over time. Besides the data, the income tax function would need to be revised
for testing with real-world data. Due to the differential prices for higher income, this
function is connected to the current price of Ethereum, which is continuously changing.
To erase the fluctuation of the Ethereum price completely out of the picture of this smart
contract, a ERC20 stable coin could be implemented. Essentially with some additions,
the contract could also work with a digital Euro when invented. At present, there is an
ERC20 token called DAI, which is implemented to hold the price of 1$ exactly for the
purpose of having the possibility of a crypto currency with a stable price.

The current Ethereum blockchain is unable to process this number of transactions and
even if it could, the gas prices for the transactions would be too high for mass usage
like this. The capabilities of the chain have to increase drastically to be able to provide
the transaction volume for mass products like a smart economy system. This brings us
to the outlook of the Ethereum development. There are two approaches to scale the
transaction volume. On the one hand, there are second-layer solutions in work to improve
the transaction handling of an application for example zero knowledge proof. On the
other hand, the Ethereum network is also still in development. At present, an ETH2
chain is developed to move from proof-of-work to a PoS system and implement sharding.
Sharding splits the system to multiple synchronized chains and increases the scalability
of the chain. If this project is successful, smart contracts for mass projects could be
possible.

More effective and easier to handle is a permissioned sidechain to handle the amount of
transactions and create interfaces to the main network. With such interfaces external
transactions are possible and internal transactions are cheaper. Because of the locality of
tax laws it is not necessary to implement on a global network, but an interface could
simplify tax charge for foreign trades.

Nonetheless, it is necessary to set legal regulations to crypto currencies or crypto assets
before it is used by a majority to protect the people from fraudulent projects and enable
other projects to earn trust. In other industries, this is achieved through the introduction
of standards and seals of approval. Global quality guidelines would open up the market
for more reasonable and trustworthy companies and developers across the globe. In
summary, there is still a long way to go to have a decentralized economy system, but the
first steps have been taken. This thesis shows that it is possible to implement a system,
but it also shows that the current state of development is not sufficiently advanced to
run it on the Ethereum live chain.

80

List of Figures

1.1 Design Science IS Research Framework . 8

2.1 Ethereum components . 15
2.2 Smart contract example . 16
2.3 App and dApp comparison . 18

3.1 Business cycle [wika] . 20
3.2 Basic transaction model . 26
3.3 Transaction model income taxes . 27
3.4 Transaction model VAT . 28
3.5 Transaction model social insurance . 28
3.6 Transaction model local tax . 29
3.7 Transaction model capital return tax . 29
3.8 Transaction model individual taxes . 30
3.9 Class diagram . 31

5.1 Website . 46
5.2 All bills . 46
5.3 Create bills . 47
5.4 My corporate tax . 48
5.5 Pay wage . 48
5.6 Contract balance . 49

6.1 Transactions in Austria [Moh] . 58
6.2 Transactions in Europe [staa] . 59
6.3 Ganache - Basic function test . 67
6.4 Ganache - Limitation test . 68
6.5 Limitation test error . 69
6.6 Ganache - Consumption test . 69
6.7 Ganache - Consumption test . 70
6.8 Ganache - Consumption test . 70
6.9 Multiple year test results . 72
6.10 Multiple year test results . 72
6.11 Multiple year test results . 72
6.12 Multiple year test results . 73

81

List of Tables

3.1 Income tax rates [Fin] . 21

6.1 Business participant numbers . 57
6.2 Transaction numbers . 60
6.3 Manual calculation . 67
6.4 Gas usage . 71

7.1 Live performance estimation . 76

83

Bibliography

[AACD20] Omar Ali, Mustafa Ally, Clutterbuck, and Yogesh Dwivedi. The state of
play of blockchain technology in the financial services sector: A systematic
literature review. International Journal of Information Management; Volume
54, October 2020, 102199, 2020.

[Anw19] Datta Anwitaman. Blockchain in the government technology fabric. IIAS-
Lien 2019 conference: Science, Technology and Innovation Policies track,
2019.

[ARAL20] Afiya Ayman, Shanto Roy, Amin Alipour, and Aron Laszka. Smart contract
development from the perspective of developers: Topics and issues discussed
on social media. Accepted for publication in the proceedings of the 4th
Workshop on Trusted Smart Contracts (WTSC) in association with Financial
Cryptography (FC 2020)., 2020.

[AS19] Monika Di Angelo and Gernot Salzer. A survey of tools for analyzing ethereum
smart contracts. 2019 IEEE International Conference on Decentralized
Applications and Infrastructures (DAPPCON), 2019.

[Ben20] Abdeljalil Beniiche. A study of blockchain oracles.
https://arxiv.org/abs/2004.07140, 2020.

[BI19] Michael T. Belongia and Peter N. Ireland. A classical view of the business
cycle. Working Paper Series, 2019.

[BKB+07] Pearl Brereton, Barbara A. Kitchenham, David Budgen, Mark Turner, and
Mohamed Khalil. Lessons from applying the systematic literature review
process within the software engineering domain. Journal of Systems and
Software, 80:571–583, 2007.

[Blo] Blockgeeks. Smart contract platforms [a deep dive
investigation]. https://blockgeeks.com/guides/
different-smart-contract-platforms.

[CMO18] Giovanni Ciatto, Stefano Mariani, and Andrea Omicini. Blockchain
for trustworthy coordination: A first study with linda and ethereum.
IEEE/WIC/ACM International Conference on Web Intelligence (WI), 2018.

85

https://blockgeeks.com/guides/different-smart-contract-platforms
https://blockgeeks.com/guides/different-smart-contract-platforms

[con] consensys. Defi. https://consensys.net/blockchain-use-cases/
decentralized-finance.

[eip] Eip-3675: Upgrade consensus to proof-of-stake. https://github.com/
ethereum/EIPs/pull/3675.

[eth] ethereum.org. https://www.ethereum.org.

[Fin] Bundesministerium Finanzen. Steuern von a-z. https://www.bmf.gv.
at/themen/steuern/steuern-von-a-bis-z.html.

[FMHC20] Md Sadek Ferdous, Jabed Mohammad Morshed, Mohammad A. Hoque, and
Alan Coleman. Blockchain consensus algorithms: A survey. arXiv:2001.07091,
2020.

[gol] golden. https://golden.com/wiki/Metamask.

[HMPR04] Alan R. Hevner, Salvatore T. March, Jinsoo Park, and Sudha Ram. Design
science in information systems research. MIS Quarterly, 28:75–105, 2004.

[JSK+17] Aljosha Judmayer, Nicholas Stifter, Katharina Krombholz, Edgar Weippl,
Elisa Bertino, and Ravi Sandhu. Blocks and chains: Introduction to bitcoin,
cryptocurrencies, and their consensus mechanisms. Synthesis Lectures on
Information Security, Privacy, & Trust, 9(1):1–123, 2017.

[LXB+21] Qinghua Lu, Xiwei Xu, H.M.N. Dilum Bandara, Shiping Chen, and Liming
Zhu. Patterns for blockchain-based payment applications. arXiv:2102.09810v2,
2021.

[met] Metamask. https://metamask.io.

[min] Mining. https://ethereum.org/en/developers/docs/
consensus-mechanisms/pow/mining/.

[Moh] Martin Mohr. Nur bares ist wahres.
https://de.statista.com/infografik/8808/
anteile-von-zahlungsmitteln-in-oesterreich.

[ora] Oracles. https://ethereum.org/en/developers/docs/oracles/.

[PB17] Joseph Poon and Vitalik Buterin. Plasma: Scalable autonomous smart
contracts. https://plasma.io/, 2017.

[PP15] Gareth W. Peters and Efstathios Panayi. Understanding modern bank-
ing ledgers through blockchain technologies: Future of transaction process-
ing and smart contracts on the internet of money. Available at SSRN:
https://ssrn.com/abstract=26 or http://dx.doi.org/10.2139/ssrn.2692487,
2015.

86

https://consensys.net/blockchain-use-cases/decentralized-finance
https://consensys.net/blockchain-use-cases/decentralized-finance
https://github.com/ethereum/EIPs/pull/3675
https://github.com/ethereum/EIPs/pull/3675
https://www.ethereum.org
https://www.bmf.gv.at/themen/steuern/steuern-von-a-bis-z.html
https://www.bmf.gv.at/themen/steuern/steuern-von-a-bis-z.html
https://golden.com/wiki/Metamask
https://metamask.io
https://ethereum.org/en/developers/docs/consensus-mechanisms/pow/mining/
https://ethereum.org/en/developers/docs/consensus-mechanisms/pow/mining/
https://de.statista.com/infografik/8808/anteile-von-zahlungsmitteln-in-oesterreich
https://de.statista.com/infografik/8808/anteile-von-zahlungsmitteln-in-oesterreich
https://ethereum.org/en/developers/docs/oracles/

[PP19] Gareth W. Peters and Efstathios Panayi. An empirical study into the success
of listed smart contracts in ethereum. IEEE Access. PP. 1-1. 10.1109/AC-
CESS.2019.2957284., 2019.

[Rob19] Peter Robinson. The merits of using ethereum mainnet as a coordination
blockchain for ethereum private sidechains. Published by Cambridge University
Press, 2019.

[SLL17] Karol Szomolányi, Martin Lukáčik, and Adriana Lukáčiková. Business cycles
in european post-communist countries. Contemporary Economics, 11(2):171–
186, 2017.

[SLS20] Chiara Spadafora, Riccardo Longo, and Massimilano Sala. A coercion-
resistant blockchain-based e-voting protocol with receipts. Advances in
Mathematics of Communications, doi: 10.3934/amc.2021005, 2020.

[Soe21] Mark Soelman. Permissioned blockchains: A comparative study. University
of Groningen, Faculty of Science and Engineering, 2021.

[sol] solidity.readthedocs.io. Solidity documentary. https://solidity.
readthedocs.io/en/v0.5.12.

[staa] statista. https://de.statista.com/
statistik/daten/studie/202813/umfrage/
eu-laender-mit-den-meisten-transaktionen-im-bargeldlosen-zahlungsverkehr.

[Stab] Bootstrap 4 Get Started. w3schools. https://www.w3schools.com/
bootstrap4/bootstrap_get_started.asp.

[WE20] Martin Westerkamp and Jacob Eberhardt. zkrelay: Facilitating sidechains
using zksnark-based chain-relays. IEEE European Symposium on Security
and Privacy Workshops (EuroS&PW), 2020.

[wika] wikibooks.org. Wirtschaftsteilnehmer. https://de.
wikibooks.org/wiki/Betriebswirtschaft/_Grundlagen/
_Wirtschaftsteilnehmer.

[wikb] wikipedia.org. Wirtschaftskreislauf. https://de.wikipedia.org/
wiki/Wirtschaftskreislauf.

[YLS+18] Bin Yu, Joseph Liu, Amin Sakzad, Surya Nepal, Ron Steinfeld, Paul Rimba,
and Man Ho Au. Platform-independent secure blockchain-based. Chen L.,
Manulis M., Schneider S. (eds) Information Security. ISC 2018. Lecture
Notes in Computer Science, vol 11060. Springer, Cham., 2018.

[YMRP19] Renlord Yang, Toby Murray, Paul Rimba, and Udaya Parampalli. Empirically
analyzing ethereum’s gas mechanism. 4TH IEEE EUROPEAN SYMPOSIUM
ON SECURITY AND PRIVACY WORKSHOPS (EUROS&PW), 2019.

87

https://solidity.readthedocs.io/en/v0.5.12
https://solidity.readthedocs.io/en/v0.5.12
https://de.statista.com/statistik/daten/studie/202813/umfrage/eu-laender-mit-den-meisten-transaktionen-im-bargeldlosen-zahlungsverkehr
https://de.statista.com/statistik/daten/studie/202813/umfrage/eu-laender-mit-den-meisten-transaktionen-im-bargeldlosen-zahlungsverkehr
https://de.statista.com/statistik/daten/studie/202813/umfrage/eu-laender-mit-den-meisten-transaktionen-im-bargeldlosen-zahlungsverkehr
https://www.w3schools.com/bootstrap4/bootstrap_get_started.asp
https://www.w3schools.com/bootstrap4/bootstrap_get_started.asp
https://de.wikibooks.org/wiki/Betriebswirtschaft/_Grundlagen/_Wirtschaftsteilnehmer
https://de.wikibooks.org/wiki/Betriebswirtschaft/_Grundlagen/_Wirtschaftsteilnehmer
https://de.wikibooks.org/wiki/Betriebswirtschaft/_Grundlagen/_Wirtschaftsteilnehmer
https://de.wikipedia.org/wiki/Wirtschaftskreislauf
https://de.wikipedia.org/wiki/Wirtschaftskreislauf

[YW18] Yong Yuan and Fei-Yue Wang. Blockchain and cryptocurrencies: Model,
techniques, and applications. IEEE Transactions on Systems, Man, and
Cybernetics: Systems, 48:1421–1428, 2018.

88

Attachment

89

1

Review Protocol - Smart economy

Research questions

A systematic review

Organization, City, Country: TU Wien, Wien, Austria

Prepared by: Ing. Oliver Steizinger BSc

Date: February 2020

Supervisor: Privatdoz. Mag.rer.soc.oec. Dipl.-Ing. Dr.techn. Weippl Edgar

Research team members: Ing. Oliver Steizinger BSc

How can state of the art blockchain systems help us to
automate economic processes?

Model the participants and functions of Austrian economy.
How can we define a business cycle between governments,

social insurance, companies and consumer?

2

Table of Contents

1.0 Background ... 3

2.0 Objective... 3

3.0 Review Questions.. 3

3.1 Blockchain systems ... 3

3.2 Business Cycle ... 3

4.0 Evidence gathering and study selection.. 4

4.1 Evidence gathering.. 4

4.1.1 Searching databases.. 4

4.1.2 Hand searching.. 4

4.1.3 Reference searches ... 4

4.2 Eligibility criteria.. 5

4.2.1 Types of studies... 5

4.2.2 Types of systems ... 5

4.2.3 Outcome ... 5

4.3 Exclusion criteria ... 6

5.0 Data extraction ... 6

Appendix A.. 7

Appendix B.. 8

Appendix C.. 9

3

1.0 Background

2.0 Objective

3.0 Review Questions
For the purposes of this literature review, the population, intervention, comparators and outcomes
(PICO) framework to inform the review objectives are presented below.

3.1 Blockchain systems
Population Intervention Comparison Outcome
Programmable
blockchain systems
(smart contracts)

Ability to develop
business functions
within the blockchain
system

Unability to develop
business functions
within the blockchain
system

Quality and relevance
of running blockchain
systems

3.2 Business Cycle
Population Intervention Comparison Outcome
Business cycle
models

Relevance for a
business cycle model
in Austria

No relevance for a
Business Cycle model
in Austria

Gather relevant information
for development of a
business cycle model in
Austria

Business informatics at TU-Wien is a study of informatics, economy and the connection between
these disciplines. From the perspective of a computer scientist, the models which are used to
calculate and predict the economy seem simple in the first place but can evolve to complex
structures and are always influenced by social phenomena. That’s why you have to assume a lot
of parameters and use simplifying solutions. It's not a natural science like physics or biology.
Economics is man-made and doesn't follow natural laws and is not entirely consequential like
other sciences. As a programmer you have to accept that the current economic system is not
entirely computable or predictable. Social issues have impact on the economic system what
makes it impossible to compute exactly what will happen. Simulations are thus an important
alternative for studying our economic model. This brings us to the motivation for this research: I
want to create a small economic system within the decentralized Ethereum blockchain platform
and build a test environment to find out the limitations of the current Ethereum implementation.
This simulation should demonstrate how an automated economic system could work.

1. To investigate the current state of the art blockchain systems and their relevance in future
economic processes.

2. To create a business cycle model for the Austrian economy including all business participants
and business functions within the country.

4

4.0 Evidence gathering and study selection
See Appendix A for the list of databases, websites and journals which may be searched.

4.1 Evidence gathering
The evidence gathering approach will have four components:

4.1.1 Searching databases
The databases in the table below will be searched with a pre-determined strategy as detailed in
Appendix B. Due to lack of resources and manpower a small number of databases available from the TU
Wien library will be used for the literature research.

Topic/Field Database
Computer science IEEE Xplore / Electronic Library Online (IEL)
Economics ABI/INFORM Collection
Interdisciplinary Scopus

4.1.2 Hand searching
The following websites and whitepapers will be hand-searched for relevant information:

Resources that will be searched by hand
Websites:

 https://www.blockchainforscience.com/
 https://www.frontiersin.org/journals/blockchain
 https://www.blockchainstudies.org/
 http://blockchain.mit.edu/
 https://www.blockchain-lab.org/
 http://blockchain.cs.ucl.ac.uk/
 https://www.blockchainresearchinstitute.org/

Whitepapers:
 Ethereum
 RSK
 Stellar
 TRON
 NEO

4.1.3 Reference searches
Bibliographies of those papers that match the eligibility criteria below will be searched by hand to
identify any further, relevant references, which will be subject to the same screening and selection
process.

5

4.2 Eligibility criteria
After gathering the evidence, the following eligibility criteria will be applied to the results and all
identified references screened using a three-stage approach to reviewing the title, abstract and
conclusion. The list of relevant research after reviewing the title is attached in Appendix C.

4.2.1 Types of studies
All types of evaluative study designs are eligible for inclusion, including grey literature. Studies will not
be selected on methodological quality. Furthermore the whitepapers of selected blockchain systems will
be reviewed.

4.2.2 Types of systems

4.2.3 Outcome

Blockchain systems:

All programmable blockchain systems will be reviewed. In other words, the reviewed systems
must have the ability to write smart contracts. The research will include a list of advantages and
disadvantages of each relevant blockchain platform. Moreover blockchains with doubtful
decentralized algorithms will be rejected. Systems with a life cycle of at least two years will be
examined. Furthermore literatures similar to the research topic are examined.

Business cycles:

The main target of this review is to gather a theoretical background of business cycle systems.
Therefore basic literature about business cycles will be reviewed. Furthermore business models
of European countries with similarity to the Austrian economy will be examined.

Blockchain systems:

The outcome of the blockchain-literature review is a general description of smart contract
systems and a comparison of relevant smart contract systems. This information is used for the
selection of the smart contract system in this thesis.

Business cycles:

The business cycle research will be performed to build a model of the Austrian economy model.
Therefore the outcome of the literature review will be a basic theoretical analysis of business
cycles. Furthermore existing business models will be reviewed.

6

4.3 Exclusion criteria

5.0 Data extraction
Data will be extracted from relevant papers using predefined information specification templates
attached in Appendix c. Data will be collected regarding the reasons for exclusion, characteristics of
included studies, systems and outcome.

Due to the fact that blockchain systems are a new technology, papers older than five years will
be excluded. Business cycle literature older than ten years will be excluded due to lack of
resources of this project. Failure to meet any one of the above eligibility criteria (section 4.2) will
result in exclusion from the review. The number of excluded studies (including reasons for
exclusion for those excluded following review of the full text) will be recorded at each stage.

7

Appendix A
Databases
Databases for computer science:

 ACM: Association for Computing Machinery Digital Library
 IEEE Xplore (IEE/IEEE)
 Scopus (Elsevier)
 Inspec: Engineering Research Database
 Web of Science (Clarivate Analytics)
 ProQuest
 CiteSeerX
 DBLP
 JSTOR
 Compendex
 The Collection of Computer Science Bibliographies
 ZDE Elektrotechnik, Elektronik und Informationstechnik

Databases for economics:
 ABI/INFORM Collection
 AgEcon Search
 BEFO Betriebsführung und Betriebsorganisation
 EconBiz
 EconLit
 NBER: National Bureau of Economic Research
 RePEc: Research Papers in Economics
 Social Sciences Citation Index (Web of Science)
 OECD iLibrary
 International Historical Statistics
 JSTOR
 Scopus

General databases:
 Google Scholar

e-Journal Collections
Databases for computer science:

 SpringerLink
 ScienceDirect
 Wiley Online Library

8

Resources for search by hand
Websites:

 https://www.blockchainforscience.com/
 https://www.frontiersin.org/journals/blockchain
 https://www.blockchainstudies.org/
 http://blockchain.mit.edu/
 https://www.blockchain-lab.org/
 http://blockchain.cs.ucl.ac.uk/
 https://www.blockchainresearchinstitute.org/

Whitepapers:
 Ethereum
 EOS
 Cardano
 RSK
 Stellar
 TRON
 Hyperledger
 Parity
 NEO

Appendix B
Blockchain search strategy:

Blockchain AND Smart Contract AND (Economy OR tax OR Finance)

Blockchain search results:

IEEE

Scopus

9

Business Cycle search strategy:

("Business cycle model" OR "Business participants" OR "Economy participants" OR "Economy model")
AND "Europe" AND "Tax"

Publication dates from 2010 to now

Business Cycle search results:

ABI/INFORM

Scopus

Appendix C – Paper Reviews

10

Paper Reviews - Blockchain

Searching databases

Topic/Field Database
Computer science IEEE Xplore / Electronic Library Online (IEL)
Interdisciplinary Scopus

Search query

Search results

IEEE

Scopus

Organization, City, Country: TU Wien, Wien, Austria

Prepared by: Ing. Oliver Steizinger BSc

Date: February 2020

Research team members: Ing. Oliver Steizinger BSc

Blockchain AND Smart Contract AND (Economy OR tax OR Finance)

11

Title: Blockchain-Enabled Smart Contracts: Architecture, Applications, and Future Trends

Year/Source: 2019/IEEE

Author: Shuai Wang ; Liwei Ouyang ; Yong Yuan ; Xiaochun Ni ; Xuan Han ; Fei-Yue Wang

Abstract Summary:

The first part of the abstract is general information about blockchain and a reminder of the
development status of such systems. Then the three parts of the paper are described.

 Introduction of the operating mechanism and mainstream platforms of blockchain-enabled
smart contracts, and proposed a research framework for smart contracts based on a novel six-
layer architecture

 Both the technical and legal challenges, as well as the recent research progresses, are listed
 Presentation of several typical application scenarios
 Discussion of the future development trends of smart contracts

Conclusion Summary:

In the conclusion the authors bring out the popularity of blockchain and smart contracts in both
academic and industrial communities. Smart contracts are expected to revolutionize traditional
industries without involvements of a trusted authority or a central server. Furthermore the conclusion
describes the four parts of the paper like in the abstract.

12

Title: Towards a Decentralized Data Marketplace for Smart Cities

Year/Source: 2018/IEEE

Author: Gowri Sankar Ramachandran ; Rahul Radhakrishnan ; Bhaskar Krishnamachari

Abstract Summary:

Due to the fact that prior projects have examined centralized data marketplaces for smart cities, this
paper explores how a decentralized data marketplace could be created using blockchain and other
distributed ledger technologies. It considers possible benefits, identifies different elements and shows
how these elements could be potentially integrated into a solution. Furthermore a simple smart
contract of a decentralized registry is presented.

Conclusion Summary:

In the conclusion following challenges of decentralized marketplaces are presented:

 Managing system complexity
 Economic incentives and centralization
 Applications and interfaces

In ongoing work the researcher will try to refine the various elements of the architecture and build a
working prototype that assembles all the pieces into a functioning system.

13

Title: Analyzing Financial Smart Contracts for Blockchain

Year/Source: 2018/IEEE

Author: Muskan Vinayak ; Har Amrit Pal Singh Panesar ; Saulo dos Santos ; Ruppa K. Thulasiram ;
Parimala Thulasiraman ; S.S. Appadoo

Abstract Summary:

The first part of the abstract mentions that crypto currencies evolved to smart contracts which can be
used for different applications such as Option Pricing, Currency Exchange, Revenue Management
System, Crowd-funding and Peer-to-Peer networking. The aim of the paper is to construct a smart
contract that could be used to take various possible positions in a European style option. Potential
security vulnerabilities are analyzed.

Conclusion Summary:

Two main contributions of the study:

 Creating a Smart Contract for depicting the functionality of an European Option
 Analyzing the developed contract using a pre-existing tool Oyente

Possible scenarios:

 user sending sufficient premium or not for holding/buying a call option. Also, if the contract has
sufficient balance to be fixed for settlement

 user sending enough money to be fixed for settlement of the contract or not being a writer of
the call option

Some of the essential conditions required to properly implement the contract on Blockchain are not
currently available and hence are depicted as flaws in Oyente.

14

Title: Development of a Road Tax Payment Application using the Ethereum Platform

Year/Source: 2018/IEEE

Author: Daniel Zinca ; Vlad-Andrei Negrean

Abstract:

This paper describes the development of a road tax payment application using the Ethereum platform.
The web solution was developed using the ReactJS platform. The smart contract was developed using
Remix.

Conclusion:

The proposed solution describes a system for the online payment of the road tax that uses
cryptocurrencies and blockchain for increased database security and faster international transaction
processing.

The system is comprised of two parts: the Ethereum contract and the web application.

The solution stands as a viable one for the road tax payment due to lower costs, processing speed and
increased security.

Extended features that we intend to implement in the foreseeable future:

 Multiple tax pay (not limited to driving related activities) including driving penalties, household
taxes, etc.

 Alternative cryptocurrency payment options (Bitcoin, Litecoin, etc).
 Adjusting the application interface for mobile platforms.
 API development for instant checking by the traffic surveillance solutions.

15

Title: Blockchain for Trustworthy Coordination: A First Study with LINDA and Ethereum

Year/Source: 2018/IEEE

Author: Giovanni Ciatto ; Stefano Mariani ; Andrea Omicini

Abstract Summary:

The study is focused on the Ethereum blockchain technology, map it onto LINDA tuple-based
coordination model, and discuss two proof-of-concept implementations of LINDA on Ethereum.
Conceptual and technical feasibility of blockchain-based coordination in multi-agent systems are
discussed in the study.

Conclusion Summary:

Goal:

 reporting about feasibility of implementing a LINDA-like tuple-based coordination service on top
of a reference blockchain technology

 shedding some light on the most notable issues arising when doing so—e.g., the economical
impact of performing coordination operations

The paper shows how LINDA can be implemented on Ethereum and issues are analyzed.

Next steps:

 performing a comparison of different implementations of our contract space concept on top of
different blockchain technologies, thus of different smart contracts implementations - for
instance HLF and Corda

 defining a rigorous formalisation of the semantics behind different blockchain and smart
contract models in terms of their potential coordination capabilities

16

Title: Blockchains as Enablers for Auditing Cooperative Circular Economy Networks

Year/Source: 2018/IEEE

Author: George Alexandris ; Vassilis Katos ; Sofia Alexaki ; George Hatzivasilis

Abstract Summary:

In this study a collaborative circular economy business model is proposed, where the circular economy
cycle is materialized by assets transitioning between asset operators on a demand driven approach. The
common view of asset state between all parties can be enabled by blockchains and smart contracts,
which can provide the underlying technology to share data with integrity, while simultaneously offering
more efficient interoperability between participants. A conceptual asset record and sharing mechanism
is presented.

Conclusion Summary:

Governmental environmental authorities by virtue of their role as a regulator can leverage the benefits
of blockchains while retaining a sufficient degree of control over the blockchain application. This makes
a common view of all monitored assets possible, shared by all current and prospective controlling
entities of assets, while at the same time, and ensures that asset operators retain complete control of
their asset’s state record. Smart Contracts play a pivotal role towards offering granular and dynamic
control of a state record. We have shown that they can be flexible enough to satisfy the main
requirements for implementing and accessing asset records.

17

Title: What Is the Blockchain?

Year/Source: 2017/IEEE

Author: Massimo Di Pierro

Abstract:

Blockchain is a new technology, based on hashing, which is at the foundation of the platforms for
trading cryptocurrencies and executing smart contracts. This article reviews the basic ideas of this
technology and provides a sample minimalist implementation in Python.

Conclusion Summary:

The conclusion of the paper points out that there are different cryptocurrencies run on different
platforms and make different storage and hashing choices. Furthermore there are different
implementations of the algorithm for a single cryptocurrencies. The functionality of a smart contract is
described briefly.

18

Title: Validation and Verification of Smart Contracts: A Research Agenda

Year/Source: 2017/IEEE

Author: Daniele Magazzeni ; Peter McBurney ; William Nash

Abstract:

Smart contracts might encode legal contracts written in natural language to represent the contracting
parties' shared understandings and intentions. The issues and research challenges involved in the
validation and verification of smart contracts, particularly those running over blockchains and
distributed ledgers, are explored.

Summary:

This paper is a detailed technical description of blockchain and smart contracts.

19

Title: Smart-CPR: Self-Organisation and Self-Governance in the Sharing Economy

Year/Source: 2017/IEEE

Author: David Burth Kurka ; Jeremy Pitt

Abstract Summary:

The paper shows that it is possible to develop a system for common-pool resource management with
smart contract technologies. The results demonstrate that the model -- the Smart-CPR - is able to
distribute resources efficiently and is capable of detecting and punishing non-compliant or unhelpful
behavior.

Conclusion:

In this work we demonstrated that with the automation brought with smart-contracts and blockchain,
combined with the computational justice framework, it is possible to build a system to solve the
problem of distributed supply and demand in efficient and self-organised ways.

We have shown how the Smart-CPR can efficiently act scheduling allocations in cases of full compliance
and how processes of self-organisation in the rules' definition prevent the abuses of malicious agents.

20

Title: The Advantages and Disadvantages of the Blockchain Technology

Year/Source: 2018/IEEE

Author: Julija Golosova ; Andrejs Romanovs

Abstract Summary:

In this paper the description of the Blockchain technology, and it advantages and disadvantages are
analyzed. Many already implemented applications of Blockchain technology were studied, as well as
affected success or problems factors during the implementations.

Conclusion Summary:

Advantages and dangers of blockchain systems are briefly discussed.

21

Title: Blockchains and International Business

Year/Source: 2019/IEEE

Author: Nir Kshetri

Abstract:

Discusses how blockchain is transforming international business practices and relatioships. Blockchain
and smart contracts are transforming international trade activities. Proof-of-concepts (PoCs),
prototypes, pilot projects, and actual deployments indicate that smart contracts can bring benefits to
those involved in trading.

Conclusion Summary:

In the summary some benefits of blockchain solutions in economy are discussed.

22

Title: Lowering Financial Inclusion Barriers with a Blockchain-Based Capital Transfer System

Year/Source: 2019/IEEE

Author: Alex Norta ; Benjamin Leiding ; Alexi Lane

Abstract Summary:

The abstract is a description how crypto currencies can improve financial transactions focused on the
crypto currency Everex.

Conclusion Summary:

In the conclusion the benefits of a crypto-based capital transfer system with stable coins like Everex are
discussed. A short preview of future releases with functionality for lending are presented.

23

Title: Design and Implementation of Financial Smart Contract Services on Blockchain

Year/Source: 2019/IEEE

Author: Vinayak, M., Santos, S.D., Thulasiram, R.K., Thulasiraman, P., Appadoo, S.S.

Abstract Summary:

In this paper, an implementation of the financial instrument, a collateral smart contract services (CSCS)
with Hyperledger Fabric network is presented.

Conclusion Summary:

A financial smart contract for collateral services on Hyperledger Fabric has been successfully designed.
Challenges for programming with Hyperledger Fabric are discussed.

24

Title: Smart contract programming languages on blockchains: An empirical evaluation of usability and
security

Year/Source: 2018/SpringerLink

Author: Parizi, R.M., Amritraj, Dehghantanha, A.

Abstract Summary:

Because current research on contract development is not sufficient and is still in a stage of infancy, the
paper gives a comprehensive analysis of domain-specific programming practices from critical points of
usability and security.

Conclusion:

The given evaluation included an experiment that was performed to compare the usability and security
vulnerability of the three domain-specific languages, namely Solidity, Pact and Liquidity. The experiment
results demonstrated that although Solidity is the most usable language for a new developer to program
smart contracts, it is the least secure language to vulnerabilities. On the other hand, Liquidity and Pact
show lower usability but seem secure for now. Consequently, our results contribute to the body of
experimental evidence about the usability and security of the smart contract programming languages,
which is currently scarce.

25

Paper Reviews – Business Cycle

Searching databases

Topic/Field Database
Economics ABI/INFORM Collection
Interdisciplinary Scopus

Search query

Search results

ABI/INFORM

Scopus

Organization, City, Country: TU Wien, Wien, Austria

Prepared by: Ing. Oliver Steizinger BSc

Date: February 2020

Research team members: Ing. Oliver Steizinger BSc

("Business cycle model" OR "Business participants" OR "Economy
participants" OR "Economy model") AND "Europe" AND "Tax"

Publication dates from 2010 to now

26

Title: Generational policy and aging in closed and open dynamic general equilibrium models

Year/Source: 2013/Handbook of Computable General Equilibrium Modeling

Author: Fehr, H., Jokisch, S., Kallweit, M., Kindermann, F., Kotlikoff, L.J.

Abstract Summary:

The chapter examines the micro- and macroeconomic effects of generational policies using closed and
open general equilibrium dynamic life-cycle models. It is a mathematical solution including country-
specific tax, spending, social security, healthcare policy, deficit policy age-cohort- and country-specific
mortality, age-specific fertility, age-specific morbidity, lifespan uncertainty, age- and skill-specific
emigration and immigration, earnings inequality driven by skill differences and idiosyncratic labor
earnings uncertainty, capital adjustment costs, international trade, international capital flows, trade
specialization, and trade policy.

27

Title: A Tale of Tax Policies in Open Economies

Year/Source: 2011/IDEAS Working Paper Series from RePEc; St. Louis

Author: Auray, Stéphane; Eyquem, Aurélien; Gomme, Paul

Abstract Summary:

This paper develops an open economy model to evaluate the impact of various permanent tax changes.
The model is calibrated to the U.S. and some different cases to analyze are discussed.

Conclusion Summary:

The results of the experiment are discussed.

28

Title: Optimal Fiscal Policy in the Presence of VAT Evasion: The Case of Bulgaria

Year/Source: 2018/Finance a Uver; Prague

Author: Vasilev, Aleksandar

Abstract Summary:

The paper uses a dynamic general-equilibrium model, calibrated to Bulgarian data (1999-2014) for
computational experiment findings.

 The optimal steady-state income tax rate is zero
 The benevolent Ramsey planner provides the optimal amount of the valuable public services,

which are now three times lower
 The size of the grey sector is twice lower
 optimal steady-state consumption tax needed to finance the optimal level of government

spending is twice lower, as compared to the exogenous policy case

Conclusion Summary:

The conclusion is similar to the abstract.

29

Title: A MULTINATIONAL ANALYSIS OF TAX RATES AND ECONOMIC ACTIVITY

Year/Source: 2011/Journal of International Business Research, Beil. Special Issue; Arden

Author: Smith, Lawrence C, Jr; Smith, L Murphy; Gruben, William C

Abstract Summary:

The purpose of this study is to examine the relationship between tax rates in selected countries
and economic activity, including GDP growth, unemployment, and savings. The sample of countries used
in the study consists of the Organization of Economic Cooperation and Development (OECD) countries.
Results indicate that lower tax rates are associated with more favorable economic activity, including
growth in GDP, change in unemployment, and change in savings.

Conclusion Summary:

Results are discussed. Results are mixed but reveal some meaningful relationships between tax rates
and economic activity.

30

Title: Tax optimization in an agent-based model of real-time spectrum secondary market

Year/Source: 2017/Telecommunication Systems; New York

Author: Gazda, Juraj; Kovác, Viliam; Tóth, Peter; Drotár, Peter; Gazda, Vladimír

Abstract Summary:

This paper aims to build an agent based model of the real-time secondary spectrum market in which
various taxes including value-added tax, corporate tax, consumption tax and fixed tax, are employed.
The results of the analysis confirm the existence of a tax distortion, i.e. a system deviation from the
efficient system functioning affected by the tax introduction.

Conclusion Summary:

In this paper, following impacts on the functioning of the real-time secondary spectrum market are
considered

 corporate tax
 consumption tax
 value-added tax
 fixed tax

Different methods and results are discussed.

31

Title: A Theory of Optimal Capital Taxation

Year/Source: 2012/NBER Working Paper Series; Cambridge

Author: Piketty, Thomas; Saez, Emmanuel

Abstract Summary:

This paper develops a realistic, tractable theoretical model that can be used to investigate socially-
optimal capital taxation. The parameters of the dynamic model are discussed. Finally, its discussed how
adding capital market imperfections and uninsurable shocks to rates of return to our optimal tax model
leads to shifting one-off inheritance taxation toward lifetime capital taxation, and can account for the
actual structure and mix of inheritance and capital taxation.

Conclusion Summary:

With the results of the model, assumptions of optimal capital taxation are presented.

32

Title: A low growth path in Austria: potential causes, consequences and policy options

Year/Source: 2014/Empirica; New York

Author: Stocker, Andrea; Großmann, Anett; Hinterberger, Friedrich; Wolter, Marc Ingo

Abstract Summary:

This paper reports on an Austrian research project that deals with the question how the Austrian society
could cope with long-lasting low economic growth. The consequences of a low economic growth are
discussed.

Conclusion Summary:

The results show that the macroeconomic consequences of low economic growth in Austria are
substantial: the labour market suffers from a shortage of labor supply (due to reduced migration) and
from a reduced demand for labor (due to reduced demand in consumption, investments and exports).
The decrease in employment in the integration scenario leads to a negative development of the
disposable income of private households (tax rates and social security contributions held constant).
Compared to the reference scenario, public debt is higher. Due to the assumption of slight population
growth, public expenditures grow slower, however, tax incomes decrease at a higher rate.

To analyze whether and how policy measures are able to cope with the negative consequences of
persistent low growth, four measures were chosen.

 a cost-neutral reduction of working time by 10 %
 the introduction of a cost-neutral eco-social reform of levies
 a reduction of environmentally harmful subsidies
 the promotion of the private demand for services

The selected policy measures are suitable to reduce the negative economic effects of low growth.

33

Title: Business Cycles in European Post-Communist Countries

Year/Source: 2017/Contemporary Economics; Warsaw

Author: Szomolányi, Karol; Lukáčik, Martin; Lukáčiková, Adriana

Abstract Summary:

This is a business cycle study of chosen European post-communist countries. Economic activity in the
studied countries is relatively low and volatile, and the trade balance and government purchases have a
relatively significant countercyclical character. In the study, both traditional and contemporary business
cycle definitions are used.

Conclusion Summary:

Business cycle characteristics differ slightly from those of emerging countries around the world:

 post-communist countries’ expansions and recessions are longer
 post-communist countries’ recessions are more pronounced
 post-communist countries’ output is relatively low in volatility
 post-communist countries’ household consumption is relatively highly volatile
 the government share of GDP is countercyclical in post-communist countries
 trade balances (current accounts) are relatively strongly counter-cyclical in post-communist

countries

34

Title: Political business cycles 40 years after Nordhaus

Year/Source: 2016/Public Choice; Dordrecht

Author: Dubois, Eric

Abstract:

The aim of this article is to survey the huge literature that has emerged in the last four decades
following Nordhaus’s (Rev Econ Stud 42(2):169–190, 1975) publication on political business cycles
(PBCs). I first propose some developments in history of thought to examine the context in which this
ground-breaking contribution saw the light of the day. I also present a simplified version of Nordhaus’s
model to highlight his key results. I detail some early critiques of this model and the fields of
investigations to which they gave birth. I then focus on the institutional context and examine its
influence on PBCs, the actual research agenda. Finally, I derive some paths for future research.

Conclusion Summary:

The conclusion is a outlook for future research.

35

Title: Model of the circular economy and its application in business practice

Year/Source: 2019/Environment, Development and Sustainability; Dordrecht

Author: Ungerman, Otakar; Dědková, Jaroslava

Abstract Summary:

The aim of this paper is to put together a model of the circular economy to determine the economic
result of enterprises’ involvement in the circular economy. The model was applied on the basis of
primary research aimed at determining the level of enterprises’ involvement in renovation, reuse and
recycling, and hard data were acquired from the Czech Statistical Office. The results exactly proved that
enterprises profit through their involvement in the circular economy. A loss was demonstrated in just
one sector and one phase of processing discarded waste. The results demonstrate a positive economic
impact in the long term. The results of this work clearly prove the claim that the circular economy has a
positive impact on the environment, and also on enterprises’ economic prosperity and thus the
aggregate economy of the state.

Conclusion Summary:

In general, the main benefit of the circular economy may be summarised as a positive impact on
environmental sustainability.

Results and methodology are discussed.

36

Title: A Classical View of the Business Cycle

Year/Source: 2019/NBER Working Paper Series; Cambridge

Author: Michael T. Belongia; Peter N. Ireland

Abstract Summary:

This paper develops a structural vector autoregressive time series model that allows these "classical"
channels of monetary transmission to operate alongside the now-morefamiliar interest rate channel of
the New Keynesian model. Even with Bayesian priors that intentionally favor the New Keynesian view,
the United States data produce posterior distributions for the model's key parameters that are
consistent with the ideas of Fisher and Working. Changes in real money balances enter importantly into
the model's aggregate demand relationship, while growth in Divisia M2 appears in the estimated
monetary policy rule.

Conclusion Summary:

Though based on New Keynesian priors, the expanded VAR estimated here provides a posterior view of
monetary policy and its effects on the economy that is highly “classical” instead. Within this estimated
model, changes in real money balances play a role, alongside movements in real interest rates, in
transmitting the effects of monetary policy to aggregate output over the period during which nominal
rigidities prevent prices from adjusting fully. Likewise, changes in nominal money growth signal, much
more clearly than changes in nominal interest rates, whether monetary policy is expansionary or
contractionary. The estimated model attributes sizable movements in inflation and the output gap to
monetary policy disturbances, particularly during the disinflationary recessions of the early 1980s and
the Great Recession of 2007-2009.

Results are compared to Fisher (1923, 1925, 1926) and Working (1923, 1926).

	Abstract
	Contents
	Introduction
	Motivation and problem statement
	Aim of the work
	Methodological approach
	Literature review
	Economy model
	Smart contract implementation
	Testing and emulation

	Blockchain – State of the art
	Blockchain technology
	How can Blockchain help us to automate economic processes?
	Ethereum smart contracts
	Decentralized Applications (dApps)
	Other smart contract systems

	Business Cycle – Economy model in Austria
	Participants of a business cycle
	Economic interactions
	Class diagram
	Limitations of the model

	Implementation – Smart contract
	Technologies
	Concept
	Code description

	Implementation – Website
	Technologies
	Concept
	Code description

	Tests and emulation
	Test data description
	Test environment
	Test description
	Test report

	Analysis
	Functionality
	Live performance estimation
	Long-term test analysis
	Smart contracts and tax law

	Conclusion and outlook
	List of Figures
	List of Tables
	Bibliography
	Attachment

