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Abstract

Modern machine learning applications deal with various types of data, which might
originate from different entities and/or spread across different geographical locations. In
particular, anomaly detection, relies on combining diverse data from different sources to
generalize well. However, transferring data to a centralized location for further processing
is not always possible due to data protection, usage, and ownership restrictions. This
results in data silos that cannot be merged and represent a serious impediment for most
anomaly detection tasks dealing with sensitive data.

Federated learning provides a privacy-preserving solution that allows training machine
learning models across multiple distributed clients holding local data without exchanging
them. While preserving privacy, such solution is usually associated with loss in the
predictive performance compared to centralized training.

In this thesis, we provide a comprehensive evaluation of federated learning when applied
to anomaly detection for different label availability scenarios. We investigate the effect
of federated learning on the predictive performance for various applications. For this
purpose, federated models are compared to models trained using only the locally available
data, to models trained on centrally aggregated data, and to centralized models trained
on aggregated synthetic data generated by each client individually. We also investigate
the effect of amount and distribution of data locally available at each client on the
predictive performance.

We show that, federated learning is able to provide good predictive performance compared
to other settings for most cases of label availability. Unlike synthetic data-based learning,
which seems to highly depend on the type of training data, it consistently provides good
predictive performance across different data sets. In addition, federated learning is able
to perform well under different data distribution scenarios.
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CHAPTER 1
Introduction

1.1 Motivation
The amount of data available worldwide has significantly increased over the last decade
due to the increase in the number of devices that generate such information. The global
amount of data generated, copied and consumed is expected to reach 97 zettabytes in
the year 2022 [RD22]. This resulted in a tremendous increase in the number and size of
available data sets generated from multiple sources such as financial transactions, web
and telecommunication logs, and health records [TBJS20]. Analyzing large amounts of
data has therefore became a necessity and has been providing businesses and enterprises
with valuable discoveries and insights [HKP12]. For instance, financial institutions may
discover hidden patterns and correlations within transactions that are used to reduce
fraud, hospitals keep track of their patient records to spot trends and anomalies, and
computer networks can be monitored for the purpose of intrusion detection. The set of
techniques and tools that help transforming data into useful information and knowledge is
known as data mining. In particular, when analyzing real-world data sets, there has been
an interest in detecting instances that stand out as being dissimilar to others. This is
done by means of anomaly detection, defined by [HKP12] as the process of detecting data
instances with behaviors that are very different from what is expected. It is extensively
used in a wide variety of applications such as fraud detection, intrusion detection, in
medical data and military surveillance [CBK09]. Anomaly detection is of high importance
since anomalies in data usually translate to critical actionable information in various
applications.

Many current machine learning methods require large amounts of data that might be
collected from various sources with different access and usage requirements. This raises
serious privacy concerns related to the risk of leakage of private or confidential data. It
is therefore important to employ privacy-preserving machine learning solutions. One
increasingly used solution is federated learning. It is a distributed learning setup where
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1. Introduction

multiple instances of the same model type/architecture are trained on private, local
data sets and then aggregated to a global model, which in turn is sent back to local
nodes for further training, or usage. Privacy is therefore enhanced since only models are
shared while data remain on the client side. Another approach is to perform privacy
preservation on the data level, where synthetic data are generated using a model built
from the original data. Synthetic data generation, unlike other techniques like data
anonymization, generates a new artificial data set that protects sensitive information
from being disclosed while retaining statistical properties that are similar to the real data
[RBB+20]. It is therefore considered that trying to obtain the original data by means of
reverse engineering is unlikely.

In particular, various anomaly detection applications involve sensitive data that might
include personal or confidential information (e.g. patient records from hospitals and
health institutions). This raises serious concerns about the usage of such data and
introduces a need to use privacy-preserving machine learning techniques.

1.2 Problem definition
Anomaly detection is usually considered as a challenging task due to the relatively high
data imbalance where only small number of anomalies are available compared to the
non-anomalous data instances [MMH17]. In addition, for some applications, labeled
data might be difficult and/or expensive to obtain and therefore only semi-supervised or
unsupervised methods can be used. This makes it very challenging to train models that
result in high predictive performance on unseen data.

While federated learning improves privacy, it might negatively affect the anomaly detection
model performance. In [DKP+20], the authors performed a comparative study between
centralized and federated learning scenarios for a classification task and concluded that the
centralized approach outperforms the federated one for non independent and identically
distributed (non-i.i.d.) data. A similar behavior is observed when comparing classification
models trained on real and synthetic data, where the model trained on the full real
data provides higher accuracy [RBB+20]. We assume that data synthesis will have
greater effect when applied to data located at individual nodes rather than on larger
amount of data at the centralized server. This suggests that applying privacy-preserving
techniques imposes trade-offs between various factors such as improved privacy, increased
communication costs, and lower predictive performance of the resulted model.

Given an architecture consisting of multiple nodes containing variable amounts of similar
data, we define four learning settings:

• Centralized learning: data from the individual nodes are transferred to a central
server where they are aggregated and used to train a centralized model. This serves
as a glass-ceiling baseline, and scores from such experiments will be used as a
reference for the other training scenarios.
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1.3. Research questions

• Local training: models are trained at the client nodes, using only the locally
available data.

• Federated learning: separate models are locally trained where the data resides.
Single model updates are then communicated to generate a global model, potentially
repeated for multiple rounds.

• Learning from synthetic data: the local original data at the node is used to generate
synthetic data. Synthetic data from each node are then aggregated at a central
server and used to train a single model.

The above-discussed machine learning settings are shown in Figure 1.1.
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Figure 1.1: Different Learning Settings

Evaluating the predictive performance resulting from each learning setting will provide
valuable information on the effect of privacy preserving on anomaly detection methods.

The idea of independent and identically distributed (i.i.d.) data is often adopted when
training machine learning models. However, many federated learning scenarios are
characterized with a certain statistical heterogeneity where data are generated in a
non-i.i.d. manner across the network [LSTS20]. As part of the experiments, the effect of
data heterogeneity is evaluated by considering both i.i.d. and non-i.i.d. scenarios.

1.3 Research questions
Based on the problems defined above, this thesis will provide an in-depth evaluation of
existing anomaly detection methods and their applicability when trained in a collaborative
way. The focus will be on tabular data and machine learning models covering the different
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1. Introduction

training scenarios: supervised, weakly-supervised, semi-supervised and unsupervised, and
will be evaluated using existing benchmark data sets.

In the next section, we define the research questions that will be addressed in this thesis.
Three main research questions are defined:

RQ 1) What is the effect of collaborative learning when applied to anomaly
detection models compared to centralized learning?

First, we address the effect of federated learning on the overall performance of the
different models. In particular, we are interested in comparing the performance of the
collaborative models to the centralized model to better understand to what extent the
performance is affected. This question is further broken down into two sub-questions:

RQ 1.1) To what extent does training such models in a federated manner
affect the overall predictive performance?

The predictive performance of anomaly detection models is normally evaluated in terms of
metrics such as precision and recall. In order to analyze the effect of collaborative learning
on the overall model performance, such metrics are measured for both centralized and
federated scenarios. The centralized scenario is considered as a baseline that represent
the results that can be obtained without the need for distributed learning and is used to
evaluate the robustness the global federated model.

RQ 1.2) Which models are more suited to be used in a federated setting for
more effective anomaly detection?

Based on the results obtained from the performance evaluation, we are interested in
identifying which models are well-suited for federated anomaly detection.

RQ 2) What impact does data heterogeneity have on the anomaly detection
models in federated learning?

One of the most important characteristics of federated learning is that we usually deal
with statistically heterogeneous data. This results in violating the common assumption
of independent and identically distributed (i.i.d.) data. Thus, we are interested in
evaluating the impact of data distribution on the overall federated model performance.
For this purpose, we define the following sub-questions:

RQ 2.1) To what degree do the amount and distribution of data available at
local nodes influence the global model performance?

As part of the evaluation, both i.i.d. and non-i.i.d. scenarios are simulated. The non-
i.i.d. scenario is of particular interest where various methods are used to achieve data
heterogeneity over the different clients. We are interested in the effect of data distribution
on the predictive performance of the federated model for the different training scenarios.

RQ 2.2) To what extent does applying resampling techniques to local data at
individual nodes affect the global model predictive performance?
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Various resampling techniques including oversampling and undersampling are applied
to the data at the local nodes in the supervised scenario. Here, we are interested in
evaluating the effect of resampling on the predictive performance and how models trained
on data with resampling perform compared to the ones without resampling.

RQ 3) How do models trained in federated manner perform when compared
to central models trained using synthetic data locally generated at client
nodes?

Another way of preserving privacy is generating synthetic data at local nodes and then
transferring them to the central server. In this thesis, we are interested in comparing
the performance of federated learning models to models trained on aggregated synthetic
data generated at local nodes.

1.4 Structure of the thesis
The remainder of this thesis is structured as follows. Literature about different aspects
of anomaly detection, state-of-the-art methods and their corresponding applications is
provided in Chapter 2. Chapter 3 provides an introduction to privacy-preserving machine
learning and the related challenges. In particular, settings that are relevant to this
thesis, data synthesis and federated learning, are discussed. Related working combining
federated learning and anomaly detection for tabular data is discussed as well.

Chapter 4 provides a detailed description of the experiments, including the involved
design decisions. We start by describing the selected data sets and algorithms. We then
define a way to simulate different data distribution scenarios and the performance metrics
used in the evaluation phase. Finally, for each learning setting defined in Section 1.2, the
learning process is described in details.

Chapter 5 presents the results for each of the learning settings. It also provides a detailed
discussion of the results.

Finally, Chapter 6 summarizes the contribution of this thesis and the main conclusions.
The research questions are also revisited and findings related to each of them are presented.
Finally, future work and potential improvements are discussed.

Tables including detailed results for all experiments performed as part of this thesis, can
be found in Appendix A.
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CHAPTER 2
Anomaly Detection

Anomaly detection is an important task in data mining and machine learning, and has
seen applications in a wide range of domains. An anomaly, also known as outlier, is
an instance of a data set that exhibits some abnormality or some kind of out of the
way behavior [RSMMA19]. In other words, an anomalous data instance is a data object
that significantly deviates from what is considered to be normal data. There may be
various reasons for such anomalies to be present in the data. Malicious activities such as
credit card fraud or cyber-intrusions, or also system failures represent a major type of
anomalies that can significantly affect the functionality of critical systems. Thus, being
able to effectively detect anomalies is of high importance and in most of the cases leads
to critical actionable information.

In this section, we discuss various aspects of anomaly detection and their related challenges.
In addition, we provide an overview about the state-of-the-art methods, their applicability
in real-life scenarios and their limitations. Finally, we discuss applications of anomaly
detection with a focus on fraud detection, intrusion detection, and anomaly detection in
health care.

2.1 Aspects of anomaly detection

In multiple scientific and engineering fields, the generated data represent the state of
a system whose processes follow various rules and principles [MMH17]. Such data can
then be used to formulate hypotheses about the underlying processes that describe the
normal states of the system. However, most of such systems may also exhibit states that
deviate from the normal behavior and, therefore, the resulting data are different from
the ones observed previously. The task of discovering such variations in the observed
data is known as anomaly detection.
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2. Anomaly Detection

An example of a 2-dimensional data set with anomalies is illustrated in Figure 2.1. The
data consist of two normal regions C1 and C2, where data points representing the normal
behavior are located. All other points that are far from these two regions are considered
as anomalies. This includes regions O1 and O4 and individual data points o2 and o3.

x

y

C1

C2

o2

o3

O1

O4

Figure 2.1: An example of a two-dimensional data set with anomalies [based on figure
from [CBK09]]

2.1.1 Types of anomalies

A key aspect of solving any anomaly detection problem is identifying the nature of the
target anomalies. Some of the previous work [AA19, MMH17] propose to group anomalies
into three categories: point anomalies, contextual anomalies, and pattern anomalies.

Point anomalies are individual data instances that are considered as anomalous with
respect to normal data points. While point anomalies could be caused by certain random
errors or other systematic errors (e.g. faulty sensor), they may reflect abnormalities that
represent a deviation from what is considered normal.

In Figure 2.1, point anomalies are represented by sets O1 and O4 that contain multiple
anomalous points and by individual data instances o2 and o3 as well. Point anomalies
are the focus of majority of research on anomaly detection [CBK09] and will be the focus
of this thesis as well.

Contextual anomalies are defined as data instances that are anomalous in a specific
context, but not otherwise [CBK09]. The context should be defined in the data set and
has to be part of the problem formulation. For instance, in time series, time defines the
position of a data point in a given data set and therefore can be used as a contextual
attribute.

Pattern-based anomalies, also known as collective anomalies, are defined as a collection
of related data instances that deviate from their historical counterparts [MMH17]. Single

8



2.1. Aspects of anomaly detection

data instances within a collective anomaly may not be anomalies by themselves, but
their combined occurrence as a collection is anomalous.

2.1.2 Data labels
In a given data set, labels indicate whether a data instance is normal or anomalous.
In most cases, a human expert is required to manually annotate the data. For some
applications, such labels are expensive and difficult to obtain. In addition, the anomalous
behavior is usually dynamic: situations where new types of anomalies, for which there is
no available training data, might occur.

Based on the availability of labels, and as illustrated in Figure 2.2, four training scenarios
can be defined:

1. Supervised Anomaly Detection: labeled training and test data are available for
data instances representing both normal and anomaly class. In this scenario, a
(binary) classifier can be trained to distinguish between normal and anomalous
data instances. In most cases, the available data set is highly imbalanced and
therefore not all classification algorithms are suitable for this task. For instance,
decision trees are known to be unable to deal with imbalanced data [CBK09], while
other methods such as Support vector machine (SVM) and neural-netword based
methods provide better predictive performance [CBK09].

2. Weakly-supervised Anomaly Detection: large amounts of normal data instances
are provided while only a very limited number of anomalous data are available.
While anomaly detection is already considered as a severe case of a class imbalance
problem [BKW20], in this scenario, class imbalance is even more extreme.

3. Semi-supervised Anomaly Detection: training data consists only of normal data
instances (or sometimes also only anomalous data instances), while test data
include labeled instances for both classes. Many model types can be trained on
data representing normal behavior and then used to identify anomalies in test data.
Some other techniques rely on anomalous instances for training, and can thus not
be used.

4. Unsupervised Anomaly Detection: labels are not available for any of the classes
in training data. Several semi-supervised techniques can be adapted to operate in
unsupervised mode and trained on a sample of the unlabeled data set [CBK09]. In
this case, the assumption that the test set contains only few anomalies should hold.

2.1.3 Evaluation metrics
The main goal of anomaly detection is to determine whether a given data instance is
anomalous or not. In other words, for a data point x we assign the class normal or

9



2. Anomaly Detection

Supervised learning

Weakly-supervised learning

Model

Semi-supervised learning

Unsupervised learning

Training Data
Test Data

Training Data

Training Data

Training Data

Prediction

Figure 2.2: Comparison of different learning scenarios

anomalous (usually encoded as 0 and 1). In analogy to the output of binary classification,
a positive output corresponds to anomalous data instance while negative output suggests
a normal data instance.

The case where the data instance is anomalous and the class anomalous is assigned to it
is known as a True Positive (TP). On the other hand, if the data instance is normal but
is predicted as anomalous, this is a False Positive (FP). Equivalently for a normal data
instance, we have a True Negative (TN) if the model assigns the class normal to it and
False Negative (FN) if the model predicts it as anomalous. These values can be shown
in what is known as a “confusion matrix”, shown in Table 2.1.

In statistical hypothesis testing, false positive and false negative are related to the
concepts of type I error and type II error. Type I error refers to the mistaken rejection
of an actually true null hypothesis. In this case, we reject what turns out to be true for
the favor of something that is false and we therefore have a “false positive finding”. Type
II error refers to the acceptance of null hypothesis that is actually false. In this case, we
accept what is false and reject what is true and therefore have a “false negative finding”.

In order to understand how a specific model performs, we usually rely on various metrics:

• Accuracy represents the ratio of correctly predicted observations. It describes how
the model performs across the different classes.

10



2.1. Aspects of anomaly detection

• Precision or Positive Predictive Value (PPV) describes how many of the positive
predictions turned out to be actually positive. In the context of anomaly detection,
it provides the proportion of data points correctly identified to be anomalous among
all data points that have been classified as anomaly.

• Negative Predictive Value (NPV) depicts how many of the negative predictions
turned out to be actually negative. For anomaly detection, it gives the proportion
of data points that have been correctly identified to be normal among all data
points that have been classified as normal.

• Recall or True Positive Rate (TPR) or Sensitivity describes how many of the data
points that are actually positive did the model correctly predict. For anomaly
detection, it is the proportion of anomalous data points that have been correctly
classified as anomalous.

• Fall-Out or False Positive Rate (FPR) depicts how many of the actually negative
data points are incorrectly predicted as positive. In the context of anomaly detection,
it can be seen as the false alarm ratio where it represents the portion of the data
points that have been falsely classified as anomalous among all data points that
are actually anomalous.

• Miss Rate or False Negative Rate (FNR) describes how many of the data points that
are actually positive did the model incorrectly predict as negative. For anomaly
detection, this represents the proportion of anomalous data points that have been
falsely classified as normal.

• Specificity describes how many of the data points that are actually false did the
model correctly predict. In the context of anomaly detection, it is the proportion
of normal data points that have been correctly classified as normal.

The different formulas for calculating such metrics can be seen in Table 2.1.

Accuracy is often considered to be the most intuitive metric and is widely used by
researchers to select models [DDRF+22]. However, accuracy is considered to be an overly
optimistic estimation of the ability of the classifier over the majority class [CJ20] and is
therefore sensitive to imbalanced data. Since anomaly detection tasks deal with highly
imbalanced data, this metric does not seem to be of interest.

The other metrics mentioned above do not utilise all confusion matrix elements. For
instance, recall only focuses on positive data instances, while specificity only considers
the negative ones. For highly imbalances data sets, the goal is to improve recall without
negatively impacting precision. However, these objectives are usually conflicting since
when trying to increase the true positive rate for the minority class, the number of false
positives also often increases – resulting in a lower precision [HC13]. The F-measure, the
weighted harmonic mean of precision and recall, captures both properties and is usually
considered a better choice for such tasks. A general formulation of F-score, known as Fβ
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2. Anomaly Detection

Table 2.1: Confusion matrix representation

Actual
Positive (1) Negative (0)

P
re

di
ct

io
n Po

sit
iv

e
(1

)

True Positive
TP

False Positive
FP

(Type I error)

Precision or Positive
Predictive Value (PPV)

TP
TP + FP

N
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e
(0

)

False Negative
FN

(Type II error)

True Negative
TN

Negative
Predictive Value (NPV)

TN
TN + FN

Recall or Sensitivity
or True Positive Rate

(TPR)

TP
TP + FN

False Positive Rate
(FPR) or Fall-Out

FP
TN + FP

Accuracy

TP + TN
TP + FP + FN + TN

False Negative Rate
(FNR) or Miss Rate

FN
FN + TP

True Negative Rate
(TNR) or Specificity

TN
TN + FP

where β is chosen such that the recall is considered β times as important as precision, is
defined in the following way:

Fβ = (1 + β2) × precision × recall

(β2 × precision) + recall

In particular, a widely used version of Fβ is the F1 score, which is defined as follow:

F1 = 2 × precision × recall

precision + recall
= 2 × TP

2 × TP + FP + FN
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Figure 2.3: Example of ROC and PR curves for two different algorithms [DG06]

Instead of a simple positive or negative prediction, multiple classification algorithms and
most of the anomaly detection methods provide a numeric score for an instance to be
classified in the positive class [FGG+18]. In the case of anomaly detection, an algorithm
then decides on an instance to be normal or anomalous by applying a threshold to this
score (i.e. a discretisation of the score). The choice of this threshold controls the trade-off
between positive and negative errors [FGG+18]. Choosing a high threshold results in
lower FPR and high FNR since the classifier becomes very restrictive in classifying
an instance as positive. Inversely, selecting a lower threshold decreases the FNR and
increases FPR as the classifier becomes more lenient in classifying instances as positive
[FGG+18].

When evaluating algorithms that output probabilities of class values, the previously
defined measures are not optimal since they require converting the probabilities to class
labels by selecting a certain threshold. [PFK98] recommends using the Receiver Operator
Characteristic (ROC) curves for evaluating binary decision problems. The ROC curve is
created by plotting the TPR against the FPR as shown in Figure 2.3a. It shows how the
number of correctly classified positive examples varies with the number of incorrectly
classified negative examples with different thresholds.

However, in the case of large skew in the class distribution, ROC curves usually represent
an overly optimistic view of the model’s performance [DG06]. When addressing tasks
with large data imbalance, Precision-Recall (PR) curve has been considered a good
alternative to ROC curve [RBJ89, MS99, SR15]. Such curve shows the trade-off between
precision and recall for different thresholds, as shown in Figure 2.3b.

The Precision-Recall curve might expose differences that are not easily noticeable in
ROC curves. The example curves shown in Figure 2.3 shows the results from a model
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2. Anomaly Detection

trained on highly-skewed cancer detection data [DBD+05]. Looking at the ROC curves
(Figure 2.3a), where the goal is to be on the upper-left-hand corner, it can be concluded
that both algorithms 1 and 2 are almost optimal. However, looking at the PR curves
(Figure 2.3b), where the goal is to be in the upper-right-hand corner, it can be seen that
there is still a large room for improvement. This difference in views is mainly related to
the highly imbalanced nature of the data set, where the number of negative examples
largely exceeds the number of positive examples by several orders of magnitude. Thus,
a large change in the number of false positives will result in small change in the false
positive rate used in the ROC curve [DG06]. ROC curves depicts the behavior of an
algorithm independently of the class distribution or error cost and therefore they decouple
the classification performance from such factors [PF97]. On the other hand, the PR
curve better captures the changes in the number of false positives by considering the
false positives instead of false negatives.

While visually analyzing the ROC and PR graphs might be helpful, it usually does not
represent a convenient way of choosing an algorithm over another. In fact, it can only
be concluded that an algorithm is better than another when it clearly dominates the
other algorithm over the entire performance space. Hence, the need for an index that
summarizes both ROC and PR curves arises. Such metrics are the Area under the ROC
curve (ROC AUC) and Area under the PR curve (PR AUC). As the name suggests,
these metrics calculate the area under the ROC or PR curve, to give a single score for a
classification model across all threshold values.

The ROC AUC can be defined as the probability that the scores provided by a classifier
will rank a randomly selected positive instance higher than a randomly selected negative
one [FGG+18]. Given that the ROC AUC of random guessing is 0.5 and the ideal ROC
AUC score is 1, a classifier that provides an ROC AUC score higher than 0.5 is considered
to be useful [FGG+18].

Unlike ROC AUC, the PR AUC value does not have a probabilistic interpretation
[FGG+18]. The PR AUC of the random classifier depends on the number of instances
belonging to the positive class and its expected value is close to the proportion of positive
instances [FGG+18].

2.2 State-of-the-art algorithms

Various anomaly detection algorithms are available for the different learning scenarios
discussed in Section 2.1.2. The selection of such methods depends on various factors
such as the application, data types, anomaly type and data labels availability [AMM+21].
In this section, the methods that are used in the experiments, as well as some other
widely known algorithms are described. Based on existing taxonomies in the literature
[GR12, GU16, ADE20, AMM+21], the different methods are categorized into five groups
as shown in Figure 2.4.
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Figure 2.4: Taxonomy of the selected anomaly detection methods [Based on [GU16,
ADE20, GR12, AMM+21]]

2.2.1 Statistical methods
Statistical anomaly detection methods are based on the assumption that normal data
points are located in high probability regions of a stochastic model while anomalous
instances occur in low probability regions [CBK09]. These methods can be further
subdivided into parametric techniques and non-parametric techniques.

Parametric techniques assume that data are generated by a parametric distribution with
parameters Θ, and probability density function f(x, Θ) for an observation x.

Gaussian model-based methods are widely-used parametric techniques, where the data
are assumed to be generated from a Gaussian (also called normal) distribution and the
parameters are estimated using the Maximum Likelihood Estimates (MLE) [CBK09].
The anomaly score for a data instance is defined as its distance to the estimated mean.

Given the normal distribution curve, it is possible to approximate the proportion of data
that falls within certain intervals. This is given by the Empirical Rule, also known as the
68-95-99.7 rule [Hub19]. This rule is illustrated in Figure 2.5 and states that:

• Approximately 68% of the data points will fall within no more than one standard
deviation from the mean.
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• Approximately 95% of the data points will fall within two standard deviations from
the mean.

• Approximately 99.7% of the data points will fall within three standard deviations
from the mean.

One of the simple outlier detection methods, known as the “standard deviation method”,
is to consider all data points that are more than 3σ distance away from the mean µ as
outliers. However, this is method may not be able to detect outliers, because outliers
highly affect the standard deviation. In fact, extreme outliers magnify the standard
deviation and therefore result in a broader detection range [−3σ, 3σ]. This results in
failing to detect “less extreme” data instances.

µ − 3σ µ − 2σ µ − σ µ µ + σ µ + 2σ µ + 3σ

68.3%
95.5%
99.7%

x

Figure 2.5: Gaussian distribution curve with the three-sigma rule

Another method that is commonly used to identify outliers uses a graphical representation
known as boxplot [Tuk77]. The data is represented in a boxplot with the smallest non-
outlier (or non-anomaly) observation, lower quartile (Q1), median, upper quartile (Q3)
and largest non-outlier (or non-anomaly) data point as can be seen in Figure 2.6. The
range defined by Q3 − Q1 is known as the Inter Quartile Range (IQR). Any data points
that lie below the minimum or above the maximum are considered as anomalies. Since
99.3% of data points are located between the minimum and the maximum values, this
method is equivalent to the previously described Empirical Rule method.

Regression models represent another type of parametric techniques for anomaly detection.
They can be used for anomaly detection where a model is first fitted on the data and the
anomaly score is determined based on the residuals. A residual is the part of an instance
that cannot be explained by the model and its magnitude can be used as the anomaly
score.

Logistic regression, also known as logit regression, is commonly used in anomaly detec-
tion applications to estimate the probability that an instance belong to the normal or
anomalous class. Similar to linear regression, logistic regression computes a weighted
sum of the input features with a bias term, but instead of providing the result directly,
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Minimum
Q1 − 1.5 · IQR

Maximum
Q3 + 1.5 · IQR
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(Interquartile Range)

Q1
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Q3
(75th Percentile)

Outliers Outliers

Figure 2.6: Box plot representation

it applies logit function on the output to obtain a probability value. The estimated
probability for a given instance x is given by: p̂ = hθ(x) = σ(θT · x), where θ are the
model parameters, hθ is the hypothesis function and σ = 1/ (a + exp(−t)) is the logistic
function. Given the estimated probability, it is possible to make prediction on the class
membership using the following equation:

ŷ =
�

0 if p̂ < 0.5
1 if p̂ ≥ 0.5

When training a logistic regression model, the goal is to define the parameter vector θ so
that the model outputs high probabilities for normal instances and low probabilities for
anomalies. For this purpose, a cost function known as the log loss is used. Given m data
points the log loss can be defined as follow [Gér19]:

J(θ) = − 1
m

m�
i=1

�
y(i) · log


p̂(i)


+


1 − y(i)


· log


1 − p̂(i)

�
The log loss is a convex function, and therefore optimization algorithms (such as gradient
descent) can be used to find its global minimum. The partial derivative for the jth model
parameter θj is given by the following equation:

∂J(θ)
∂θj

= 1
m

m�
i=1


σ


θT · x(i)


− y(i)


· x

(i)
j

The gradient vector containing all partial derivatives is passed to the stochastic gradient
descent algorithm. Batch size is a hyperparamter of the gradient descent algorithm
that controls the number of training samples to be used before the model’s parameters
are updated. It is possible to use stochastic gradient descent, where only a single data
instance is processed at a time, mini-batch gradient descent where more than one training
instance known as mini-batch is used at every step and batch gradient descent where at
each step the full training set is processed.
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Another type of statistical anomaly detection methods are non-parametric models, which
do not use a predefined model structure, but instead determine it from the the given data
[CBK09]. Such models make fewer assumptions on the data compared to parametric
techniques [CBK09]. One of the methods that is popular in intrusion and fraud detection
communities is known as histogram-based anomaly detection. In the case of univariate
data, a histogram is first built using the provided data, and the value of each test data
instance is checked if it falls in any of the bins of the histogram. If it does not fall in
any of the bins, it is considered to be anomalous. Furthermore, an anomaly score can be
defined based on the height of the bin into which the data instance falls. Such method
requires defining the size of the bins to construct the histogram. This is challenging,
since defining small bins will result in test instances falling in empty or rare bins while
large bins may result in anomalous instances falling in frequent bins and therefore results
in high false negative rate [CBK09].

In the case of multi-variate data, histograms are constructed for each attribute, and
anomaly scores for a test instance are then obtained for each of them and aggregated to
define the overall anomaly detection score.

2.2.2 Clustering-based methods

Cluster analysis uses the information found in the data to create groups of data points,
where within a single group instances are similar (or related) to one another, while being
different (or unrelated) to the instances in other groups [TSKK19]. Clustering-based
anomaly detection methods rely on the assumption that normal instances appear close
to each other and therefore can be grouped into clusters. On the other hand, anomalies
do not fit well in any of the normal clusters, or appear in small clusters that are away
from normal clusters [TSKK19].

K-means [Llo82] is one of the most widely used algorithms for clustering-based anomaly
detection. As described in Algorithm 2.1, the algorithm repeatedly assigns each data point
to the nearest cluster and recomputes the centroid of each cluster until a convergence
condition is met.

The distance of a data point to its cluster centroid represents how strongly it belongs to
it. Therefore, instances that are distant from their respective centroids are assumed to
be anomalies. [TSKK19] defines two different ways of calculating the anomaly score for
a given data point:

(a) The distance between the data point and its closest centroid

(b) The relative distance between the data point and its closest centroid: the ratio of
the point’s distance from the centroid to the median distance of all points in the
cluster from the centroid.
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A limitation of the clustering-based approaches is the fact that the quality of clusters
corresponding to normal classes is highly affected by the presence of outliers. In addition,
the number of selected clusters highly affect the model performance.

Algorithm 2.1: K-means clustering
Require : Data set D, Number of cluster (k), Termination threshold (θ);

1 Randomly choose k elements of D as the initial set of Centroids: C = {c1, ..., ck};
2 Repeat
3 Assign each data point p ∈ D to its closest Centroid minimizing the distance

dE(p, cj);
4 Update the value of each Centroid cj to the new mean value of all data points

assigned to it;
5 Until The number of points assigned in the current iteration is lower than θ;

Another clustering-based anomaly detection method named Cluster-based Local Outlier
Factor (CBLOF) (also known as FindCBLOF) is proposed by [HXD03]. For each data
point, this method assigns an anomaly score that captures the size of the cluster to which
the instance belongs and the distance between the data point and its cluster centroid.
First, a clustering algorithm is used to assign each data point to a single cluster. [HXD03]
uses the Squeeze algorithm [HXD02], but any other algorithm (e.g. k-means) may be
used. The clusters are then ranked according to their sizes from large to small. The
clusters holding 90% of the data are defined as large clusters while the ones holding
the remaining 10% are called small clusters. The outlier score of a data point is then
calculated in the following way:

• If the data instance belongs to a large cluster, the anomaly score is the distance to
the centroid multiplied by the number of data points in that cluster.

• If the data point belongs to a small cluster, the anomaly score is the distance to
the centroid of the closest large cluster multiplied by the number of data of the
cluster to which the data point belongs.

Another popular clustering method that is being used for anomaly detection is Density-
Based Spatial Clustering of Applications with Noise (DBSCAN) [EKSX96]. This method
groups data points that are closely packed together and considers data points that lie in
low-density regions as outliers. In contrast to k-mean clustering, this method does not
require the number of clusters to be defined. [TSKK19]

2.2.3 Nearest neighbor-based methods
Nearest neighbor-based (also known as proximity-based) anomaly detection methods are
based on the assumption that normal data points occur in dense neighborhoods while
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anomalous instances occur far from their closest neighbors [CBK09]. Proximity-based
approaches can be grouped into two categories [CBK09]:

• Methods that define the anomaly score as the distance of a data point to its kth

nearest neighbor.

• Methods that use the relative neighborhood density of each data instance to calculate
its corresponding anomaly score (e.g. Local Outlier Factor (LOF), Connectivity-
based Outlier Factor (COF)).

One of the simplest ways to define the nearest neighbor-based anomaly score of a data
point x is to consider the distance to its kth nearest neighbor dist(x, k). A normal data
instance should have multiple other instances close to it and therefore a low distance
value, while an anomalous data point has a high distance value since it is quite distant
from its kth neighbor. For this approach, the anomaly score is very sensitive to the
value of k where for too small values, anomalous instances located close to each others
might have low anomaly score. Alternatively, a more robust approach is to take the
average distance to the first k-nearest neighbors as anomaly score. This formulation of
the anomaly score has been widely used in multiple applications [TSKK19].

Another proximity-based method that relies on the relative density of the data point
to calculate the anomaly score is the Local Outlier Factor (LOF) [BKNS00]. For each
data point, it measures the LOF score defined as the local deviation of a data point with
respect to its k nearest neighbor. It uses the local reachability density of a given data
point and compares it to the local reachability density of all its k nearest neighbors. A
data instance with large LOF value is declared as anomalous while an instance with low
LOF is assumed to be normal.

Even though LOF performs well in multiple applications, its effectiveness is highly affected
if the density of an outlier is close to densities of its neighbors [MMH17]. Therefore,
a variation of LOF known as Connectivity-based Outlier Factor (COF) [TCFC02] is
introduced. It operates in a similar way to LOF but computes the neighborhood in
an incremental manner. For a given instance, the nearest data point is first added to
the neighborhood set. The next instance to be added to the set is defined as the one
having the minimum distance to the existing neighborhood set among all remaining
instances [CBK09]. The distance between an instance and a set of instances is given by
single linkage where it is equal to the minimum distance between such instance and any
instance within the set. The neighborhood grows in a gradual way until its size reaches
the value k.

2.2.4 Deep-learning based methods
Over the last few years, deep learning has shown great capabilities to learn expres-
sive representations of complex data and has been widely applied in multiple applica-
tions [GBC16]. When applied to anomaly detection, it is usually referred to as deep
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Figure 2.7: Conceptions of the main deep anomaly detection approaches as defined by
[PSCvdH22]

anomaly detection, where the goal is to learn feature representations or anomaly scores
using neural networks to spot anomalies [PSCvdH22]. Multiple deep anomaly detec-
tion methods have been introduced and show a performance increase compared to
traditional anomaly detection methods (e.g. LOF or CBLOF) for various applications
[PSCvdH22, CC19, TBJS20, BKL+21]. These methods provide a way to learn useful
representations specifically tailored to the anomaly detection task and allow end-to-end
optimization of a custom anomaly score, thus providing significant improvement over
traditional methods.

Based on a literature review, [PSCvdH22] groups state-of-the-art deep anomaly detection
methods into three major groups as shown in Figure 2.7.

In the first group, deep learning methods are used for feature extraction and the anomaly
detection task is performed separately based on the resulting features, using traditional
methods like OC-SVM [XRY+15]. This is illustrated in Figure 2.7a. The second category
consists of deep learning methods aiming to learn expressive representations of normal
instances (Figure 2.7b). It includes methods that rely on existing shallow anomaly
measures such as distance- or clustering-based measures to learn representations. The
third category includes methods that learn anomaly scores via neural networks in a
end-to-end manner (Figure 2.7c).

Feedforward neural networks

Feedforward Neural Network represents one of the most widely used deep learning
methods [GBC16], with the Multilayer Perceptron (MLP) being the most prominent
mode. Given a certain input x and a target y, a feedforward network defines a mapping
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y = f(x; θ) and learns the values of the parameters θ that provide the best function
approximation [GBC16]. In such a model, information flow through the function being
evaluated from x through some intermediate computations defining f to get the output
y.

A feedforward neural network consists of a certain number of neuron-like processing units,
also referred to as nodes, organized in layers. Units in a layer are connected with units
from other layers. Intermediate layers that are located between the input and the output
are known as hidden layers. An example of a feedforward neural network with a single
hidden layer can be seen in Figure 2.8a.
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(a) Example of a Feedforward Neural Network

	
w2x2

...
...

wnxn

w1x1

w01 b0

Inputs Weights Bias

Activation
Function

Summation
Function
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Figure 2.8: Graphical representation of Feedforward Neural Network

Figure 2.8b shows the operations performed at the basic unit of computation in a neural
network, often referred to as neuron or node. The input from the previous layer is fed to
the current neuron, where weights reflect the strength of the connection between nodes.
The products of the inputs and their corresponding weights are then summed up across
all connections from the previous layer with an additional bias term. The obtained sum
is then passed to an activation function, which introduces non-linearity to the output of
the neuron.

The training process, aiming to find the best set of parameters for the model, contains
two main phases: feedforward and backpropagation. In the feedforward phase, the output
is calculated given the input values and compared to the ground truth, estimating the
error. In the backpropagation phase, the weight and bias values are adjusted until the
output error is below a predetermined threshold, or another stopping criterion is met.

Neural networks have been widely used in various anomaly detection applications [CBK09].
A basic neural network for anomaly detection is trained in a supervised manner where
during the learning phase, the model is trained to distinguish between normal and
anomalous classes by predicting an anomaly score.
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Autoencoders

Another popular neural network-based anomaly detection method is known as Autoencoder
[Sch15]. An Autoencoder is a type of feedforward neural network where both the number
of input and output neurons equal the number of original attributes [TSKK19]. The
general architecture of an Autoencoder includes two main steps: encoding and decoding,
as shown in Figure 2.9. In the encoding part, a data instance x is transformed to
a lower-dimensional representation z. This is performed via a number of nonlinear
transformations performed by the encoder, a set of one or more encoding layers. The
encoding layers are defined in a way where the number of neurons at a given layer is
always lower than the number of neurons at the previous one. The learned representation
x is then mapped back to its original space of attributes using the decoder, a set of
decoding layers with increasing number of neurons. The output of the decoder is a
reconstruction of x denoted by x̂.

x Encoder z Decoder x̂

Figure 2.9: General architecture of an Autoencoder

Training an Autoencoder usually involves providing it with an input data that include
only normal instances with the goal of learning complex and non-linear representations
of the normal class.

The difference between x̂ and x, known as the reconstruction error, can then be used as
anomaly score [TSKK19], as the assumption is that the reconstruction error is smaller
on normal inputs, whose characteristics the Autoencoder learned to represent.

Autoencoder, as a reconstruction-based anomaly detection method, provides a generic way
for modeling the normal behavior, without the need for many assumptions on the data
distribution [TSKK19]. It is not affected by the used attributes, since attributes that do
not have relationships to the other attributes are ignored in the encoding step [TSKK19].
On the other hand, the Autoencoder performance can be affected by large number of
attributes and the inherent curse of dimensionality, since the reconstruction error is
computed based on the distance between x̂ and x in the original space of attributes.
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Deep Distance-based Anomaly Detection (REPEN)

A deep learning-based method that is designed to deal with anomaly detection tasks with
very limited number of labeled anomalies is known as REPEN [PCCL18]. It provides a
transformation of high-dimensional data into a low-dimensional space to allow an easier
and more efficient distance-based outlier detection [PCCL18]. Given a set of N data
points X = {x1, x2, ...xN } with xi ∈ RD and an arbitrary distance-based anomaly scoring
function Φ(X ) −→ R that uses distances in a random data subsample to define such
score, the goal is to learn a representation function f(X ) −→ RM with M ≪ D where
for an outlier xi and an inlier xj , Φ(f(xi)) > Φ(f(xj)) [PCCL18]. This allows learning
a feature representation where anomalies have a larger nearest neighbor distance in a
random data subsample than normal data instances.
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Figure 2.10: Illustration of the framework of REPEN [PCCL18]

An illustration of the REPEN framework can be seen in Figure 2.10. It first performs
outlier thresholding to split the data into inlier and outlier candidates. Then, meta
triplet samples T = (< xi, ..., xi+n−1 >, x+, x−) are generated by randomly selecting n
objects from the inlier set as query set Q, one object from the inlier set and one object
from the outlier set. This triplet is then passed to data representation layers. The data
representation is further learned by a function f that is composed of one or multiple
hidden layers. The optimization is performed based on an outlier score-based ranking loss
defined as: L

�
Φ

�
fθ(x+)|Q�

, Φ (fθ(x−)|Q)
�

where Θ is a random distance-based scoring
function and L is a loss function.
REPEN can work in both supervised and unsupervised setups [PCCL18]. It is flexible to
incorporate information about labeled inliers and outliers by including the corresponding
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data points to the candidate sets.

Deviation Network

Deviation Network (DevNet) [PSvdH19] is a deep learning-based method that focuses on
learning end-to-end anomaly score prediction. DevNet is designed to deal with limited
labeled anomalies and leverage them to directly learn the anomaly score. Given N + K
data points X = {x1, x2, ...xN , xN+1, ..., xN+K} with xi ∈ RD and K ≪ N . The set of
unlabeled data is defined as U = {x1, x2, ..., xN } while the set of labeled instances has
a very small size and is defined as K = {xN+1, xN+2, ..., xK}. The goal is to learn an
anomaly scoring function Φ(X ) −→ R, where given an anomalous data point xi and a
normal data point xj : Φ(xi) > Φ(xj).
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Figure 2.11: Illustration of the framework of DevNet [PSvdH19]

The DevNet framework can be seen in Figure 2.11. First, the input is passed through
an anomaly scoring network to obtain an anomaly score for each input. To guide the
learning of such scores, a generator is used to provide a reference score defined as the
mean of the anomaly scores for a set of l randomly selected normal objects denoted as
µR (and σR the corresponding standard deviation). The reference score is determined by
a prior probability F . The loss function L takes as input Φ(x), µR and σR to guide the
optimization. The loss function aims to reach anomaly scores that significantly differ from
µR in the upper tail for anomalies and are as close as possible to µR for normal data points.
The loss function is defined as: L (Φ(x; θ), µR, σR) = (1−y)|dev(x)|+y.max(0, a−dev(x))
where dev(x) = (Φ(x, θ) − µR) /σR
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Deep Autoencoding Guassian Mixture

Deep Autoencoding Gaussian Mixture Model (DAGMM) is another unsupervised deep
learning anomaly detection method [PTE+20]. It consists of two main components:
a compression network and an estimation network. First, dimensionality reduction
of the input is performed through the compression network using an Autoencoder.
The compression network provides both a low dimensional representation given by the
Autoencoder and the features derived from the construction error which are in turn
passed to the estimation network. The estimation network performs density estimation
under the framework for GMM [Han82]. An illustration of a DAGMM model is shown in
Figure 2.12.
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Figure 2.12: Overview of the DAGMM architecture [PTE+20]

DAGMM gives an end-to-end training where the estimation network provides a member-
ship prediction so that the parameters in GMM can be estimated without alternating
procedures such as Expectation–Maximization (EM) [PTE+20]. While Autoencoder
learn by minimizing the reconstruction error that serve as anomaly score, DAGMM
simultaneously minimize the reconstruction error from the compression network and
sample energy from the estimation network. By conducting experiments on several public
benchmark data sets, [PTE+20] shows that DAGMM provides significant improvement
of up to 14% in F1 score over other techniques such as OC-SVM.

2.2.5 Other methods
One-Class Methods

In addition to the previously discussed methods, one-class classification can be used for
anomaly detection. Instead of learning the distribution of the normal class, one-class
approaches model the boundary of the normal class. One-Class Support Vector Machine
(OC-SVM) [SWS+99] is a popular semi-supervised algorithm for outlier detection. It
aims to separate the set of normal data points from the origin [GGAH14]. It works
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by penalizing any points that are not well separated from the origin while aiming to
maximize the distance between the origin and the hyperplane separating normal and
anomalous data points [GGAH14]. At the end of the optimization, the hyperplane can
be used as a decision boundary to separate normal instances from anomalous instances.

Ensemble Methods

Another popular category of methods that is widely used for various data mining and
machine learning applications is known as ensemble analysis. It consists of combining the
outputs of multiple, often weak, algorithms to generate a unified output [Agg13]. When
applied to anomaly or outlier detection, it is referred to as outlier ensembles [Agg13].
One popular unsupervised ensemble technique is known as Isolation Forest (IF) [LTZ08].

Similar to decision trees, an isolation tree is constructed in top-down fashion. At the start,
the root node of the tree is assumed to contain all data points. The algorithm starts by
choosing a random attribute and split the data based on a randomly selected threshold
within the value range of the attribute resulting in two children nodes. This process
is recursively repeated until each node contains a single data instance. Data points in
dense regions require a much higher number of splits compared to sparse regions and
therefore the generated tree is usually unbalanced. The anomaly score of data instance in
a given tree is therefore defined based on this observation and is equal to the depth of its
corresponding node in the tree. This can be seen in Figure 2.13, where light green nodes
represent common normal data instances, dark green nodes are less common normal
instances and red nodes are anomalies [JLLK20]. An isolation forest is an ensemble of
multiple isolation trees. The final anomaly score is obtained by averaging scores from all
trees.
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Figure 2.13: Illustration of an isolation forest [JLLK20]

Another popular type of ensemble models are boosting algorithms. Such methods work by
combining a set of weak learners, a classifier that performs better than random guessing,
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to build a strong learner in order to improve the predictive performance. Decision trees
are usually used as weak learners [Rok19].

One of the earliest boosting implementations that show wide adoption is known as
Adaptive Boosting (AdaBoost) [Sch99]. AdaBoost assigns weights to data points, setting
higher weights on instances that are difficult to classify by the already trained classifiers.
It then sequentially adds new learners, which will implicitly focus on the more difficult
patterns due to the weights. This results in weights associated with difficult samples
keep increasing until the ensemble obtains an algorithm that can correctly predict them.
Inference is then performed using majority voting of the weak learners, each weighted by
its corresponding accuracies.

Another method that builds on top of AdaBoost is known as Gradient Boosting [Fri02]. It
works by sequentially adding predictors to an ensemble where each one corrects the error
of its predecessor. However, instead of changing the weights like AdaBoost, Gradient
Boosting trains on the residual errors of the previous learner.

An illustration of how the Gradient Boosting algorithm works can be seen in Figure 2.14.
A new tree is added at a time, which is equivalent to learning a new function f

(
i X, θi) to

fit the residual of the previous prediction. During prediction, for a given data instance,
there will be a corresponding leaf node in each tree and the value of such node corresponds
to a score. Summing up all scores from all trees provides the prediction value of the
provided instance.
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Figure 2.14: Illustration of GB [GZW+20]
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Extreme Gradient Boosting (XGBoost) [CG16] is a popular implementation of the
gradient boosting method. It provides a few improvements that yield more accurate
approximations compared to Gradient Boosting. In addition, unlike Gradient Boosting, it
uses second-order gradients of the loss function and includes regularization that enhances
the model generalization capabilities.

2.3 Applications
With a wide range of applications, anomaly detection has seen global adoption across
multiple domains. In this section, examples of application areas where anomaly detection
plays a major role are presented. The focus will be on application areas that are relevant
to this thesis.

One of the major issues in the financial sector is the unauthorized access and usage of
credit or debit cards. With the increasing number of transactions and activities, fraud is
becoming more difficult to identify and therefore requires more sophisticated solutions
[Gee15]. The involved data usually comprise of user and transaction specific records
such as user ID, amount, or time between consecutive activities [CBK09]. Fraudulent
transactions are often associated with high payments, high rate of purchase, or unusual
purchases. Anomaly detection methods have been used in two different ways: by-owner
and by-operation [CBK09]. In the by-owner setting, each credit card user is profiled
based on their usage history and any new transaction is compared to the user’s profile.
In the by-operation approach, anomalies are detected within a set of transactions taking
place at a specific geographic location.

Another popular application of anomaly detection is intrusion detection in network
systems. Intrusion is the result of an attack launched by outside hackers in order to
obtain unauthorized access to a network, to subsequently disrupt the its functionality or
to steal sensitive data [CBK09]. To detect, prevent or mitigate these attacks, intrusion
detection solutions monitor network traffic and detect suspicious activities. These systems
usually involve an anomaly detection technique that uses network traffic data. The data
is usually high dimensional and characterized with a temporal aspect (e.g. a sequence of
network connections representing a session), even though most techniques and applications
ignore that aspect [CBK09].

Anomaly detection also plays an important role in health care, where important appli-
cation areas include disease diagnosis and monitoring of patients [MMH17]. Disease
diagnostic usually makes use of medical records to detect abnormalities in a patient’s
behavior or vitals. Anomalies within the data might reflect an abnormal health condi-
tion – but can also be due to measurement errors or instrument inaccuracies. Medical
records usually include patient’s related information such as age, weight, and blood
group [CBK09]. The data corresponding to healthy individuals are usually known, and
therefore semi-supervised approaches are usually used for medical-related applications.

The data involved in the discussed applications are usually characterized with their
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highly distributed nature. For example, for spotting diseases from patient’s data, health
records from multiple health care providers are required to ensure high diversity and
representativeness allowing the model to generalize well. Similarly, the data needed for
fraud detection are usually located across different entities (e.g. different bank branches,
or insurance companies) holding different types of data. Being able to use such data
from various sources in a distributed manner is of great importance and provides value
for all individual entities. It helps sharing knowledge and achieving anomaly detection
solutions with a high degree of accuracy.

At the same time, the data needed for the discussed applications contain highly sensitive
information that usually cannot be easily shared between different entities. It is therefore
important to employ privacy-preserving learning methods.
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CHAPTER 3
Collaborative Learning

Most modern machine learning applications require large sized data sets. Such data
sets are usually hard to obtain and thus frequently, only a limited amount of data is
available instead. In multiple settings, high quality labeled data that are a result of
high efforts from domain experts is only available within an organization or a specific
geographical location. In addition, different organizations may hold different types of
data. For instance, certain health care providers might deal with diseases that others do
not or networks in some organizations are being attacked by a new type of intrusion that
others need to learn about. The transfer of such data is usually not possible due to data
confidentiality and ownership restrictions especially in the case of sensitive operational
data. This results in data fragments that cannot be easily merged.

Having data silos represents a serious impediment to training accurate machine learning
models and therefore there is a real need for solutions that allow making use of distributed
data sets without the need to collect them in a centralized location.

In this section, we start by discussing machine learning processes and the different levels
at which privacy may be preserved. Then, popular privacy-preserving collaborative
learning solutions are presented and discussed. Special attention is given to methods
that are applicable to training anomaly detection models.

3.1 Privacy-preserving machine learning
Alan Westin [Wes68] was one of the first to define information privacy as “the claim of
individuals, groups, or institutions to determine for themselves when, how, and to what
extent information about them is communicated to other”. [MV17] evaluated multiple
definitions, and concluded that the main idea of information privacy is to have control
over the collection and handling of one’s personal data.
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Recent data breaches and privacy violation incidents have significantly increased the con-
cerns of violating privacy while using personal and sensitive data [CLY17, SZA+20]. This
motivated the development and adoption of techniques for preserving privacy in machine
learning systems [XBJ21]. This in turn resulted in the emergence of Privacy-Preserving
Machine Learning (PPML) systems that are machine learning systems equipped with
defense measures for protecting user privacy and data security [LTJZ20].

[XBJ21] suggests the process model of a typical machine learning pipeline shown in
Figure 3.1, with different processes, data owners, and third-party provided resources.
The process model involves four stages. Data preparation is the first stage, where data
are collected and preprocessed. Data are generated and owned by an entity having
the role of a data producer, and then passed to the modeling phase performed at a
certain computational facilities. The computational facilities may be either a trusted
third-party or totally owned by the data producer or the data consumer. If the data
producer uses their own computational facilities, the model can be either trained and
evaluated locally (scenario T1 in Figure 3.1) or trained in a collaborative or distributed
manner (scenario T2 ). Otherwise, the data have to be sent to a third party owning
the computational facilities (scenario T3 ). The model training and evaluation stage
involves training a machine learning model and evaluating its performance. The next
stage is model deployment, where the model is either provisioned to the model consumer
or deployed at third-party facilities. Once deployed, the model may be used to obtain
predictions on new data. Once the model is deployed and is available for usage, a model
consumer owning new data instances is expecting to make inferences using the model.
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Figure 3.1: Illustration of the different processes in a machine learning pipeline and the
corresponding trust domains [XBJ21]

Based on the four phases of a typical machine learning pipeline, [XBJ21] suggests that
at each of them privacy may be preserved, thus leading to:

(a) Privacy-preserving data preparation
(b) Privacy-preserving model training
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(c) Privacy-preserving model deployment
(d) Privacy-preserving inference

This thesis focuses on the first two stages, and therefore only methods related to these
are discussed.

3.2 Data synthesis
According to the defined PPML stages at which privacy can be preserved, data preparation
is the first one. It consists of multiple transformations applied to the raw data so that
they are more suitable for further usage. Various methods for preserving privacy at the
data level exist. One of the most popular approaches is to perform anonymization using
techniques, such as k-anonymity and the related l-diversity or t-closeness [XBJ21]. Other
approaches are based on differential privacy techniques, where a noise is injected in the
data set formally ensuring that information is preserved and cannot be leaked [Dwo08].
These techniques rely on modifying properties of the data – which may not be desired
for some applications. In addition, some of these methods are prone to de-anonymization
attacks [BDR18]. An alternative that became popular recently is to generate synthetic or
artificial (yet representative) data, based on the original data. This is known as synthetic
data generation and by preserving the properties and distribution of the original data, it
facilitates sharing it while enhancing privacy [CRS20].

Synthetic data are generated using a set of functions and algorithms and both size
(number of records) and quality (error characteristics) can be controlled [CP09]. This
helps not only in generating synthetic data that are similar to the original data, but also
to produce specifically tailored data that might be helpful in certain applications [CP09].

One of the first efforts to apply data synthesis for privacy-related reasons goes back
to 1993 [Don93]. This work developed a method to synthesize census response data,
preserving anonymity of the households. Various methods from machine learning have
been successfully applied to synthetic data generation. [Rei05] was the first to use
CART to generate partially synthetic data that is helpful for data sets with certain
missing information or when the data quality is not sufficient for a given application.
A tree is first fitted on the attribute that has structural missingness using the whole
data. Each incomplete instance is then assigned to a leaf in the tree and imputed by
sampling from donors within the same leaf. The donor pool can be controlled by further
growing the tree given a specific minimum leaf size. Over the last years, several statistical
methods have emerged: Synthetic Data Vault (SDV) [PWV16], Synthpop [NRD16],
DataSynthesizer [PSH17], simPop [TMKD17], and Synthia [MN21]. In addition, there
are a few commercial tools such as Mostly AI1 and Syntho2.

Synthpop in particular is known to be able to reproduce the main features of the data
set without the need for exploratory analysis [RND18]. It starts by fitting a model that

1https://mostly.ai/
2https://www.syntho.ai/
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describes the input data and then uses it to generate new data instances. In the official
implementation of Synthpop3, the CART model is used by default[BFOS17].

If the CART method is used, a classification or regression tree following the binary
recursive partition procedure is fitted. To generate a synthetic data instance, Synthpop
replaces some or all observed values of a given instance at a specific node by values from
a randomly drawn donor from the node members.

Recently, multiple deep learning-based methods have been introduced for data synthesis.
The most prominent ones are Variational Autoencoder (VAE) [KW22] and Generative
Adversarial Networks (GAN) [GPM+14]. A Variational Autoencoder is an Autoencoder
that uses variational inference to regularize the encoding distribution and prevent overfit-
ting. In contrast to Autoencoder, VAE provides a way to describe data instances in latent
space by providing a probability distribution instead of a single value in the bottleneck
layer. A GAN model consists of two neural networks: a generator that generates data
and a discriminator that validates the authenticity of the generated data. Once the
networks are sufficiently trained, they will be able to generate synthetic instances that
mimic the real data.

[LM22] provides an evaluation of various data synthesis methods when applied to data for
training anomaly detection models. State-of-the-art methods including SDV, Synthpop,
and DataSynthesizer are applied to credit card fraud and medical data to generate
synthetic data that are in turn used to train multiple anomaly detection methods such as
Autoencoder, GMM, and Isolation Forest. Results indicate that Synthpop outperforms
other methods, and it was concluded that it represents a good choice to employ for
anomaly detection tasks.

3.3 Federated learning
As discussed above, having data silos represent a serious impediment to developing
large-scale machine learning solutions. But instead of collecting data from various sources
in a centralized location, it would be better to seek a solution that allows making use
of the distributed data without the need to transfer them. An idea would be to train
a local model where the data reside and use such models to reach a consensus for a
common, global model. This represents the idea behind what is called federated machine
learning, which was introduced by in 2016 by [MMR+17]. It was initially introduced
for an edge-server architecture, to periodically update a collective text auto-complete
language model on mobile phones, by taking the average of all parameters across the
local models. This has become one of the widely used aggregation methods and is known
as Federated averaging (FedAvg). This way, the data reside at the edge, and only the
model is communicated to the centralized location. The models are aggregated into a
global model, and then sent back to all edge devices to be used during inference. The
models are encrypted during transfer for confidentiality reasons.

3https://www.synthpop.org.uk/
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[KMA+21] defines federated learning as “a machine learning setting where multiple entities
(clients) collaborate in solving a machine learning problem, under the coordination of a
central server or service provider”. To better characterize federated learning, [LTJZ20]
suggests that the following requirements are met:

(a) There are at least two parties (or nodes), each holding a certain amount of data
and that are interested in jointly training a machine learning model

(b) As part of the training process, the data never leave the client
(c) The models are transferable under a certain encryption scheme.
(d) The predictive performance of the resulting global model is a good approximation

of the model trained on the aggregation of all data at a centralized location.

A federated learning setup may or may not involve an aggregation server. If a central
aggregation server is available (Figure 3.2a), an initial model (e.g. randomly initialized)
is first sent to the local data owners. For models like Isolation Forest and XGBoost, the
process starts by fitting a model on the local data and no initial model is required. At
each client, the model gets trained using the locally available data and the resulting model
parameters are sent back to the centralized server. The coordinator server aggregates
the parameters (using e.g. FedAvg) and sends the global model back to the nodes. This
process is repeated until a certain stopping criterion is met (e.g. the maximum number of
iteration is reached). In another setting that does not involve a coordinator (Figure 3.2b),
clients communicate directly between each others without the help of third party.
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Figure 3.2: Federated learning architectures examples [LTJZ20]

3.3.1 Types of federated learning

Federated learning can be grouped into different categories based on how the data are
partitioned across the clients. When data owners share overlapping data features, but
they hold different data instances, this is referred to as horizontal federated learning
[LTJZ20]. It is also known as sample-partitioned or example-partitioned federated
learning [KMA+21]. An illustration of this scenario can be seen in Figure 3.3a. On the
other hand, one talks about vertical federated learning when the clients share overlapping
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data samples, but with different features, as can be seen in Figure 3.3b. It is also known
as feature-partitioned federated learning [KMA+21].
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Figure 3.3: Main federated learning categories [LTJZ20]

The horizontal federated learning scenario is more commonly encountered in real-life
applications [LTJZ20]. An example would be bank branches that are located in different
geographical regions and therefore have different user groups, which are described by
the same characteristics. This thesis focuses only on horizontal federated learning and
therefore, only topics that are relevant to such scenario are discussed in the next sections.

3.3.2 Model aggregation methods
When federated learning was introduced in [MMR+17], models are trained using Federated
averaging (FedAvg). The pseudocode for this algorithm is presented in Algorithm 3.1.

FedAvg allows partial participation of the clients in the training, by only selecting a
fraction of them in each round (reflected in Algorithm 3.1 by m = C × K). A single
communication round corresponds to the process of the clients synchronizing with the
server (by e.g. uploading the local model weights in the case of FedAvg) and the global
model being updated. At each communication round, it is assumed that both the local
and global models have the same structure and their parameters can therefore be directly
averaged and updated.

3.3.3 Effect of data distribution
As part of the federated learning process, stochastic gradient descent (SGD) is used at
each step local training step to minimize the local empirical risk [ZLL+18]. In order to
ensure that the SGD is an unbiased estimate of the full gradient, it is necessary to ensure
an independent and identically distributed (i.i.d.) training data [Bot10]. However, it
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Algorithm 3.1: Federated Averaging (FedAvg) - Adapted from [ZXLJ21]
Input:

1 K: the number of clients
2 B: the size of the local mini-batch
3 T : the total number of communication rounds
4 E: the number of local training epochs
5 η: the learning rate

Server:
6 Initialize global model parameters θ0
7 for each communication round t in {1, 2, ..., T} do
8 Select m = C × K clients with C ∈ [0, 1]
9 for each client k in {1, 2, ..., m} do

10 Download θt to Client k
11 Do Client k update and receive θk

12 end
13 Update global model θt = 	m

k=1
nk
n · θk

14 end

Client k update :
15 Replace local model θk ← θt

16 for local epoch in {1, ..., E} do
17 for batch b ∈ [1, B] do
18 θk ← θk − η · ∇Lk(θk, b)
19 end
20 end
21 return θk

is not always possible to assume having i.i.d. data at each client within a distributed
setup [ZLL+18]. In fact, in most applications the data are non-i.i.d., since they might be
related to a specific user, particular geographic location, or given time window.

Within a federated learning setting, given a data set consisting of x features and y labels,
we distinguish two levels of sampling: sampling a client i from the distribution of available
clients Q and drawing an instance (x, y) from the client’s local data distribution Pi(x, y).
Non-i.i.d. data is usually associated with different data distributions (Pi and Pj) for
different clients i and j. It is also possible to have changes in the distributions Pi and Q
which introduces another level of statistical heterogeneity.

To proceed, it can be observed that using the chain rule, the joint probability distribution
Pi(x, y) can be rewritten as Pi(y|x)Pi(x) and Pi(x|y)Pi(y). In other words, the probability
of observing the feature x and the label y is equal to the probability of observing y given
that x occurred multiplied by the probability of observing x.
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[KMA+21] defines five main aspects in which data may deviate from being i.i.d. i.e.
Pi ̸= Pj for two different clients i and j:

(a) Feature distribution skew or covariate shift: The marginal distribution Pi(x) can
vary within the clients even if Pi(y|x) = Pj(y|x) for all clients i and j. This may be
the case e.g. when data is generated from different users accomplishing the same
task in different ways.

(b) Label distribution skew or prior probability shift: the marginal distribution Pi(y)
can vary within the clients even if Pi(x|y) = Pj(x|y) for all clients i and j – which
means that the labels of the target variables are unevenly distributed across clients.
For example, certain target values might be tied to a certain geographic location,
and therefore are specific to a limited number of clients.

(c) Same label but different features or concept drift: Pi(x|y) vary across clients while
Pi(y) = Pj(y) for all clients i and j. This means that a given label y may be the
result of very different features x over multiple clients. For instance, images of the
same objects may vary drastically for different weather conditions, e.g. might be
partially covered with snow.

(d) Same features but different label or concept shift: Pi(y|x) vary across clients while
Pi(x) = Pj(x) for all clients i and j. A typical example of this is sentiment analysis,
where the same text might reflect different sentiments among different groups of
people.

(e) Quantity skew or imbalance: The amount of data locally available might vary
drastically across clients.

Data from real-world applications might involve one or multiple aspects of being non-i.i.d.
and it is essential to account of their effects when running federated learning experiments.

3.3.4 Federated anomaly detection
Since its introduction, federated learning has been considered in multiple application
domains [LTJZ20]. These include telecommunication and edge computing [LHD+20,
XWW+21], security [THX22, MKP+22, ASA+21], finance [YZY+19, LTJZ20], sales
[WXDL22], and health care [BCM+18, LMX+19, XGS+21].
While anomaly detection has been always considered to be one of the most challenging
tasks in data mining [Gab10], combining it with federated learning adds multiple layers
of complexity and results in an even more challenging task. While federated learning
shows high adoption in various applications using different types of data, its usage for
anomaly detection remained limited with little research performed in that area. In this
section, we highlight some of the available work on federated anomaly detection with
focus on tabular data.

Finance

Financial institutions are usually restricted by government regulations, especially when
it comes to privacy and protection of personal data. Adopting cutting-edge technology
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such as machine learning or cloud services while complying with such regulations may
be a real challenge. Let’s take the example of a bank or an insurance company that
aims to build a fraud detection system. Relying on data located within a specific branch
or geographical location is usually not enough to build a sufficiently accurate system.
Usually, there is a need for more diverse data that allows the model to generalize well.
This generally requires accessing data from sparse geographical locations, which is in
many of the cases not possible due to legal restrictions.

Federated learning represents a promising solution to this problem, as it allows to train
models across multiple parties without the need to share the data. For instance, [YZY+19]
evaluates the application of federated learning for the task of credit card fraud detection
and shows that it’s possible to obtain good model performance without the need to share
the data.

[CM22] provides a comparative study between centralized and federated learning for
anomaly detection on financial and medical data sets. The considered methods involved
different anomaly detection methods (MLP, GMM, and Isolation Forest) covering the
different label availability scenarios: supervised, semi-supervised, and unsupervised. The
data is split into 15 and 30 subsets in order to simulate a distributed scenario with variable
number of clients. Results show that while federated MLP provides good precision, recall,
and F2 score that are comparable to the centralized ones, the other methods do not
achieve similar performance.

Intrusion detection

With the increasing dependency on digital systems, the number of devices and private
networks is steadily increasing and becoming more interconnected. This resulted in the
spread of cyber crime, especially that is becoming more financially lucrative. Therefore,
more data are being collected to build reliable intrusion detection systems. However, it
is not possible to communicate data from single users to a centralized location due to
privacy and security reasons. The introduction of federated learning provided a solution
to make use of machine learning techniques on distributed data without threatening the
privacy and security of users.

[SH21] provides an implementation of stacked Long Short-Term Memory (LSTM) networks
in a federated setup for anomaly detection on IoT sensor data. The considered data
consist of sensors event logs and energy use values distributed across 180 devices. The
proposed solution shows better performance in detecting both collective and contextual
anomalies compared to other baseline methods like centralized logistic regression and
federated logistic regression. In addition, the model shows fast convergence and robustness
to changes under different configurations such as changing the number of LSTM layers.

[PZJL22] evaluates a federated anomaly detection solution for detecting anomalies in
network traffic. The data consists of cellular traffic records that are extracted from packet
level and session level. An LSTM-based Autoencoder is then trained in a collaborative
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manner. The resulted model shows better performance compared to other reconstruction-
based anomaly detection method.

[HBL+21] suggests a federated architecture to detect cyberattacks in time series data
for an industrial system. A VAE-LSTM model is trained across multiple manufacturing
locations at the edge. The system is evaluated on a specific use case involving time-series
data from a gas pipeline factory and also on other data sets involving different industrial
applications. The suggested system shows a significant improvement in bandwidth
efficiency while achieving high detection performance.

Health care

Another domain that showed high adoption of federated learning is the medical field
[LTJZ20]. Driven by the goal to minimize human error and reduce labor costs, medical
institutions have been increasingly using machine learning for various tasks. However,
one major impediment to a broader and more efficient use of such technologies have
always been the difficulty to collect large amount of data. Due to the highly sensitive
nature of medical records, the data must always reside at the originating location and
cannot be shared. This results in small data sets that are owned by different institutions
and are geographically dispersed.

In order to overcome this issue and allow different institutions to collaborate, federated
learning has been used with success for various tasks [LTJZ20]. For example, [BCM+18]
developed a federated learning setting to train a model that predicts future hospitalizations
for patients with heart-related diseases using electronic health records data. [LMX+19]
proposes a federated learning system that performs segmentation of brain scans and show
that it is possible to achieve segmentation results that are comparable to centralized
learning without the need to share patient’s data.

Other applications

[NVP22] suggest a new methodology for unsupervised federated learning in a dynamic
environment. The proposed methodology consists of two steps. In the first step, clients
are grouped based on their corresponding majority patterns. This is performed by
training a preliminary anomaly detection model to determine the inlier/outlier split of
the local data. Clients that agree on their inliers/outliers proportion exchange their
models and join the same community. Each community is then collaboratively trained in
a federated manner. This method is evaluated for the OC-SVM using the MNIST and
MNIST fashion data sets. Results for the conducted experiments show clear improvement
in terms of ROC AUC score compared to training the models on locally available data
only.

Some of the work, discussed in this section, already provides an evaluation of federated
anomaly detection. In particular, [YZY+19] and [CM22] perform an evaluation of the
predictive performance of federated learning on some anomaly detection benchmark
data sets. However, the performed experiments are limited in terms of algorithms, data
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sets, assumption on the data distribution, and baselines used for comparison. This
thesis, on the other hand, provides a more comprehensive study on privacy-preserving
anomaly detection, including federated learning. It also investigates various algorithms
(for different data availability cases), data sets, and data splitting scenarios (i.i.d. and
non-i.i.d.).
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CHAPTER 4
Methodology

Based on the problem defined in Section 1.2 and the outcomes of our literature review,
experiments with the selected privacy preserving methods are defined. These experiments
involve training various anomaly detection models in different settings, including synthesis-
based learning and federated learning.

In this section, the methodology for the experiments and the choices made during the
experiment design are discussed in details. We start by describing the selected data
sets, and provide a brief exploratory data analysis for each. Afterwards, the resampling
techniques selected to be used in supervised learning are briefly discussed. Then, the
selected anomaly detection algorithms are discussed for all training scenarios. Finally,
both the data synthesis-based learning and the federated learning settings are described.

4.1 Overview
The literature review provides an overview on the state-of-the-art methods for anomaly
detection (cf. Section 2.2), recent advances in federated learning (cf. Section 3.3),
and related work that evaluates anomaly detection methods in a federated manner (cf.
Section 3.3.4) . Based on that, data sets and algorithms to be used during the experiments
are selected, focusing on data sets that are frequently used in related work. The selected
models are then trained and fine-tuned on the data sets with the goal to achieve results
that are comparable to the ones in literature.

In order to simulate local data at the client side, the original data sets are split considering
different statistical heterogeneity scenarios. This is done taking into account various
parameter, such as the number of clients and the target class distribution. Each model is
then trained and fine-tuned on the obtained subsets, simulating the local training setting.
An illustration of the process involved for this training scenario can be seen in Figure 4.6.
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Afterwards, the federated setup is defined, and all algorithms are adapted accordingly.
Various experiments are then conducted simulating real-life federated scenarios. An
overview of the federated learning setting is shown in Figure 4.8.

Synthetic data-based learning, another collaborative learning approach, is also considered.
Here, data at the client side are used to generate synthetic data, which in turn are sent
to a server to train models in a centralized manner. An overview of this training setting
is illustrated in Figure 4.7.

For all experiments, various performance metrics are calculated to allow evaluation and
comparison of the obtained results. Significance testing is used to draw conclusion on
the predictive performance of the different methods [Die98].

4.2 Data sets
With anomaly detection being one of the most popular and challenging tasks in machine
learning, multiple data sets are available. For instance, [PSCvdH22] provides a collection
of 21 publicly available data sets with real anomalies. The presented data sets are
characterized by high dimensionality and increased complexity. [HHH+22] also provides
57 data sets covering various application domains and having different characteristics.

In order to select data sets for the experiments, we limit ourselves first to tabular data
sets that are popular within the anomaly detection community. Further, only data
sets from applications that raise privacy concerns are considered, as only for those,
applying privacy-preserving methods is justified. In order to ensure experiments that
are representative of real-life scenarios, the following criteria should be met within the
selected data sets:

• Different sizes and dimensions are present
• Various application domains are considered
• Different contamination rates (the percentage of samples in our data to be anoma-

lous) are present

Following this approach, four data sets, belonging to three different application domains,
are selected. These data sets are described in the following subsections.

4.2.1 Fraud detection
The first selected data set is known as the “Credit Card Fraud Detection” data set1

and was provided by [PCJB15]. This data set contains financial transactions made by
European credit card holders via online websites [AB15]. For confidentiality reasons,
features have been transformed using Principal Component Analysis (PCA). The meaning
of most variables is therefore not relevant. The data set contains 284,807 transactions
and is highly imbalanced, as only 492 instances (equivalent to 0.173 %) are fraudulent.

1https://www.kaggle.com/datasets/mlg-ulb/creditcardfraud
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The data set has 31 attributes, including the following:

• Time: time at which the transaction took place
• Amount: amount spent during the transaction
• 28 PCA transformed features: positive and negative real values resulting from

applying PCA on the original features
• Class: target attribute defining whether the transaction is fraudulent (1) or not (0)

Due to the big difference in scale between the PCA transformed attributes and the other
ones, min-max scaling is applied. In addition, we observed that time does not provide
any useful information and therefore has been removed as part of the preprocessing.

4.2.2 Intrusion detection
For intrusion detection, NSL-KDD2 is used. This data set represents an improved version
of the earlier KDD CUP 99 data set3 [SWW+99], which has been introduced in 1999
and has been since widely used by researchers to evaluate anomaly detection methods
[TBLG09]. NSL-KDD contains 148,517 instances and 43 features, already split into a
training set with 125,973 instances and a test set of 22,544 instances. The target feature
defines whether an instance represents an attack or not. There are 40 unique attacks
that are grouped into four categories:

1. Denial of Service Attack (DoS): an attack aiming to make a service inaccessible by
occupying significant amount of memory or state resources.

2. User to Root Attack (U2R): an exploit in which an attacker with a normal user
account ends up gaining access as root by exploiting vulnerabilities in the system.

3. Remote to Local Attack (R2L): an attack in which an intruder who is initially able
to send packets to a remote computer, but initially does not have permission to
access it, exploits vulnerabilities to gain a user access.

4. Probing Attack: an attack in which information about the network is gathered
with the purpose to get around the security controls.

According to [TBLG09], the features in NSL-KDD may be classified into three groups:

1. Basic features: the set of attributes that are extracted from TCP/IP connection.
2. Traffic features: this includes attributes that are computed within a given time

window interval and can be further split into:
(a) Same host features: information about the connections within the last two

seconds that have the current host as a destination host.
(b) Same service features: information about the connections over the last two

seconds for a given network service on the destination host.
3. Content features: while Dos and probing attacks involve multiple connection

attempts over a short period of time, R2L and U2R attacks are usually embedded
2https://www.unb.ca/cic/datasets/nsl.html
3https://archive.ics.uci.edu/ml/datasets/kdd+cup+1999+data
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in the packet data and involve only a single connection. In order to detect such kind
of attacks, additional features are required, e.g. the number of failed login attempts
and percentage of connections to the same service/different services/different hots.

The number of instances for each class can be seen in Table 4.1.

Table 4.1: Number of instances per attack category for NSK-KDD

Attack Category Normal DoS Probe R2L U2R
Number of instance 77,054 53,387 14,077 3,880 119

Working with NSL-KDD data set requires using multi-class classifiers, since it includes
four attack categories. However, anomaly detection is usually formulated as a binary
classification problem. Creating new “view” of the data set by only selecting a single
attack category along the non-attack cases alleviates this issue, and is in line with
other researchers working on anomaly detection using the NSL-KDD data [Bab15, AC15,
DPS+18]. For the purpose of this thesis, two data sets are created:

• NSL-KDD Probe: contains only the normal instances and instances from the Probe
class. In total, it has 9,1131 data points with 77,054 being normal and 14,077
attack instances.

• NSL-KDD R2L: contains only instances corresponding to either the normal or
Probe class. It has the size of 80,934 with 77,054 data instances belonging to the
normal class and 3,880 instances classified as attacks.

As part of the preprocessing, one-hot encoding is applied to all categorical features and
all features are min-max scaled. The resulted data set has 97 features for NSL-KDD
Probe and 56 features for NSL-KDD R2L. The difference in the number of features is
a result of dropping those with single value for all instances corresponding to a given
target class.

4.2.3 Anomaly detection in health care

The last data set is the Thyroid Disease data set4 provided by [DG17]. In particular,
Annthyroid (also known as Ann-thryoid), a version of the thyroid data set that is suitable
for training artificial neural networks, is used. In contrast to the original Thyroid data
set, it only includes numeric features, where all categorical attributes are encoded. It
contains medical records from 7,200 patients with the goal to determine whether a patient
is hypothyroid. Hypothyroidism is a condition where the thyroid gland does not produce
enough thyroid hormone in the bloodstream. The target class contain three values:
normal (not hypothyroid), hyperfunction, and subnormal functioning.

The data set includes 22 attributes providing the following information:

4https://archive.ics.uci.edu/ml/datasets/thyroid+disease
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• Basic patient information: includes among others age, sex, whether the patient
is sick or not, whether the patient is pregnant or not, whether the patient is on
thyroxine or antithyroid medication, whether the patient had thyroid surgery or
not.

• Thyroid hormone measurements: values obtained from blood test including:
– THS: the thyroid stimulating hormone levels.
– T3: Triiodothyronine levels in the blood.
– TT4, FTI, and T4U: total Thyroxine levels, free Thyroxine index and the

Thyroxine uptake.
– TBG: Thyroxine-Binding Globulin levels in the blood.
– In addition, there are attributes defining whether such values are measured or

not.

The data set in its original format is split into 3,772 instances for training and 3,428
instances for testing. Due to the small amount of data available, both subsets are merged
together. In addition, the target class is transformed by combining both hyperfunction
and subnormal functioning classes, so it only provides information whether the patient is
normal or not.

As part of preprocessing, all attributes but the target class are scaled.

4.3 Algorithms
Based on the literature review performed in Chapter 2, well established anomaly detection
algorithms that belong to different learning scenarios (supervised, semi-supervised, weakly-
supervised, and unsupervised) are selected. These methods include classical anomaly
detection methods that have been used for long time in various tasks, as well as new
state-of-the-art deep learning-based methods. In this section, we describe the selected
methods and how they are used in the experiments.

4.3.1 Supervised anomaly detection
From the wide variety of supervised anomaly detection methods, three established
methods are selected for our evaluation: Feedforward Neural Network (FFNN), logistic
regression and XGBoost.

Feedforward Neural Network

The first step was to define a custom FFNN architecture for each data set. The
different models are implemented using PyTorch5. The architectures that showed the
best performance are selected and their corresponding architectures are shown in the
tables 4.2, 4.3, 4.4, and 4.5.

5https://pytorch.org/
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In order to define the model that results in the highest predictive performance, the
architecture is iteratively changed by choosing a number of layers between two and ten
and each time, the model is trained on the training set, and its predictive performance
is recorded. The number of neurons in intermediate layers are also varied within the
range of [0.5 ∗ input_size, 5 ∗ input_size] with a step of 0.5 ∗ input_size to determine
the best architecture for each data set.

When defining the architecutre, the considered optimizers, algorithms that update the
parameters of the neural network, Adam [KB17] and SGD are used. Based on the
provided predictive performance, Adam is used for the Annthyroid data set, while SGD
is used for all other data sets.

Both Dice Loss and Binary Cross Entropy Loss (BCELoss) are considered as loss function.
It was found that BCELoss provides better results and is therefore used as a loss function
for all experiments.

Table 4.2: FFNN architecture for the credit
card data set

Layer In Out Activation
Fully connected 29 12 ReLU
Fully connected 12 24 ReLU
Dropout (p=0.5)* 12 24 -
Fully connected 24 12 ReLU
Fully connected 12 1 Sigmoid
*probability of a unit in the layer to be zeroed

Table 4.3: FFNN architecture for the An-
nthyroid data set

Layer In Out Activation
Fully connected 21 42 ReLU
Fully connected 42 84 ReLU
Fully connected 84 1 Sigmoid

Table 4.4: FFNN architecture for the NSL-
KDD Probe data set

Layer In Out Activation
Fully connected 96 64 ReLU
Fully connected 64 48 ReLU
Dropout (p=0.5) 64 48 -
Fully connected 48 24 ReLU
Fully connected 24 16 ReLU
Layer 16 1 Sigmoid

Table 4.5: FFNN architecture for the NSL-
KDD R2L data set

Layer In Out Activation
Fully connected 55 96 ReLU
Fully connected 96 48 ReLU
Dropout (p=0.5) 96 48 -
Fully connected 48 24 ReLU
Fully connected 24 16 ReLU
Layer 16 1 Sigmoid

Logistic Regression

All logistic regression models are implemented using PyTorch. This was preferred over
using existing implementations (e.g. from scikit-learn6), to be able to train on GPU and

6https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.
LogisticRegression.html
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to allow for more flexibility.

XGBoost

XGBoost is widely popular for its good performance with tabular data [Bro16]. The
official implementation of the algorithm7 is used for all experiments.

4.3.2 Semi-supervised anomaly detection
For semi-supervised learning, Autoencoder is considered. For all data sets, the models
are implemented in PyTorch. The architectures used for each data set are shown in
tables 4.6, 4.7, 4.8, and 4.9.

Similar to FFNN (cf. Section 4.3.1), the architecture of each data set is selected by
varying the number of layers and the neurons in each hidden layer. For each data set,
even numbers of hidden layers between two and ten are considered. The number of
neurons in these layers are also varied within the range of [2, input_size] to determine
the best architecture.

Both optimizers Adam and SGD are tested and Adam is selected for all data sets since it
provides the highest predictive performance. Mean Squared Error (MSE) is used as a
reconstruction error (loss function) for all experiments.

Table 4.6: Autoencoder architecture for the
credit card data set

Layer In Out Activation

En
co

de
r Fully connected 29 20 LReLU

Fully connected 20 15 LReLU
Fully connected 15 12 LReLU

D
ec

od
er Fully connected 12 15 LReLU

Fully connected 15 20 LReLU
Fully connected 20 29 LReLU

Table 4.7: Autoencoder architecture for the
NSL-KDD R2L data set

Layer In Out Activation

En
co

de
r Fully connected 55 35 LReLU

Fully connected 35 20 LReLU
Fully connected 20 16 LReLU

D
ec

od
er Fully connected 16 20 LReLU

Fully connected 20 35 LReLU
Fully connected 35 55 LReLU

4.3.3 Weakly-supervised anomaly detection
From the wealy-supervised learning methods, DevNet is used. The official implementa-
tion8 is adapted to a newer version of TensorFlow9 and used for all experiments.

In addition to the default architecture, which includes a single hidden layer with 20
ReLU units and a single unit in the output layer, DevNet provides three other variants

7https://xgboost.readthedocs.io/en/stable/
8https://github.com/GuansongPang/deviation-network
9https://www.tensorflow.org/
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Table 4.8: Autoencoder architecture for the
NSL-KDD Probe data set

Layer In Out Activation

En
co

de
r

Fully connected 96 64 LReLU

Fully connected 64 28 LReLU

D
ec

od
er Fully connected 28 64 LReLU

Fully connected 64 96 LReLU

Table 4.9: Autoencoder architecture for the
Annthyroid data set

Layer In Out Activation

En
co

de
r

Fully connected 21 15 LReLU

Fully connected 15 10 LReLU

D
ec

od
er Fully connected 10 15 LReLU

Fully connected 15 21 LReLU

by changing the number of hidden layers. For all experiments, the default version of
DevNet is used since it provides always the best performance.

A single training epoch can be defined as a complete pass of the training data set through
the algorithm where each sample was used to update the internal model parameters.
During each epoch of the DevNet training loop, a certain number of mini-batches are
sampled using stratified random sampling. For all experiments, a mini-batch size of
100 is considered. In order to simulate the weakly-supervised scenario with very little
labels available, for each model, a maximum of five anomalous data points are provided.
If there are no anomalous points available in the data set, the training happens in an
unsupervised fashion.

Even though DevNet may operate in an unsupervised-fashion, it was mainly designed to
address problems where very limited number of labeled instances are involved [PSvdH19].
It was therefore decided to only use DevNet in the weakly-supervised scenario.

4.3.4 Unsupervised anomaly detection
For the unsupervised setting, two methods are considered: Isolation Forest (IF) and
REPEN. Even though REPEN operates in both supervised and unsupervised settings,
during all experiments it is used in an unsupervised fashion.

Isolation Forest

The isolation forest implementation from scikit-learn10 is used in all experiments. In
order to select the optimal number of trees for each data set, the full training data are
used to train multiple Isolation Forest models and record the predictive performance each
time. A number of trees in the range [50, 500] are tested with a step of 10 and the value
resulting in the best predictive performance is kept. This resulted in to 350 trees for
credit card, 90 for NSL-KDD Probe, 150 for NSL-KDD R2L, and 400 for the Annthyroid
data set.

10https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.
IsolationForest.html
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REPEN

The official implementation of REPEN11 provided by the authors of [PCCL18] is used.
The code is updated to be compatible with the current version of TensorFlow.

The default architecture of REPEN with a single hidden layer is used. The training
process is performed in mini-batches with random sampling from all available data. For
all experiments, 100 batches are considered per epoch.

4.4 Data splitting
The selected data sets are split into training and testing sets. For all experiments,
80% of the data are reserved for training while the other 20% are used for testing. In
all experiments, the test set is left out and used to evaluate the model performance
and compare the different training scenarios. The training set is first used to train a
centralized model and identify optimal hyper-parameter for each method. For the local,
synthetic data-based and federated learning scenarios, the training data are split into
small subsets simulating a distributed setting.

As already discussed in Section 3.3.3, data distribution significantly affects the perfor-
mance of federated learning. In fact, other than centralized learning, that also applies to
the other learning settings defined in Section 1.2. It is therefore necessary to evaluate
different data distribution scenarios. For this reason, three different non-i.i.d. scenarios
in addition to the i.i.d. scenario are considered.

The i.i.d. scenario is simply simulated by splitting the full data set into n subsets. The
non-i.i.d. scenarios are defined taking into account the five aspects at which data may
deviate from being i.i.d. defined in Section 3.3.3. These scenarios are defined as follow:

1. Feature-based partition: k-means clustering (Algorithm 2.1) is used to split the
data into 5 different clusters. The k-means implementation from scikit-learn12

is used with the default settings and with a maximum number of iterations of
300. A Dirichlet distribution is then used to sample n subsets from the resulted
clusters. The Dirichlet distribution, commonly used as prior distribution in Bayesian
statistics [Loc75], represents a good mean of simulating real-world data distribution
[LDCH21]. It is parameterized by a vector α = (α1, ..., αk) where a higher α gives
a more dense distribution while a low α provides a more sparse distribution. The
value of α is set to of 10 for this scenario.

2. Label-based partition: we start by equally splitting the normal data instances into n
subsets simulating n clients. Anomalous instances are then randomly and unequally
assigned to the created subsets; 30% of these subset do not receive any anomalous
instances.

11https://github.com/GuansongPang/deep-outlier-detection
12https://scikit-learn.org/stable/modules/generated/sklearn.cluster.KMeans.

html
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3. Label-based Dirichlet Partition (LDP): for n clients, each is allocated a subset of
the instances corresponding to each label (normal and anomalous) according to
the Dirichlet distribution. The value of α is set to of 5 for this scenario. Unlike
the label-based scenario, this does not set any strict rule on labels being missing in
certain clients, and it might be the case that all clients have both classes in their
local data.

The Earth Mover’s Distance (EMD) (also known as Wasserstein distance) is used to
evaluate the similarity between the generated subsets for each scenario. EMD represents
a measure of the distance between two probability distributions over a given region. For
n subsets, simulating local data at the clients in a federated setting, EMD is calculated
pairwise for each feature. The resulting values for each feature are then averaged to
obtain a single value for comparison. The average EMD values per feature for the credit
card data set in the case with 50 clients can be seen in Figure 4.1. It can be seen that for
most attributes, the feature-based non-i.i.d. scenario shows the highest difference across
clients. For the target attribute (Class), the label-based non-i.i.d. scenario provides the
highest difference across clients.
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Figure 4.1: Comparison of average EMD value per feature for the 50 clients scenario
with the credit card data set

The average EMD distance for some features for the Probe data set can be seen in
Figure 4.2. The values for non-i.i.d. data splitting scenarios are overall higher. Unlike
the Credit Card data set, the EMD values for the label-based scenario are high for most
attributes.

Figure 4.3 shows that the difference across clients per feature is similar to what is observed
for the Credit Card data set. Feature-based splitting scenario results in very different
local data at each client for most attributes. On the other hand, the i.i.d. splitting
scenario seems to provide very similar data across the different clients for all features.
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Figure 4.2: Comparison of average EMD value per feature for the 50 clients scenario
with the Probe data set (Only few features)
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Figure 4.3: Comparison of average EMD value per feature for the 50 clients scenario
with the R2L data set (Only few features)

For the Annthyroid data set, the difference across the clients is less visible, with non-i.i.d.
scenarios providing slightly more different data across the clients compared to i.i.d.
splitting. This can be observed in Figure 4.4

4.5 Performance evaluation
Based on the discussion in Section 2.1.3, two main metrics that are popular within the
anomaly detection research community are selected: ROC and PR. These metrics are
independent of the anomaly threshold and therefore provide a better mean of comparison.
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Figure 4.4: Comparison of average EMD value per feature for the 50 clients scenario
with the Annthyroid data set

Due to the highly imbalanced nature of the anomaly detection problem, the variation in
PR AUC is more important than ROC AUC for the different experiments. Since anomaly
detection is focused on predicting anomalies (the positive class), PR AUC represents a
better mean of evaluating the performance. In fact, ROC AUC might be misleading and
provide high values for imbalanced applications while the model is misclassifying most of
the anomalous instances. PR AUC on the other hand is better suited for the case where
positive events (anomalies) are less common. While both metrics are considered during
the evaluation of results, a special attention is always given to PR AUC.

As part of this thesis, the different training settings are evaluated in terms of effectiveness
(i.e. predictive performance), and other aspects such as communication efficiency are not
considered.

In each experiment, we set a seed value that controls all aspects of the experiment
including data splitting, distributed data simulation, and model initialization. For all
experiments, the training is repeated three times with three different random seed values.
For each metric, the average and standard deviation of all three runs are then provided.
This counters the effect of randomness and provides more representative and comparable
results.

As defined in Section 1.2, four different training settings are considered: centralized, local,
synthetic data-based and federated learning. Both centralized and local learning serve as
reference to the other settings. Centralized learning, where models using aggregated data
obtained from all clients, provides the upper limit or the ideal performance that other
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training settings aim to achieve13. On the other hand, local training give the lower limit
that privacy-preserving collaborative training settings have to outperform. Since local
training results in one model per client, for each performance metric, the average value
over all clients is always reported. To illustrate this, an example of a typical learning
curve for the federated scenario can be seen in Figure 4.5.
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Figure 4.5: Example of federated learning curve compared to references

It can be seen that a federated model is expected to improve during the learning process
and the final value falls within the reference range defined by centralized and local
training. The same applies to synthetic data-based learning where a well-performing
model results in a value that is above the average local learning value.

13However, it has to be considered that centralizing data is most of the times not even an option, due
to data restrictive protection regulations. Centralized learning is thus often really just an upper limit
reference point, but not a realistic alternative to federated learning.
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4.6 Local data-based learning
The first training setting that serves as a baseline for the other scenarios is learning from
local data available at the client side only. As already mentioned in Section 1.2, this
scenario will be referred to as local training in the rest of the thesis.

Figure 4.6 provides an overview on the setup for all local training experiments.

Original
Dataset

Client 1 

Model 2

Generate Data Splits

Client 2

Client N

N ∈  [2, 5, 10, 20, 30, 40, 50]

Local Data Generation Model Training

Training
Data

80 %

Test Data

Data Splitting

3 non-i.i.d. scenarios:
- Feature-based
- Label-based
- LDP

i.i.d. scenario

ROC AUC
PR AUC
Precision and Recall
(maximizing F1)

Metrics

...

Preprocessing

20 %

Model 1

Model N

Pr
ed

ic
tio

n

...

Figure 4.6: Illustration of the local training setting

After splitting the original data set into training and test sets, a distributed learning
scenario is simulated by splitting the data into N clients, where the four data scenarios
described in Section 4.4 are applied. For each simulated client, a single local model
is then trained using only the data locally available. This is performed for each data
splitting scenario and for each defined number of clients. Once a model is trained, the
test set is used to perform prediction and calculate the performance metrics. As part
of investigating the effect of the amount of data available at each client, the number of
clients is varied with N ∈ [2, 5, 10, 20, 30, 40, 50].

As mentioned in the previous section, results from local training are considered as a lower
reference point for the other experiments. For each experiment, this reference value is
the average over all clients.

4.7 Synthetic data-based learning
The first privacy-preserving learning scenario is synthetic data-based learning. In this
scenario, synthetic data is locally generated at the client side, and then sent to a centralized
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location for aggregation. The thus collected data sets are then used to train a centralized
model, which is evaluated on the test set. This process can be seen in Figure 4.7.
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Figure 4.7: Illustration of the synthetic data-based learning setting

4.8 Federated learning
The second privacy-preserving learning setting is federated learning. For all experiments,
local models are trained for 10 epochs per communication round. In total, 100 communi-
cation rounds are carried out. After the last round, performance metrics are calculated
for the global federated model using the test set.

For aggregation, FedAvg is used, for its simplicity and performance. In addition, related
work showed that FedAvg performs better than other aggregation methods such as
FedSGD and FSVRG [NSU+18].

Due to the nature of the XGBoost and Isolation Forest algorithms, applying FedAvg is
not possible and model aggregation is performed differently. In the case of XGBoost, a
model is trained locally on the data available at each client, and then all of them are used
during inference to make predictions. To perform inference for a given data instance,
each model is used to obtain an anomaly score and all obtained values are then averaged
to get a single federated anomaly score. Isolation Forest is federated by aggregating the
trees from each local model. Each local model is trained on the locally available data
and the trees from each model are then sent to a central location where a global model is
created by adding them together.

For supervised learning, the effect of resampling through the application of random
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Figure 4.8: Illustration of the federated learning setting

undersampling, random oversampling, and SMOTE, all at the client level, are evaluated.
These techniques help with the highly imbalanced nature of the data sets. Oversampling
techniques perform data augmentation on the minority class by sampling instances from
the minority class or generating new instances based on the existing ones. On the other
hand, undersampling techniques work by selecting specific samples from the majority
class. The implementation for all resampling techniques is taken from the package
imbalanced-learn14 [LNA16].

14https://imbalanced-learn.org/

58

https://imbalanced-learn.org/


CHAPTER 5
Results and Evaluation

In this section, we discuss the results from all experiments in terms of predictive perfor-
mance metrics.

The selected methods are first trained in a centralized fashion. This ensures that
the chosen models and their corresponding hyperparameters are able to provide good
performance for the different data sets. As mentioned in Chapter 4, centralized results
in addition to the average local learning results provide baselines for comparison. Even
though the variation between the clients might be also of interest, it is assumed that the
average value provides a good indication on the overall performance of the local learning.

As mentioned in Section 4.5, performance is mainly assessed in terms of ROC AUC and
PR AUC. In addition, while evaluating and comparing results, a special attention is
always given to PR AUC since it better reflects the model’s performance.

Results in this section are presented in a way that allows comparing the privacy-preserving
settings to learning based on only the local data. As mentioned in Chapter 4, Student’s
t-test is used to evaluate the significance of the federated and synthetic data-based
learning results compared to local training. For this purpose, two significance levels are
used: 5% and 10%. In addition, both metrics are always reported in terms of mean and
standard deviation of the values obtained over all executions. The comparison between
the training settings takes into account the following:

1. Different data splitting scenarios: comparing i.i.d. to non-i.i.d. scenarios and the
effect of aspects in which data can deviate from being i.i.d..

2. Number of clients and the amount of data available at each client: the effect is
evaluated in terms of performance metrics and also in terms of model convergence.
for the learning scenario, the effect of resampling on the performance is also
evaluated.

3. Type of data: comparing the results across the data sets reflecting the effect of the
type and dimensionality of the data.
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4. Various training scenarios: evaluate the difference between the four scenarios
reflecting the effect of availability and amount of labels on the performance.

In all result tables in this section, the best score for a specific data set, number of
clients and data distribution scenario is highlighted in bold font. In addition, statistically
significance of federated and synthetic-based learning scores compared to local learning
scores are encoded by color. The federated learning result is given in green if it is
significantly better than the local learning result, while analogously, the synthetic data-
based learning result is colored in blue if it is significantly better than the the local
learning result. In addition, the significance level is indicated by a “+” for 5% and “++”
for 10%. On the other hand, the result for federated or synthetic-based learning scenario being
significantly worse than local learning is indicated by a “-” for and “- -” for significance levels of
5% and 10% respectively.

Even though a number of clients between 2 and 50 are considered during the experiments, only
settings with 10 and 50 clients are presented in this section to improve readability. The detailed
results for the other settings can be found in Appendix A.

5.1 Supervised learning
In this section, results from all three supervised learning methods are presented. Overall, federated
learning provides a significantly better results compared to learning from local data only and
also compared to learning from synthetic data. Synthetic data-based learning also shows good
predictive performance in some of the settings but seems to be dependent on the type of the data.

In addition, the effect of resampling on the federated results is evaluated by applying both
oversampling and undersampling at the local nodes.

In the next subsections, a detailed analysis of the obtained results is performed with a focus on
the previously defined aspects.

5.1.1 Feedforward Neural Network
Results for the experiments using FFNN can be seen in Tables 5.1 and 5.2.

For the Credit Card data set, synthetic data-based learning outperforms federated learning, but
both settings show significantly better performance compared to local learning for all i.i.d. and
non-i.i.d. scenarios. The difference in performance becomes more significant with increasing
number of clients. For instance, in the case of i.i.d. data, the PR AUC value for federated learning
drops from 0.528 with 10 clients to 0.448 while the performance for the synthetic data model
does not show noticeable change with the PR AUC slightly increasing from 0.638 with 10 clients
to 0.669 with 50 clients.

However, for the R2L and Annthyroid data sets, synthetic data-based learning show significantly
worse results compared to both local and federated learning for different number of clients. For
the Annthyroid data set for example, the PR AUC values range between 0.062 and 0.172 across
the various data splitting scenarios and the different number of clients.

Federated learning, on the other hand, provides consistent performance across the different data
sets. In particular, for the R2L data sets with 50 clients, it shows a clear advantage over local
learning with more than 50% increase in PR AUC for the different data splitting scenarios.
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Table 5.1: FFNN results for all data sets with 10 and 50 clients using i.i.d. and Feature-
based non-i.i.d. data: Significance of federated learning and synthetic-based learning
results compared to local learning is given with + for p < 0.05 and ++ for p < 0.1

i.i.d. Feature-based non-i.i.d.
Clients Scenario ROC AUC PR AUC ROC AUC PR AUC

Credit Card Data Set
- Centralized 0.927 (±0.02) 0.544 (±0.06) - -

10 Local 0.694 (±0.00) 0.165 (±0.03) 0.694 (±0.01) 0.146 (±0.03)

Federated 0.895+(±0.02) 0.528+(±0.05) 0.894+(±0.02) 0.528+(±0.05)

Synthesis 0.930+(±0.02) 0.638+(±0.05) 0.932+(±0.02) 0.639+(±0.06)

50 Local 0.509 (±0.00) 0.105 (±0.02) 0.503 (±0.01) 0.102 (±0.02)

Federated 0.887+(±0.04) 0.448+(±0.06) 0.888+(±0.04) 0.449+(±0.06)

Synthesis 0.939+(±0.02) 0.669+(±0.06) 0.938+(±0.02) 0.672+(±0.06)

Probe Data Set
- Centralized 1.000 (±0.00) 0.998 (±0.00) - -

10 Local 0.997 (±0.00) 0.984 (±0.00) 0.997 (±0.00) 0.981 (±0.00)

Federated 0.999+(±0.00) 0.997+(±0.00) 0.999+(±0.00) 0.996+(±0.00)

Synthesis 0.988-
(±0.00) 0.942-

(±0.00) 0.981-
(±0.00) 0.919-

(±0.00)

50 Local 0.994 (±0.00) 0.966 (±0.00) 0.989 (±0.00) 0.942 (±0.00)

Federated 0.998+(±0.00) 0.988+(±0.00) 0.999+(±0.00) 0.992+(±0.00)

Synthesis 0.995++(±0.00) 0.973+(±0.00) 0.991+(±0.00) 0.953+(±0.00)

R2L Data Set
- Centralized 0.997 (±0.00) 0.960 (±0.00) - -

10 Local 0.986 (±0.00) 0.753 (±0.01) 0.981 (±0.00) 0.717 (±0.06)

Federated 0.995+(±0.00) 0.936+(±0.01) 0.995+(±0.00) 0.932+(±0.01)

Synthesis 0.763-
(±0.01) 0.100-

(±0.01) 0.763-
(±0.01) 0.100-

(±0.01)

50 Local 0.898 (±0.00) 0.317 (±0.01) 0.891 (±0.00) 0.309 (±0.01)

Federated 0.981+(±0.00) 0.662+(±0.01) 0.982+(±0.00) 0.679+(±0.03)

Synthesis 0.833-
(±0.01) 0.146-

(±0.01) 0.833-
(±0.01) 0.150-

(±0.01)

Annthyroid Data Set
- Centralized 0.995 (±0.00) 0.954 (±0.03) - -

10 Local 0.901 (±0.02) 0.782 (±0.02) 0.869 (±0.02) 0.670 (±0.03)

Federated 0.964+(±0.01) 0.903+(±0.05) 0.959+(±0.01) 0.872+(±0.04)

Synthesis 0.763-
(±0.01) 0.100-

(±0.01) 0.763-
(±0.01) 0.100-

(±0.01)

50 Local 0.769 (±0.03) 0.411 (±0.02) 0.768 (±0.02) 0.423 (±0.02)

Federated 0.849+(±0.02) 0.679+(±0.02) 0.825 (±0.05) 0.636+(±0.07)

Synthesis 0.833+(±0.01) 0.146-
(±0.01) 0.833+(±0.01) 0.150-

(±0.01)

For the Credit Card data set, increasing the number of clients does not affect the synthetic
data-based model. In the case of i.i.d. data, the ROC AUC and PR AUC change from 0.930
and 0.610 respectively with 5 clients to 0.939 and 0.669 with 50 clients. Similar behavior can
also be observed for the other non-i.i.d. scenarios. For R2L and Annthyroid data sets, synthetic
data-based learning provide very low performance for the different number of scenarios with a
slight increase in PR AUC with increasing the number of clients.

The effect of the number of clients on the predictive performance is more visible in the other
learning scenarios. For instance, using i.i.d. data, the average PR AUC of local models drops
from 0.227 with 2 clients to 0.105 with 50 clients for the Credit Card data set and from 0.940
to 0.317 for the R2L data set. Federated learning is also affected by the increasing number of
clients, and this is especially visible with R2L and Annthyroid data sets. In the case of R2L data
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Table 5.2: FFNN results for all data sets with 10 and 50 clients using Label-based and
LDP non-i.i.d. data: Significance of federated learning and synthetic-based learning
results compared to local learning is given with + for p < 0.05 and ++ for p < 0.1

Label-based non-i.i.d. LDP non-i.i.d.
Clients Scenario ROC AUC PR AUC ROC AUC PR AUC

Credit Card Data Set
- Centralized 0.927 (±0.02) 0.544 (±0.06) - -

10 Local 0.672 (±0.01) 0.120 (±0.04) 0.686 (±0.01) 0.132 (±0.03)

Federated 0.905+(±0.02) 0.566+(±0.05) 0.911+(±0.02) 0.592+(±0.06)

Synthesis 0.933+(±0.02) 0.648+(±0.05) 0.932+(±0.02) 0.641+(±0.05)

50 Local 0.509 (±0.00) 0.103 (±0.02) 0.507 (±0.00) 0.103 (±0.02)

Federated 0.889+(±0.04) 0.466+(±0.06) 0.891+(±0.04) 0.475+(±0.05)

Synthesis 0.940+(±0.01) 0.683+(±0.06) 0.940+(±0.01) 0.673+(±0.06)

Probe Data Set
- Centralized 1.000 (±0.00) 0.998 (±0.00) - -

10 Local 0.980 (±0.00) 0.891 (±0.00) 0.996 (±0.00) 0.979 (±0.00)

Federated 0.999+(±0.00) 0.996+(±0.00) 0.999+(±0.00) 0.996+(±0.00)

Synthesis 0.981 (±0.00) 0.919+(±0.00) 0.981-
(±0.00) 0.919-

(±0.00)

50 Local 0.979 (±0.00) 0.893 (±0.00) 0.990 (±0.00) 0.949 (±0.00)

Federated 0.999+(±0.00) 0.992+(±0.00) 0.999+(±0.00) 0.990+(±0.00)

Synthesis 0.991+(±0.00) 0.953+(±0.00) 0.991 (±0.00) 0.953 (±0.00)

R2L Data Set
- Centralized 0.997 (±0.00) 0.960 (±0.00) - -

10 Local 0.897 (±0.00) 0.522 (±0.01) 0.983 (±0.00) 0.704 (±0.02)

Federated 0.994+(±0.00) 0.921+(±0.01) 0.995+(±0.00) 0.923+(±0.01)

Synthesis 0.767-
(±0.01) 0.104-

(±0.01) 0.763-
(±0.00) 0.100-

(±0.01)

50 Local 0.855 (±0.00) 0.301 (±0.02) 0.899 (±0.00) 0.336 (±0.02)

Federated 0.988+(±0.00) 0.787+(±0.03) 0.990+(±0.00) 0.829+(±0.03)

Synthesis 0.843-
(±0.00) 0.172-

(±0.01) 0.833-
(±0.01) 0.150-

(±0.01)

Annthyroid Data Set
- Centralized 0.995 (±0.00) 0.954 (±0.03) - -

10 Local 0.801 (±0.02) 0.502 (±0.02) 0.866 (±0.02) 0.664 (±0.01)

Federated 0.890+(±0.02) 0.683+(±0.03) 0.969+(±0.01) 0.876+(±0.03)

Synthesis 0.767-
(±0.01) 0.104-

(±0.01) 0.763-
(±0.00) 0.100-

(±0.01)

50 Local 0.729 (±0.03) 0.343 (±0.01) 0.768 (±0.02) 0.413 (±0.03)

Federated 0.729 (±0.05) 0.371++(±0.02) 0.812 (±0.04) 0.584+(±0.04)

Synthesis 0.843+(±0.00) 0.172-
(±0.01) 0.833+(±0.01) 0.150-

(±0.01)

set, while the ROC AUC is almost the same, the PR AUC significantly drops from 0.936 with 10
clients to 0.662 with 50 clients, for the i.i.d. scenario. The same trend can be observed for the
other data splitting scenarios. A similar behavior is also observed for the Annthyroid data set. To
better investigate this effect, PR AUC is plotted against the number of clients for the label-based
scenario (Figure 5.1). It can be seen that the PR AUC drops from 0.864 with 2 clients to 0.371
with 50 clients. This decrease in performance is more significant compared to the local learning,
where the PR AUC decreases from 0.519 with 2 clients to 0.343 with 50 clients.

In addition, increasing the number of clients affects the model convergence. Figure 5.2 shows the
evolution of the PR AUC value during federated learning for the Annthyroid data set with data
split in an LDP fashion. While with 2 clients the model takes around 40 communication rounds
to converge, it requires more than 80 rounds to converge with 20 clients.
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The effect of data distribution on the predictive performance of both federated and local learning
can be observed for the Annthyroid data set with the label-based non-i.i.d. scenario. For
instance, with 10 clients, federated learning shows an ROC AUC and PR AUC of 0.890 and 0.683
respectively, compared to 0.964 and 0.903 for the i.i.d. scenario. The same can be observed for
local learning where the ROC AUC and PR AUC drop from 0.901 and 0.782 for the i.i.d. data
splitting scenario to 0.801 and 0.502 with the label-based scenario. For the other data sets, i.i.d.
and non-i.i.d. scenarios show very comparable performance, suggesting little effect of the data
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distribution on the learning process.

5.1.2 Logistic Regression
Looking at the results for Logistic Regression shown in Table 5.3 and Table 5.4, it can be seen
that overall, federated learning provides good performance for the different data sets.

Table 5.3: Logistic Regression results for all data sets with 10 and 50 clients using i.i.d.
and Feature-based non-i.i.d. data: Significance of federated learning and synthetic-based
learning results compared to local learning is given with + for p < 0.05 and ++ for p < 0.1

i.i.d. Feature-based non-i.i.d.
Clients Scenario ROC AUC PR AUC ROC AUC PR AUC

Credit Card Data Set
- Centralized 0.984 (±0.01) 0.720 (±0.05) - -

10 Local 0.978 (±0.01) 0.707 (±0.06) 0.978 (±0.01) 0.701 (±0.06)

Federated 0.968 (±0.01) 0.700 (±0.06) 0.968 (±0.01) 0.699 (±0.05)

Synthesis 0.944-
(±0.01) 0.680 (±0.05) 0.943-

(±0.01) 0.680 (±0.05)

50 Local 0.958 (±0.01) 0.644 (±0.06) 0.955 (±0.01) 0.636 (±0.06)

Federated 0.965 (±0.01) 0.701 (±0.06) 0.965 (±0.01) 0.701 (±0.06)

Synthesis 0.928- -
(±0.02) 0.587 (±0.04) 0.923- -

(±0.02) 0.580 (±0.06)

Probe Data Set
- Centralized 0.997 (±0.00) 0.980 (±0.00) - -

10 Local 0.996 (±0.00) 0.977 (±0.00) 0.996 (±0.00) 0.976 (±0.00)

Federated 0.996 (±0.00) 0.977 (±0.00) 0.996 (±0.00) 0.977 (±0.00)

Synthesis 0.995-
(±0.00) 0.969- -

(±0.00) 0.995-
(±0.00) 0.972- -

(±0.00)

50 Local 0.995 (±0.00) 0.966 (±0.00) 0.994 (±0.00) 0.964 (±0.00)

Federated 0.996+(±0.00) 0.977+(±0.00) 0.996+(±0.00) 0.977+(±0.00)

Synthesis 0.995 (±0.00) 0.972+(±0.00) 0.995+(±0.00) 0.973+(±0.00)

R2L Data Set
- Centralized 0.985 (±0.00) 0.762 (±0.01) - -

10 Local 0.983 (±0.00) 0.746 (±0.01) 0.983 (±0.00) 0.747 (±0.01)

Federated 0.984 (±0.00) 0.760++(±0.01) 0.984 (±0.00) 0.758 (±0.01)

Synthesis 0.970-
(±0.00) 0.622-

(±0.02) 0.970-
(±0.00) 0.619-

(±0.01)

50 Local 0.979 (±0.00) 0.701 (±0.01) 0.978 (±0.00) 0.699 (±0.00)

Federated 0.983+(±0.00) 0.755+(±0.00) 0.983++(±0.00) 0.758+(±0.00)

Synthesis 0.953-
(±0.00) 0.449-

(±0.02) 0.955-
(±0.00) 0.461-

(±0.01)

Annthyroid Data Set
- Centralized 0.956 (±0.01) 0.779 (±0.01) - -

10 Local 0.875 (±0.01) 0.588 (±0.02) 0.836 (±0.01) 0.497 (±0.00)

Federated 0.909+(±0.01) 0.625++(±0.02) 0.894+(±0.02) 0.596+(±0.04)

Synthesis 0.923+(±0.01) 0.647++(±0.04) 0.904+(±0.03) 0.615+(±0.05)

50 Local 0.804 (±0.02) 0.453 (±0.02) 0.766 (±0.02) 0.368 (±0.02)

Federated 0.868+(±0.01) 0.543+(±0.02) 0.859+(±0.01) 0.542+(±0.01)

Synthesis 0.844+(±0.01) 0.501++(±0.02) 0.858+(±0.04) 0.498++(±0.09)

For the Credit Card data set, the difference among the various training scenarios is not significant,
with relatively high PR AUC variance. These difference gets however larger with increasing
number of clients. Similar behavior can be observed for the Probe and R2L data sets, with the
exception for the 50 clients scenario, where federated learning shows a significantly better result
compared to local and synthetic data-based learning scenarios. This is more significant for the
non-i.i.d. scenarios than for the i.i.d., especially with label-based split data.
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Table 5.4: Logistic Regression results for all data sets with 10 and 50 clients: Label-based
and LDP non-i.i.d. data: Significance of federated learning and synthetic-based learning
results compared to local learning is given with + for p < 0.05 and ++ for p < 0.1

Label-based non-i.i.d. LDP non-i.i.d.
Clients Scenario ROC AUC PR AUC ROC AUC PR AUC

Credit Card Data Set
- Centralized 0.984 (±0.01) 0.720 (±0.05) - -

10 Local 0.957 (±0.01) 0.648 (±0.05) 0.961 (±0.01) 0.671 (±0.05)

Federated 0.968 (±0.01) 0.701 (±0.06) 0.968 (±0.01) 0.700 (±0.06)

Synthesis 0.945 (±0.01) 0.682 (±0.06) 0.945 (±0.01) 0.681 (±0.06)

50 Local 0.944 (±0.01) 0.607 (±0.05) 0.954 (±0.01) 0.666 (±0.05)

Federated 0.966 (±0.01) 0.703++(±0.06) 0.965 (±0.01) 0.702 (±0.06)

Synthesis 0.939 (±0.01) 0.628 (±0.05) 0.930- -
(±0.02) 0.608 (±0.06)

Probe Data Set
- Centralized 0.997 (±0.00) 0.980 (±0.00) - -

10 Local 0.989 (±0.00) 0.937 (±0.00) 0.996 (±0.00) 0.977 (±0.00)

Federated 0.996+(±0.00) 0.977+(±0.00) 0.996 (±0.00) 0.980++(±0.00)

Synthesis 0.995+(±0.00) 0.972+(±0.00) 0.995-
(±0.00) 0.973-

(±0.00)

50 Local 0.988 (±0.00) 0.930 (±0.00) 0.994 (±0.00) 0.966 (±0.00)

Federated 0.996+(±0.00) 0.977+(±0.00) 0.996+(±0.00) 0.977+(±0.00)

Synthesis 0.995+(±0.00) 0.974+(±0.00) 0.995 (±0.00) 0.973+(±0.00)

R2L Data Set
- Centralized 0.985 (±0.00) 0.762 (±0.01) - -

10 Local 0.914 (±0.00) 0.545 (±0.01) 0.983 (±0.00) 0.745 (±0.01)

Federated 0.984+(±0.00) 0.729+(±0.01) 0.984 (±0.00) 0.740 (±0.01)

Synthesis 0.975+(±0.00) 0.668+(±0.01) 0.970-
(±0.00) 0.604-

(±0.01)

50 Local 0.910 (±0.00) 0.514 (±0.01) 0.978 (±0.00) 0.694 (±0.00)

Federated 0.983+(±0.00) 0.731+(±0.01) 0.983+(±0.00) 0.745+(±0.00)

Synthesis 0.964+(±0.00) 0.542 (±0.03) 0.958-
(±0.00) 0.469-

(±0.02)

Annthyroid Data Set
- Centralized 0.956 (±0.01) 0.779 (±0.01) - -

10 Local 0.772 (±0.02) 0.393 (±0.02) 0.840 (±0.01) 0.504 (±0.02)

Federated 0.894+(±0.02) 0.587+(±0.03) 0.907+(±0.01) 0.616+(±0.01)

Synthesis 0.924+(±0.01) 0.643+(±0.04) 0.915+(±0.01) 0.636+(±0.04)

50 Local 0.729 (±0.03) 0.313 (±0.02) 0.769 (±0.02) 0.367 (±0.03)

Federated 0.873+(±0.01) 0.557+(±0.01) 0.863+(±0.02) 0.551+(±0.01)

Synthesis 0.855+(±0.04) 0.513+(±0.08) 0.847+(±0.03) 0.518+(±0.06)

Synthetic data-based learning show lower performance compared to local learning for the Credit
Card and R2L data sets. For instance, using R2L datastes, the models trained using synthetic
data show an ROC AUC and PR AUC of 0.953 and 0.449 respectively compared to 0.979 and
0.701 provided by the local models for the i.i.d. data splitting scenario.

A different behavior can be seen for the Annthyroid data set, where both privacy-preserving
learning methods perform better than local learning. Figure 5.3 shows the results with label-based
split data. Synthetic data-based learning performs better for lower number of clients, with the
PR AUC decreasing for the case with more than 40 clients.

Compared to FFNN, the decrease in performance with increasing the number of clients is less
significant for all scenarios. Logistic regression seems to provide good performance even when
little amount of data is available.
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Figure 5.3: PR AUC vs. number of clients for Logistic Regression with the Annthyroid
data set - LDP non-i.i.d. scenario

In addition, the convergence of federated Logistic Regression models is much faster than FFNN,
and also less sensitive to the amount of local data available. Figure 5.4 shows the PR AUC
learning curve for different number of clients. It can be observed that the effect of number of
clients does not have large effect on the PR AUC values, with all cases converging after around
20 communication rounds.
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Figure 5.4: PR AUC vs. communication round for Logistic Regression with the Annthy-
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5.1.3 XGBoost
Using XGBoost, federated learning provides significantly better performance than local learning
in most cases, as shown in Tables 5.5 and 5.6. The difference in performance between the learning
scenarios is however minimal especially with low number of clients. In particular, the synthetic
data-based learning scenario is affected the most by the decreasing amount of data at each client.
This is noticeable for the Annthyroid data set where the ROC AUC and PR AUC values decreased
from 0.989 and 0.804 with 10 clients to 0.935 and 0.455 with 50 clients in the i.i.d. scenario.

Table 5.5: XGBoost results for all data sets with 10 and 50 clients using i.i.d. and
Feature-based non-i.i.d. data: Significance of federated learning and synthetic-based
learning results compared to local learning is given with + for p < 0.05 and ++ for p < 0.1

i.i.d. Feature-based non-i.i.d.
Clients Scenario ROC AUC PR AUC ROC AUC PR AUC

Credit Card Data Set
- Centralized 0.974 (±0.00) 0.847 (±0.03) - -

10 Local 0.964 (±0.01) 0.765 (±0.04) 0.962 (±0.01) 0.758 (±0.04)

Federated 0.983+(±0.00) 0.812 (±0.03) 0.982+(±0.01) 0.810 (±0.04)

Synthesis 0.921-
(±0.02) 0.629- -

(±0.09) 0.915- -
(±0.03) 0.611-

(±0.06)

50 Local 0.946 (±0.02) 0.640 (±0.06) 0.947 (±0.01) 0.639 (±0.05)

Federated 0.979+(±0.01) 0.757+(±0.04) 0.976+(±0.01) 0.756+(±0.04)

Synthesis 0.928 (±0.01) 0.532 (±0.13) 0.920 (±0.02) 0.567 (±0.14)

Probe Data Set
- Centralized 1.000 (±0.00) 1.000 (±0.00) - -

10 Local 0.999 (±0.00) 0.996 (±0.00) 0.999 (±0.00) 0.996 (±0.00)

Federated 1.000+(±0.00) 0.999+(±0.00) 1.000+(±0.00) 0.999+(±0.00)

Synthesis 0.998-
(±0.00) 0.992-

(±0.00) 0.999 (±0.00) 0.993-
(±0.00)

50 Local 0.998 (±0.00) 0.988 (±0.00) 0.997 (±0.00) 0.988 (±0.00)

Federated 0.999+(±0.00) 0.997+(±0.00) 0.999+(±0.00) 0.997+(±0.00)

Synthesis 0.997-
(±0.00) 0.985-

(±0.00) 0.997 (±0.00) 0.986 (±0.00)

R2L Data Set
- Centralized 0.999 (±0.00) 0.990 (±0.00) - -

10 Local 0.998 (±0.00) 0.973 (±0.01) 0.997 (±0.00) 0.971 (±0.01)

Federated 0.999 (±0.00) 0.985++(±0.01) 0.999++(±0.00) 0.984+(±0.00)

Synthesis 0.992-
(±0.00) 0.903-

(±0.02) 0.993-
(±0.00) 0.909-

(±0.01)

50 Local 0.990 (±0.00) 0.902 (±0.01) 0.989 (±0.00) 0.891 (±0.01)

Federated 0.997+(±0.00) 0.958+(±0.01) 0.997+(±0.00) 0.957+(±0.01)

Synthesis 0.975-
(±0.00) 0.661-

(±0.05) 0.978-
(±0.00) 0.710-

(±0.05)

Annthyroid Data Set
- Centralized 0.999 (±0.00) 0.984 (±0.01) - -

10 Local 0.995 (±0.00) 0.934 (±0.02) 0.995 (±0.00) 0.932 (±0.01)

Federated 0.998+(±0.00) 0.951 (±0.03) 0.998 (±0.00) 0.963 (±0.02)

Synthesis 0.989-
(±0.00) 0.804-

(±0.01) 0.990-
(±0.00) 0.815-

(±0.01)

50 Local 0.972 (±0.01) 0.804 (±0.01) 0.969 (±0.00) 0.798 (±0.00)

Federated 0.993+(±0.00) 0.899+(±0.01) 0.993+(±0.00) 0.898+(±0.00)

Synthesis 0.935-
(±0.01) 0.455-

(±0.06) 0.957 (±0.01) 0.574-
(±0.07)

The similarity in performance between federated learning and other learning scenarios, especially
when little data are available at each client, can be explained by the way XGBoost models
are aggregated. As mentioned in Section 4.8, model aggregation for XGBoost is performed by
averaging the anomaly scores provided by all models. This might also explain the fact that the
higher number of clients, the more significant is the federated model performance compared to
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Table 5.6: XGBoost results for all data sets with 10 and 50 clients using Label-based
and LDP non-i.i.d. data: Significance of federated learning and synthetic-based learning
results compared to local learning is given with + for p < 0.05 and ++ for p < 0.1

Label-based non-i.i.d. LDP non-i.i.d.
Clients Scenario ROC AUC PR AUC ROC AUC PR AUC

Credit Card Data Set
- Centralized 0.974 (±0.00) 0.847 (±0.03) - -

10 Local 0.828 (±0.01) 0.538 (±0.03) 0.963 (±0.01) 0.749 (±0.05)

Federated 0.982+(±0.01) 0.813+(±0.03) 0.981++(±0.01) 0.812 (±0.03)

Synthesis 0.922+(±0.02) 0.610 (±0.07) 0.913-
(±0.03) 0.620-

(±0.06)

50 Local 0.816 (±0.01) 0.460 (±0.04) 0.945 (±0.01) 0.638 (±0.05)

Federated 0.978+(±0.01) 0.772+(±0.04) 0.979+(±0.00) 0.750+(±0.04)

Synthesis 0.922+(±0.02) 0.642+(±0.02) 0.922 (±0.02) 0.611 (±0.07)

Probe Data Set
- Centralized 1.000 (±0.00) 1.000 (±0.00) - -

10 Local 0.849 (±0.00) 0.744 (±0.00) 0.999 (±0.00) 0.996 (±0.00)

Federated 1.000+(±0.00) 0.999+(±0.00) 1.000+(±0.00) 0.999+(±0.00)

Synthesis 0.999+(±0.00) 0.996+(±0.00) 0.999 (±0.00) 0.993-
(±0.00)

50 Local 0.848 (±0.00) 0.738 (±0.00) 0.997 (±0.00) 0.987 (±0.00)

Federated 0.999+(±0.00) 0.997+(±0.00) 0.999+(±0.00) 0.996+(±0.00)

Synthesis 0.998+(±0.00) 0.990+(±0.00) 0.997 (±0.00) 0.986 (±0.00)

R2L Data Set
- Centralized 0.999 (±0.00) 0.990 (±0.00) - -

10 Local 0.848 (±0.00) 0.696 (±0.00) 0.997 (±0.00) 0.971 (±0.01)

Federated 0.999+(±0.00) 0.985+(±0.00) 0.999++(±0.00) 0.985+(±0.00)

Synthesis 0.995+(±0.00) 0.942+(±0.00) 0.992-
(±0.00) 0.891-

(±0.00)

50 Local 0.844 (±0.00) 0.649 (±0.00) 0.989 (±0.00) 0.895 (±0.01)

Federated 0.997+(±0.00) 0.962+(±0.01) 0.997+(±0.00) 0.957+(±0.01)

Synthesis 0.989+(±0.00) 0.879+(±0.01) 0.982-
(±0.00) 0.755-

(±0.02)

Annthyroid Data Set
- Centralized 0.999 (±0.00) 0.984 (±0.01) - -

10 Local 0.846 (±0.00) 0.672 (±0.01) 0.992 (±0.00) 0.926 (±0.01)

Federated 0.998+(±0.00) 0.948+(±0.03) 0.998++(±0.00) 0.965+(±0.01)

Synthesis 0.992+(±0.00) 0.864+(±0.06) 0.992 (±0.00) 0.847-
(±0.02)

50 Local 0.838 (±0.00) 0.601 (±0.01) 0.972 (±0.01) 0.807 (±0.01)

Federated 0.994+(±0.00) 0.905+(±0.02) 0.993+(±0.00) 0.893+(±0.01)

Synthesis 0.978+(±0.01) 0.704+(±0.06) 0.965 (±0.02) 0.667- -
(±0.09)

the other scenarios. With little data available at each client, federated learning seems to provide
better predictive performance than the average of all local models.

Data distribution does not have an important effect on the predictive performance for any of the
data sets. All i.i.d. and non-i.i.d. data splitting scenarios provide very similar ROC AUC and
PR AUC for each data set.

5.1.4 Effect of resampling
The effect of both undersampling and oversampling on the predictive performance is investigated
for all supervised learning methods and all data sets. Resampling techniques are parameterized
with the ratio of the number of samples in the minority class over the number of samples in the
majority class after resampling. It is defined as αrs = Nminority/Nmajority where Nminority is the
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number of samples in the minority class and Nmajority is the number of samples in the majority
class respectively. In all experiments, two values of αrs are considered: αrs = 20%/80% = 0.25
and αrs = 10%/90% = 0.11.

Random undersampling

Applying random undersampling to local data for all clients resulted in a lower predictive
performance for both Logistic Regression and XGBoost for all data splitting scenarios and all
data sets. FFNN on the other hand show slight improvement for some data sets, especially with
high number of clients. This is more noticeable for non-i.i.d. scenarios, where the difference
in performance provided by undersampling increases with the increasing number of clients.
Figure 5.5 shows a comparison between the performance of federated learning without and with
undersampling. While the difference in PR AUC is not significant, it keeps increasing with
increasing number of clients.
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Figure 5.5: PR AUC vs. number of clients for FFNN with the Annthyroid data set -
LDP scenario

Random oversampling

Random oversampling applied to local data does not seem to provide any increase in performance
for both Logistic Regression and XGBoost. For FFNN, random oversampling provide a slight
improvement in performance especially when the amount of data available at the clients is limited.
Figure 5.6 shows the performance of federated FFNN for the R2L data set with and without
random oversampling. It can be seen that the difference in PR AUC increases with an increasing
number of clients, where random oversampling applied with a 20/80 ratio provides the best
results.

The fact that with less data oversampling performs slightly better can be explained by the fact
that it is able to make up for the scarcity of the anomalous class in the data available at the
client. The lower the amount of data available at the client side, the more significant is the effect
of oversampling.
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Figure 5.6: PR AUC vs. number of clients for FFNN with the R2L data set - Label-based
scenario

SMOTE
For all experiments, applying SMOTE on local data provides little to no increase in performance.
Similar to other resampling techniques, this slight increase in performance becomes more noticeable
with higher number of clients, as can be seen in Figure 5.7.
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Figure 5.7: PR AUC vs. number of clients for FFNN with the R2L data set - LDP
non-i.i.d. scenario
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5.2 Weakly-supervised learning
Results for the weakly-supervised learning scenario using DevNet can be seen in Table 5.7. In
addition to i.i.d., only the feature-based non-i.i.d. scenario is considered, since very limited
amount of labels are available. Each client has at most five labeled anomalies, while some clients
are assumed to not to have any anomalous data points.

Table 5.7: DevNet results for all data sets with 10 and 50 clients: Significance of federated
learning and synthetic-based learning results compared to local learning is given with + for
p < 0.05 and ++ for p < 0.1

i.i.d. Feature-based non-i.i.d.
Clients Scenario ROC AUC PR AUC ROC AUC PR AUC

Credit Card Data Set
- Centralized 0.953 (±0.01) 0.683 (±0.07) - -

10 Local 0.959 (±0.02) 0.648 (±0.06) 0.957 (±0.01) 0.659 (±0.03)

Federated 0.984++(±0.01) 0.707 (±0.05) 0.981+(±0.01) 0.712 (±0.06)

Synthesis 0.958 (±0.01) 0.645 (±0.11) 0.915 (±0.08) 0.540 (±0.13)

50 Local 0.955 (±0.01) 0.633 (±0.05) 0.955 (±0.01) 0.635 (±0.06)

Federated 0.986+(±0.00) 0.711 (±0.06) 0.976+(±0.00) 0.710 (±0.05)

Synthesis 0.907 (±0.07) 0.394 (±0.32) 0.873 (±0.08) 0.185-
(±0.18)

Probe Data Set
- Centralized 0.933 (±0.09) 0.877 (±0.12) - -

10 Local 0.933 (±0.03) 0.859 (±0.04) 0.933 (±0.02) 0.863 (±0.02)

Federated 0.994+(±0.00) 0.962+(±0.00) 0.993+(±0.00) 0.960+(±0.00)

Synthesis 0.975 (±0.01) 0.923++(±0.01) 0.932 (±0.09) 0.858 (±0.12)

50 Local 0.948 (±0.01) 0.885 (±0.02) 0.923 (±0.01) 0.857 (±0.01)

Federated 0.994+(±0.00) 0.962+(±0.01) 0.994+(±0.00) 0.961+(±0.01)

Synthesis 0.919 (±0.04) 0.666-
(±0.04) 0.970+(±0.01) 0.833 (±0.06)

R2L Data Set
- Centralized 0.805 (±0.01) 0.444 (±0.02) - -

10 Local 0.756 (±0.05) 0.268 (±0.08) 0.755 (±0.09) 0.284 (±0.16)

Federated 0.930+(±0.03) 0.354 (±0.10) 0.965+(±0.01) 0.442 (±0.03)

Synthesis 0.723 (±0.08) 0.293 (±0.11) 0.782 (±0.02) 0.221 (±0.01)

50 Local 0.762 (±0.05) 0.270 (±0.13) 0.762 (±0.05) 0.270 (±0.12)

Federated 0.926+(±0.00) 0.290 (±0.01) 0.965 (±0.00) 0.422 (±0.00)

Synthesis 0.703 (±0.04) 0.169 (±0.09) 0.519-
(±0.11) 0.081- -

(±0.02)

Anthyroid Data Set
- Centralized 0.688 (±0.13) 0.220 (±0.19) - -

10 Local 0.744 (±0.01) 0.300 (±0.03) 0.742 (±0.04) 0.294 (±0.07)

Federated 0.724 (±0.04) 0.444+(±0.04) 0.759 (±0.02) 0.478+(±0.03)

Synthesis 0.738 (±0.04) 0.279 (±0.05) 0.722 (±0.06) 0.244 (±0.11)

50 Local 0.723 (±0.02) 0.273 (±0.05) 0.721 (±0.01) 0.268 (±0.03)

Federated 0.747 (±0.07) 0.428+(±0.02) 0.783+(±0.02) 0.439+(±0.04)

Synthesis 0.683 (±0.10) 0.252 (±0.13) 0.648 (±0.15) 0.185 (±0.11)

Overall, federated learning shows better performance compared to both synthetic data-based and
local learning. For the Credit Card data set, results for federated learning are quite comparable
to local learning. With i.i.d. data for instance, the PR AUC values range between 0.626 and
0.683 for local training and 0.708 and 0.711 for federated learning with variance values between
0.05 and 0.06.

For the Probe data set, federated learning provides significantly better results for both i.i.d. and
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non-i.i.d. data splitting scenarios. With i.i.d. data, federated learning provides an ROC AUC
and PR AUC of 0.994 and 0.962 compared to 0.948 and 0.885 for local learning.

Results for R2L data set, show that the PR AUC values for federated learning are not significantly
better than local learning. In addition, local learning results show high variance (up to 0.21) for
both i.i.d. and non-i.i.d. data splitting scenarios.

For the Annthyroid data set, the superior performance of federated learning for both i.i.d. and
non-i.i.d. data is more noticeable in terms of PR AUC with values ranging between 0.439 and
0.478 across the different number of clients.

The synthetic data-based learning scenario, however, shows lower performance compared to
federated and local learning, and a very high variance for all data sets. For example, in the case
of 50 clients, it shows an PR AUC of 0.394 with a variance of 0.32.

DevNet performs well with very limited amount of data, and therefore the decrease in performance
due to increasing number of clients or due to different data distribution is very limited. For both
the Credit Card and Probe data sets, very similar performance can be seen in the experiments
with different number of clients. This characteristic of DevNet models is also reflected in the
global federated model convergence. It only takes a few communication rounds (usually below
10) to achieve good predictive performance.
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5.3 Semi-supervised learning
Results for semi-supervised learning using Autoencoder can be seen in Table 5.8.

For the Credit Card data set, results for the different learning scenarios are comparable, where
federated and synthetic data-based learning do not provide significant improvement over local
learning for both i.i.d. and non-i.i.d. data splits.

For the Probe data set, federated learning shows slightly better performance compared to local
learning for low number of clients. This difference becomes more significant with higher number
of clients where federated learning provides a PR AUC of 0.822 compared to 0.729 given by local
training.

For both R2L and Annthyroid data sets, federated learning shows significantly better results
compared to both local and synthetic data-based learning. In particular, with more than ten
clients, federated learning provides more than 50% increase in PR AUC compared to local learning.

The effect of data distribution on the results is not clearly visible in all experiments. Both data
splitting scenarios show similar ROC AUC and PR AUC – with the exception of Annthyroid data
set, where non-i.i.d. data show lower performance compared to i.i.d. data.

Figure 5.8 shows the evolution of PR AUC during the federated learning process. It can be
observed that the higher the number of clients, the slower the model converges. Models, however,
converge much faster than those from e.g. FFNN (cf. Figure 5.2). In addition, different number
of clients results in very similar final PR AUC values.
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Figure 5.8: PR AUC vs. number of clients for Autoencoder with the credit card data set
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Table 5.8: Autoencoder results for all data sets with 10 and 50 clients: Significance of
federated learning and synthetic-based learning results compared to local learning is given
with + for p < 0.05 and ++ for p < 0.1

i.i.d. Feature-based non-i.i.d.
Clients Scenario ROC AUC PR AUC ROC AUC PR AUC

Credit Card Data Set
- Centralized 0.938 (±0.01) 0.459 (±0.11) - -

10 Local 0.941 (±0.02) 0.361 (±0.06) 0.939 (±0.02) 0.358 (±0.06)

Federated 0.941 (±0.02) 0.362 (±0.06) 0.941 (±0.02) 0.364 (±0.06)

Synthesis 0.933 (±0.01) 0.068-
(±0.02) 0.943 (±0.01) 0.098-

(±0.05)

50 Local 0.941 (±0.02) 0.360 (±0.06) 0.938 (±0.02) 0.357 (±0.06)

Federated 0.941 (±0.02) 0.361 (±0.06) 0.940 (±0.02) 0.359 (±0.06)

Synthesis 0.950 (±0.02) 0.399 (±0.06) 0.951 (±0.02) 0.367 (±0.05)

Probe Data Set
- Centralized 0.961 (±0.00) 0.826 (±0.01) - -

10 Local 0.974 (±0.00) 0.850 (±0.01) 0.970 (±0.00) 0.833 (±0.00)

Federated 0.970 (±0.00) 0.841 (±0.02) 0.967 (±0.01) 0.834 (±0.05)

Synthesis 0.832-
(±0.03) 0.395-

(±0.03) 0.901-
(±0.01) 0.502-

(±0.02)

50 Local 0.955 (±0.00) 0.729 (±0.01) 0.924 (±0.01) 0.651 (±0.03)

Federated 0.969+(±0.01) 0.822+(±0.01) 0.964+(±0.02) 0.821+(±0.05)

Synthesis 0.827-
(±0.02) 0.432-

(±0.02) 0.891 (±0.03) 0.520-
(±0.04)

R2L Data Set
- Centralized 0.928 (±0.01) 0.454 (±0.03) - -

10 Local 0.896 (±0.00) 0.186 (±0.01) 0.822 (±0.00) 0.129 (±0.01)

Federated 0.874-
(±0.01) 0.231+(±0.00) 0.920+(±0.01) 0.234+(±0.01)

Synthesis 0.785-
(±0.03) 0.112-

(±0.03) 0.769- -
(±0.03) 0.097-

(±0.01)

50 Local 0.777 (±0.01) 0.098 (±0.01) 0.764 (±0.01) 0.094 (±0.01)

Federated 0.897+(±0.01) 0.184+(±0.02) 0.889+(±0.01) 0.313+(±0.06)

Synthesis 0.802+(±0.01) 0.117+(±0.01) 0.795 (±0.09) 0.121 (±0.02)

Annthyroid Data Set
- Centralized 0.856 (±0.02) 0.295 (±0.08) - -

10 Local 0.613 (±0.02) 0.103 (±0.00) 0.613 (±0.02) 0.103 (±0.00)

Federated 0.717+(±0.02) 0.181+(±0.02) 0.658++(±0.02) 0.139+(±0.01)

Synthesis 0.774+(±0.01) 0.164+(±0.03) 0.642 (±0.12) 0.126 (±0.02)

50 Local 0.534 (±0.01) 0.082 (±0.00) 0.534 (±0.01) 0.082 (±0.00)

Federated 0.687+(±0.02) 0.162+(±0.02) 0.681+(±0.03) 0.143+(±0.02)

Synthesis 0.672+(±0.08) 0.142++(±0.05) 0.612 (±0.09) 0.104++(±0.02)
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5.4 Unsupervised learning
In this section, results for unsupervised learning using Isolation Forest and REPEN are presented.
With no labels available, the anomaly detection task becomes more challenging. Overall, results
are inconclusive and there is no learning scenario that shows significantly better performance
compared to the others.

5.4.1 Isolation Forest
The results for isolation forest can be seen in Table 5.9 and Table 5.10. Overall, the different learn-
ing scenarios are comparable and privacy-preserving approaches do not provide any improvement
over local learning.

Table 5.9: Isolation Forest results for all data sets with 10 and 50 clients using i.i.d. and
Feature-based non-i.i.d. data: Significance of federated learning and synthetic-based
learning results compared to local learning is given with + for p < 0.05 and ++ for p < 0.1

i.i.d. Feature-based non-i.i.d.
Clients Scenario ROC AUC PR AUC ROC AUC PR AUC

Credit Card Data Set
- Centralized 0.947 (±0.01) 0.213 (±0.04) - -

10 Local 0.947 (±0.01) 0.215 (±0.05) 0.947 (±0.01) 0.215 (±0.04)

Federated 0.948 (±0.01) 0.214 (±0.05) 0.948 (±0.01) 0.214 (±0.05)

Synthesis 0.949 (±0.01) 0.219 (±0.04) 0.947 (±0.01) 0.223 (±0.05)

50 Local 0.947 (±0.01) 0.216 (±0.05) 0.946 (±0.01) 0.219 (±0.05)

Federated 0.947 (±0.01) 0.216 (±0.05) 0.947 (±0.01) 0.220 (±0.05)

Synthesis 0.949 (±0.01) 0.255 (±0.06) 0.948 (±0.01) 0.245 (±0.04)

Probe Data Set
- Centralized 0.885 (±0.02) 0.443 (±0.05) - -

10 Local 0.888 (±0.01) 0.461 (±0.02) 0.885 (±0.01) 0.463 (±0.03)

Federated 0.891 (±0.01) 0.463 (±0.03) 0.892 (±0.02) 0.467 (±0.04)

Synthesis 0.892 (±0.01) 0.472 (±0.03) 0.898 (±0.01) 0.478 (±0.02)

50 Local 0.896 (±0.01) 0.504 (±0.03) 0.891 (±0.01) 0.502 (±0.03)

Federated 0.899 (±0.01) 0.507 (±0.03) 0.901 (±0.01) 0.512 (±0.03)

Synthesis 0.900 (±0.01) 0.490 (±0.02) 0.903 (±0.01) 0.499 (±0.02)

R2L Data Set
- Centralized 0.818 (±0.00) 0.112 (±0.00) - -

10 Local 0.818 (±0.01) 0.112 (±0.01) 0.813 (±0.01) 0.110 (±0.01)

Federated 0.819 (±0.01) 0.112 (±0.01) 0.818 (±0.01) 0.111 (±0.01)

Synthesis 0.831 (±0.01) 0.121 (±0.01) 0.832+(±0.00) 0.120++(±0.00)

50 Local 0.812 (±0.01) 0.108 (±0.01) 0.806 (±0.01) 0.106 (±0.01)

Federated 0.815 (±0.01) 0.109 (±0.01) 0.815 (±0.01) 0.109 (±0.01)

Synthesis 0.838+(±0.01) 0.124+(±0.00) 0.840+(±0.00) 0.125+(±0.01)

Annthyroid Data Set
- Centralized 0.789 (±0.02) 0.291 (±0.02) - -

10 Local 0.783 (±0.00) 0.267 (±0.03) 0.782 (±0.01) 0.270 (±0.03)

Federated 0.790+(±0.00) 0.271 (±0.03) 0.789 (±0.01) 0.272 (±0.04)

Synthesis 0.787 (±0.02) 0.284 (±0.04) 0.786 (±0.01) 0.281 (±0.04)

50 Local 0.778 (±0.01) 0.263 (±0.03) 0.777 (±0.01) 0.264 (±0.03)

Federated 0.786 (±0.01) 0.273 (±0.03) 0.787 (±0.01) 0.276 (±0.03)

Synthesis 0.792 (±0.01) 0.290 (±0.03) 0.793++(±0.01) 0.293 (±0.03)

For all data sets, there is no significant difference between the ROC AUC and PR AUC for the
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various learning scenarios, with data synthesis providing slightly better performance in most of
the cases. In addition, it can be observed that even centralized training does not provide any
advantage over local learning. This can be explained by the fact that isolation forest performs
well with small amount of data, and therefore still provides a good performance on average across
all local models. The data distribution also does not seem to have an effect on the results, with
i.i.d. and non-i.i.d. scenarios performing similarly.

As mentioned in Section 4.8, model aggregation is achieved by training local models and combining
the trees from each to create a global model. According to the obtained results, this does not
seem to provide any benefit compared to local learning.

Table 5.10: Isolation Forest results for all data sets with 10 and 50 clients - Label-based
and LDP non-i.i.d. data: Significance of federated learning and synthetic-based learning
results compared to local learning is given with + for p < 0.05 and ++ for p < 0.1

Label-based non-i.i.d. LDP non-i.i.d.
Clients Scenario ROC AUC PR AUC ROC AUC PR AUC

Credit Card Data Set
- Centralized 0.947 (±0.01) 0.213 (±0.04) - -

10 Local 0.928 (±0.02) 0.179 (±0.03) 0.930 (±0.01) 0.189 (±0.04)

Federated 0.942 (±0.01) 0.190 (±0.03) 0.940 (±0.01) 0.200 (±0.04)

Synthesis 0.949 (±0.01) 0.221 (±0.03) 0.949 (±0.01) 0.214 (±0.04)

50 Local 0.929 (±0.01) 0.155 (±0.04) 0.930 (±0.01) 0.170 (±0.04)

Federated 0.941 (±0.01) 0.170 (±0.06) 0.941 (±0.01) 0.190 (±0.06)

Synthesis 0.948++(±0.01) 0.239++(±0.04) 0.946 (±0.01) 0.241++(±0.04)

Probe Data Set
- Centralized 0.885 (±0.02) 0.443 (±0.05) - -

10 Local 0.833 (±0.01) 0.455 (±0.04) 0.822 (±0.02) 0.413 (±0.06)

Federated 0.878+(±0.02) 0.495 (±0.07) 0.852 (±0.02) 0.437 (±0.07)

Synthesis 0.898+(±0.02) 0.485 (±0.04) 0.899+(±0.01) 0.483 (±0.02)

50 Local 0.838 (±0.02) 0.463 (±0.07) 0.836 (±0.03) 0.445 (±0.09)

Federated 0.873++(±0.01) 0.490 (±0.09) 0.857 (±0.01) 0.467 (±0.09)

Synthesis 0.904+(±0.01) 0.501 (±0.01) 0.904+(±0.01) 0.503 (±0.02)

R2L Data Set
- Centralized 0.818 (±0.00) 0.112 (±0.00) - -

10 Local 0.785 (±0.02) 0.109 (±0.01) 0.774 (±0.01) 0.099 (±0.01)

Federated 0.807 (±0.02) 0.108 (±0.01) 0.792 (±0.01) 0.101 (±0.01)

Synthesis 0.832 (±0.00) 0.118 (±0.00) 0.834+(±0.00) 0.121+(±0.00)

50 Local 0.780 (±0.00) 0.107 (±0.01) 0.783 (±0.01) 0.106 (±0.00)

Federated 0.799+(±0.01) 0.104 (±0.00) 0.799++(±0.01) 0.105 (±0.01)

Synthesis 0.837 (±0.00) 0.121 (±0.00) 0.845+(±0.00) 0.129+(±0.00)

Annthyroid Data Set
- Centralized 0.789 (±0.02) 0.291 (±0.02) - -

10 Local 0.682 (±0.14) 0.198 (±0.09) 0.681 (±0.14) 0.192 (±0.10)

Federated 0.722 (±0.17) 0.219 (±0.11) 0.714 (±0.19) 0.215 (±0.12)

Synthesis 0.791 (±0.03) 0.283 (±0.03) 0.796 (±0.01) 0.279 (±0.03)

50 Local 0.693 (±0.16) 0.196 (±0.10) 0.710 (±0.16) 0.212 (±0.11)

Federated 0.731 (±0.20) 0.231 (±0.13) 0.742 (±0.20) 0.245 (±0.14)

Synthesis 0.792 (±0.01) 0.285 (±0.03) 0.799 (±0.01) 0.296 (±0.03)
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5.4.2 REPEN
Similar to isolation forest, the results for REPEN show that on average privacy-preserving learning
does not provide any significant improvement over local learning. Results for all data splitting
scenarios can be seen in Tables 5.11 and 5.12.

Table 5.11: REPEN results for all data sets with 10 and 50 clients using i.i.d. and
Feature-based non-i.i.d. data: Significance of federated learning and synthetic-based
learning results compared to local learning is given with + for p < 0.05 and ++ for p < 0.1

i.i.d. Feature-based non-i.i.d.
Clients Scenario ROC AUC PR AUC ROC AUC PR AUC

Credit Card Data Set
- Centralized 0.946 (±0.02) 0.511 (±0.04) - -

10 Local 0.929 (±0.02) 0.508 (±0.08) 0.932 (±0.01) 0.485 (±0.01)

Federated 0.939 (±0.02) 0.659++(±0.08) 0.929 (±0.02) 0.631+(±0.02)

Synthesis 0.945 (±0.01) 0.680+(±0.06) 0.933 (±0.01) 0.451 (±0.35)

50 Local 0.932 (±0.02) 0.569 (±0.07) 0.931 (±0.02) 0.588 (±0.06)

Federated 0.917 (±0.02) 0.675 (±0.06) 0.915 (±0.02) 0.674 (±0.06)

Synthesis 0.943 (±0.01) 0.414 (±0.14) 0.924 (±0.04) 0.377 (±0.31)

Probe Data Set
- Centralized 0.945 (±0.02) 0.731 (±0.05) - -

10 Local 0.918 (±0.01) 0.559 (±0.01) 0.901 (±0.01) 0.552 (±0.02)

Federated 0.899- -
(±0.01) 0.521 (±0.03) 0.839 (±0.09) 0.455 (±0.14)

Synthesis 0.825 (±0.10) 0.405 (±0.17) 0.948+(±0.01) 0.667+(±0.06)

50 Local 0.920 (±0.00) 0.613 (±0.01) 0.911 (±0.00) 0.609 (±0.01)

Federated 0.922 (±0.02) 0.644++(±0.02) 0.918 (±0.02) 0.632 (±0.07)

Synthesis 0.860 (±0.07) 0.462 (±0.19) 0.904 (±0.05) 0.570 (±0.17)

R2L Data Set
- Centralized 0.807 (±0.01) 0.107 (±0.01) - -

10 Local 0.779 (±0.00) 0.126 (±0.01) 0.796 (±0.01) 0.132 (±0.01)

Federated 0.724 (±0.11) 0.098 (±0.03) 0.819 (±0.04) 0.130 (±0.02)

Synthesis 0.809 (±0.04) 0.119 (±0.02) 0.747 (±0.10) 0.091- -
(±0.03)

50 Local 0.775 (±0.01) 0.120 (±0.01) 0.770 (±0.02) 0.121 (±0.00)

Federated 0.728 (±0.05) 0.107 (±0.02) 0.731 (±0.10) 0.099 (±0.03)

Synthesis 0.799 (±0.09) 0.197 (±0.18) 0.828++(±0.04) 0.148 (±0.06)

Annthyroid Data Set
- Centralized 0.638 (±0.02) 0.168 (±0.02) - -

10 Local 0.581 (±0.02) 0.142 (±0.01) 0.567 (±0.00) 0.137 (±0.01)

Federated 0.664+(±0.03) 0.219 (±0.08) 0.670 (±0.08) 0.236 (±0.14)

Synthesis 0.609 (±0.04) 0.153 (±0.06) 0.593++(±0.02) 0.181++(±0.03)

50 Local 0.583 (±0.01) 0.151 (±0.01) 0.577 (±0.02) 0.149 (±0.01)

Federated 0.651+(±0.01) 0.166 (±0.02) 0.624+(±0.01) 0.135 (±0.01)

Synthesis 0.625 (±0.04) 0.150 (±0.04) 0.571 (±0.07) 0.152 (±0.04)

For the Credit Card data set, synthetic data-based learning provides the highest performance
for label-based and LDP non-i.i.d. data splitting scenarios. This becomes more obvious as the
number of clients increases and the PR AUC value becoming significantly higher than the one
obtained from local training. With 50 clients, the ROC AUC and PR AUC values for synthetic
data-based learning are 0.944 and 0.680 respectively, compared to 0.934 and 0.679 achieved by
local learning.
For the Probe data set, synthetic data-based learning provides better performance for low number
of clients with data split across the client in non-i.i.d. manner. On the other hand, federated
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learning shows slightly better ROC AUC and PR AUC for more clients with i.i.d. data.

For the Annthyroid data set, federated learning provides significantly better ROC AUC values
for the i.i.d. data splitting scenario. The same behavior can be observed when using Label-based
Dirichlet Partition non-i.i.d. data.

Data distribution does not seem to have an effect on the results of REPEN, as non-i.i.d. scenarios
perform equally well to their i.i.d. counterpart. This can be explained by the ability of REPEN
to perform well with very limited amount of labeled data [PCCL18].

When trained in federated manner, REPEN show fast convergence where after few communication
rounds, the global model already reaches maximum predictive performance.

Table 5.12: REPEN results for all data sets with 10 and 50 clients using Feature-based
and LDP non-i.i.d. data: Significance of federated learning and synthetic-based learning
results compared to local learning is given with + for p < 0.05 and ++ for p < 0.1

Label-based non-i.i.d. LDP non-i.i.d.
Clients Scenario ROC AUC PR AUC ROC AUC PR AUC

Credit Card Data Set
- Centralized 0.946 (±0.02) 0.511 (±0.04) - -

10 Local 0.923 (±0.02) 0.421 (±0.12) 0.932 (±0.01) 0.481 (±0.02)

Federated 0.886 (±0.05) 0.459 (±0.08) 0.920 (±0.03) 0.616+(±0.02)

Synthesis 0.936 (±0.02) 0.554 (±0.23) 0.936 (±0.03) 0.669+(±0.06)

50 Local 0.926 (±0.02) 0.478 (±0.02) 0.932 (±0.01) 0.574 (±0.02)

Federated 0.875- -
(±0.02) 0.599+(±0.00) 0.901 (±0.03) 0.663++(±0.05)

Synthesis 0.944 (±0.03) 0.680+(±0.07) 0.934 (±0.04) 0.679+(±0.06)

Probe Data Set
- Centralized 0.945 (±0.02) 0.731 (±0.05) - -

10 Local 0.872 (±0.04) 0.559 (±0.03) 0.886 (±0.02) 0.520 (±0.04)

Federated 0.861 (±0.06) 0.552 (±0.07) 0.743-
(±0.04) 0.329-

(±0.09)

Synthesis 0.865 (±0.15) 0.578 (±0.29) 0.921 (±0.04) 0.637 (±0.11)

50 Local 0.878 (±0.00) 0.576 (±0.02) 0.903 (±0.01) 0.608 (±0.02)

Federated 0.861 (±0.03) 0.585 (±0.05) 0.898 (±0.03) 0.549 (±0.08)

Synthesis 0.936+(±0.03) 0.648 (±0.15) 0.877 (±0.08) 0.540 (±0.18)

R2L Data Set
- Centralized 0.807 (±0.01) 0.107 (±0.01) - -

10 Local 0.802 (±0.02) 0.145 (±0.01) 0.794 (±0.00) 0.124 (±0.01)

Federated 0.681 (±0.15) 0.100 (±0.05) 0.599 (±0.21) 0.082 (±0.04)

Synthesis 0.773 (±0.09) 0.103 (±0.03) 0.789 (±0.01) 0.103-
(±0.01)

50 Local 0.777 (±0.01) 0.126 (±0.00) 0.773 (±0.01) 0.121 (±0.00)

Federated 0.704-
(±0.02) 0.104 (±0.02) 0.758 (±0.08) 0.133 (±0.05)

Synthesis 0.730 (±0.12) 0.092 (±0.03) 0.804 (±0.03) 0.117 (±0.02)

Annthyroid Data Set
- Centralized 0.638 (±0.02) 0.168 (±0.02) - -

10 Local 0.596 (±0.02) 0.148 (±0.01) 0.602 (±0.03) 0.166 (±0.03)

Federated 0.623 (±0.03) 0.146 (±0.05) 0.693++(±0.06) 0.248 (±0.12)

Synthesis 0.611 (±0.06) 0.133 (±0.06) 0.635 (±0.02) 0.185 (±0.03)

50 Local 0.577 (±0.02) 0.146 (±0.02) 0.586 (±0.01) 0.154 (±0.01)

Federated 0.562 (±0.13) 0.106 (±0.05) 0.615 (±0.06) 0.128 (±0.04)

Synthesis 0.643++(±0.04) 0.183 (±0.03) 0.624 (±0.09) 0.200 (±0.11)
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CHAPTER 6
Conclusion

This thesis provided a comprehensive evaluation of privacy-preserving machine learning methods
for anomaly detection in distributed systems. It addresses the predictive performance of two
privacy-preserving solutions in a multi-nodal system where multiple clients are connected to a
centralized server. The first approach involved training a centralized model using aggregated data
obtained from generating synthetic instances at the local clients. The second method is federated
learning, where a global model is collaboratively trained across the different clients. Both settings
ensure that the original data are not shared and always remain at the client side. We compared
both approaches to the average performance of models trained on the client’s local data, and to
the performance of a centralized model trained on data aggregated from all clients.

As part of the evaluation, multiple state-of-the-art anomaly detection algorithms were implemented
and tested on different benchmark anomaly detection data sets. The selected algorithms cover
different machine learning approaches, suited for different availability of labels in the training
data.

The selected data sets cover several critical anomaly detection applications, where privacy is a
serious concern. To ensure that the distributed learning experiments reflect real-world scenarios,
besides an i.i.d. data splitting, three different non-i.i.d. scenarios take into consideration different
ways in which data may deviate from being i.i.d..

The evaluation results showed that federated learning clearly outperforms local data-based learning
for all supervised and weakly-supervised learning methods. Even though synthetic-based learning
provides good performance in some cases, its behavior appears to be inconsistent and highly
depends on the used data. For federated learning, applying resampling techniques for supervised
learning did not provide significant improvement in the predictive performance, even when only a
small amount of data is available at each client.

For semi-supervised learning, we showed that federated learning provides the best performance
for most data sets – especially when the amount of data available at each client is limited. In
addition, the decrease in performance due to distributed learning is more significant.

For unsupervised learning, we observed that privacy-preserving learning do not provide any
advantage over local data-based learning. Even though synthetic data-based learning shows
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slightly better performance for some settings, its behavior is not consistent across the different
experiments.

6.1 Research questions revisited
In this section, we revisit the research questions defined in Section 1.3 and discuss the research
outcomes related to each of them.

RQ 1) What is the effect of collaborative learning when applied to anomaly detection
models compared to centralized learning?

Overall, the predictive performance provided by collaborative learning is comparable to centralized
learning. The difference in ROC AUC and PR AUC provided by federated and synthetic data-
based learning when compared to centralized training is very limited. However, this difference
gets larger with increasing number of clients. In addition, we observed that semi-supervised
learning is the only training approach that shows large reduction in performance between the
distributed learning scenarios and centralized training.

RQ 1.1) To what extent does training such models in a federated manner affect the
overall predictive performance?

In most cases, federated learning shows slightly lower ROC AUC and PR AUC compared to
centralized learning. Such decrease in performance increases with an increasing number of clients.
In particular, we observed that weakly-supervised federated learning using DevNet provides a
higher performance compared to centralized learning. This method is designed for applications
involving a small amount of data, and is therefore able to perform well in a federated setting.
On the other hand, semi-supervised learning using Autoencoder shows the highest decrease in
performance for federated learning.

RQ 1.2) Which models are more suited to be used in a federated architecture for
more effective anomaly detection?

Both supervised and weakly-supervised learning methods provided a good predictive performance
when trained in a federated manner. In fact, the availability of labels had a large impact on the
anomaly detection task. In supervised learning, where labels are available for all data points,
Feedforward Neural Network (FFNN) and XGBoost provided high ROC AUC and PR AUC in
almost all experiments compared to local data-based learning. The weakly-supervised learning
setting using DevNet also showed high predictive performance for federated learning – in some
experiments even higher than centralized learning.

Auotencoder trained on normal instances only showed significantly better performance for federated
learning when compared to local data-based learning for three out of the four used data sets. The
significance of the performance of federated learning becomes more apparent with an increasing
number of clients. However, its behavior seems to be dependent of the training data types.

On the other hand, we showed that federated learning using unsupervised learning algorithms
does not provide any advantage over training local models at each individual client.

It can be therefore concluded that, depending on the data labels availability, supervised, weakly-
supervised, and semi-supervised anomaly detection algorithms are well suited to be used in a
federated architecture.
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RQ 2) What impact does data heterogeneity have on the anomaly detection models
in federated learning?

In general, the effect of data distribution on the predictive performs vary across the different
experiments. It was observed that the effect of data being non-i.i.d. highly depends on the used
algorithm and the type of data. The effect of the amount of data available at each client, which
is inversely proportional to the number of clients, is on the other hand more prominent.

RQ 2.1) To what degree do the amount and distribution of data available at local
nodes influence the global model performance?

Overall, the difference in performance between the data being split in i.i.d. and non-i.i.d. manners
is not significant. The way the different models are affected highly depends on the training
data. For FFNN, while the difference in performance between i.i.d. and non-i.i.d. data splitting
scenarios cannot be seen for the Credit Card data set, it was more visible for the other data sets.
For instance, with the Annthyroid data set, a high decrease in predictive performance for FFNN
can be seen between i.i.d. and non-i.i.d. data distribution scenarios. This is more prominent in
the case of label-based data splitting especially with increasing number of clients where the PR
AUC value decreased by almost half when using 50 clients. This behavior cannot be seen for
other methods such as DevNet where different data distribution scenarios resulted in very similar
performance.

We also observed that the predictive performance of supervised and semi-supervised models when
trained in federated manner might depend on the amount of data available at the individual
clients. From the results, it was clear that higher number of clients decreases both ROC AUC
and PR AUC of the global federated model. For instance, federated FFNN trained on i.i.d. R2L
data shows more than 30% decrease in PR AUC when going from 2 to 50 clients.

This effect is not visible in weakly-supervised learning using DevNet, since this model is known
to perform well with very limited amount of data. The same applies to unsupervised methods
where increasing the number of clients does not necessarily result in decreasing of the federated
model performance, albeit on generally rather low results.

RQ 2.2) To what extent does applying resampling techniques to local data at
individual nodes affect the global model predictive performance?

Applying resmapling techniques in the supervised learning setting did not result in a clear increase
in predictive performance of the global federated model. The methods evaluated included random
undersampling, random oversampling and SMOTE. All of them have resulted in almost the same
predictive performance of the federated model when applied to local data at the client side. In
particular, random undersampling provided slightly lower performance for some of the non-i.i.d.
data splitting scenario.

RQ 3) How do models trained in federated manner perform when compared to
central models trained using synthetic data locally generated at client nodes?

Unlike federated learning, the performance of models trained using synthetic data is not consistent
across the different algorithms and data sets. For instance, while the synthetic data-based models
perform well with the Credit Card data set, they show very low performance for the R2L data
set. On the other hand, federated learning consistently showed good predictive performance and
does not seem to be highly dependent on the type of training data.
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6.2 Future work
It was observed that the obtained results in this thesis do not allow drawing clear conclusions for
the different unsupervised learning scenarios. Investigating other unsupervised algorithms could
lead to better understanding of both federated and synthetic-data based learning.

The tested non-i.i.d. data splitting scenarios cover most of the aspects in which data might
deviate from being i.i.d.. In order to evaluate the similarity between the generated subsets, Earth
Mover’s Distance (EMD) was used. The obtained EMD values clearly show that the defined
non-i.i.d. scenarios introduced significant statistical heterogeneity among the simulated clients.
However, as opposed to what was expected, the effect of data distribution was not clearly visible
for most experiments. Even though it was observed that federated learning is able to handle well
non-i.i.d. data, it would be interesting to evaluate the effect of data distribution in depth. The
defined data splitting scenarios can be easily parameterized to control the degree to which the
data get close and deviate from being non-i.i.d.. They can therefore be used as a starting point
to define more extreme cases of data distributed in a non-i.i.d. manner.

The obtained results show different behavior for the different data sets. In particular, synthetic
data-based learning results for the Credit Card data set are usually different than the other
data sets. It is believed that this behavior is related to the nature of the data since PCA has
been applied on the feature for anonymization purposes. In order to investigate this further,
experiments can be repeated after applying PCA to the other three data sets. In addition, to
obtain a better understanding on the effect of the nature of training data on the learning process,
the experiments conducted in this thesis may be conducted again with new data sets.
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APPENDIX A
Results

This section provides results for all experiments. For each number of clients, algorithm, data
set, training setting and data splitting scenario the metrics ROC and PR score are provided.
The column with the name N indicates the number of clients that are used to simulate the data
splitting scenarios.
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0.01)

Synthesis
0.641 _

(±
0.01)

0.062 _
(±

0.00)
0.642 _

(±
0.01)

0.062 _
(±

0.00)
0.644 _

(±
0.00)

0.063 _
(±

0.00)
0.642 _

(±
0.00)

0.062 _
(±

0.00)

5
Local

0.992
(±

0.00)
0.879

(±
0.01)

0.991
(±

0.00)
0.858

(±
0.03)

0.891
(±

0.00)
0.539

(±
0.02)

0.990
(±

0.00)
0.843

(±
0.02)

Federated
0.996 +

(±
0.00)

0.952 +
(±

0.01)
0.996 +

(±
0.00)

0.947 +
(±

0.01)
0.995 +

(±
0.00)

0.931 +
(±

0.01)
0.996 +

(±
0.00)

0.934 +
(±

0.00)

Synthesis
0.733 _

(±
0.00)

0.088 _
(±

0.00)
0.733 _

(±
0.01)

0.088 _
(±

0.00)
0.735 _

(±
0.01)

0.089 _
(±

0.00)
0.733 _

(±
0.01)

0.088 _
(±

0.00)

10
Local

0.986
(±

0.00)
0.753

(±
0.01)

0.981
(±

0.00)
0.717

(±
0.06)

0.897
(±

0.00)
0.522

(±
0.01)

0.983
(±

0.00)
0.704

(±
0.02)

Federated
0.995 +

(±
0.00)

0.936 +
(±

0.01)
0.995 +

(±
0.00)

0.932 +
(±

0.01)
0.994 +

(±
0.00)

0.921 +
(±

0.01)
0.995 +

(±
0.00)

0.923 +
(±

0.01)

Synthesis
0.763 _

(±
0.01)

0.100 _
(±

0.01)
0.763 _

(±
0.01)

0.100 _
(±

0.01)
0.767 _

(±
0.01)

0.104 _
(±

0.01)
0.763 _

(±
0.00)

0.100 _
(±

0.01)

20
Local

0.957
(±

0.00)
0.566

(±
0.01)

0.952
(±

0.01)
0.549

(±
0.07)

0.903
(±

0.00)
0.451

(±
0.00)

0.969
(±

0.00)
0.588

(±
0.02)

Federated
0.993 +

(±
0.00)

0.901 +
(±

0.01)
0.992 +

(±
0.00)

0.878 +
(±

0.04)
0.994 +

(±
0.00)

0.915 +
(±

0.01)
0.994 +

(±
0.00)

0.918 +
(±

0.01)

Synthesis
0.789 _

(±
0.01)

0.115 _
(±

0.01)
0.790 _

(±
0.01)

0.117 _
(±

0.01)
0.798 _

(±
0.01)

0.125 _
(±

0.01)
0.790 _

(±
0.01)

0.116 _
(±

0.01)

30
Local

0.933
(±

0.00)
0.471

(±
0.01)

0.916
(±

0.01)
0.397

(±
0.07)

0.871
(±

0.00)
0.364

(±
0.03)

0.930
(±

0.00)
0.449

(±
0.02)

Federated
0.989 +

(±
0.00)

0.828 +
(±

0.02)
0.987 +

(±
0.00)

0.800 +
(±

0.09)
0.992 +

(±
0.00)

0.885 +
(±

0.01)
0.993 +

(±
0.00)

0.905 +
(±

0.01)

Synthesis
0.807 _

(±
0.01)

0.125 _
(±

0.01)
0.808 _

(±
0.01)

0.127 _
(±

0.01)
0.818 _

(±
0.00)

0.140 _
(±

0.01)
0.807 _

(±
0.00)

0.126 _
(±

0.01)

40
Local

0.899
(±

0.00)
0.312

(±
0.01)

0.897
(±

0.00)
0.301

(±
0.01)

0.856
(±

0.00)
0.324

(±
0.01)

0.913
(±

0.00)
0.379

(±
0.01)

Federated
0.986 +

(±
0.00)

0.783 +
(±

0.00)
0.987 +

(±
0.00)

0.792 +
(±

0.01)
0.991 +

(±
0.00)

0.866 +
(±

0.03)
0.992 +

(±
0.00)

0.865 +
(±

0.03)

Synthesis
0.820 _

(±
0.01)

0.136 _
(±

0.01)
0.822 _

(±
0.00)

0.140 _
(±

0.01)
0.834 _

(±
0.00)

0.155 _
(±

0.01)
0.820 _

(±
0.00)

0.138 _
(±

0.01)

50
Local

0.898
(±

0.00)
0.317

(±
0.01)

0.891
(±

0.00)
0.309

(±
0.01)

0.855
(±

0.00)
0.301

(±
0.02)

0.899
(±

0.00)
0.336

(±
0.02)

Federated
0.981 +

(±
0.00)

0.662 +
(±

0.01)
0.982 +

(±
0.00)

0.679 +
(±

0.03)
0.988 +

(±
0.00)

0.787 +
(±

0.03)
0.990 +

(±
0.00)

0.829 +
(±

0.03)

Synthesis
0.833 _

(±
0.01)

0.146 _
(±

0.01)
0.833 _

(±
0.01)

0.150 _
(±

0.01)
0.843 _

(±
0.00)

0.172 _
(±

0.01)
0.833 _

(±
0.01)

0.150 _
(±

0.01)
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A. Results

Table
A

.5:
R

esults
for

Logistic
R

egression
using

C
redit

C
ard

data
set:

Significance
offederated

learning
and

synthetic-based
learning

results
com

pared
to

locallearning
is

given
w

ith
+

for
p

<
0.05

and
+

+
for

p
<

0.1

i.i.d.
Feature-based

non-i.i.d.
Label-based

non-i.i.d.
LD

P
non-i.i.d.

N
Scenario

R
O

C
A

U
C

PR
A

U
C

R
O

C
A

U
C

PR
A

U
C

R
O

C
A

U
C

PR
A

U
C

R
O

C
A

U
C

PR
A

U
C

-
C

entralized
0.984

(±
0.01)

0.720
(±

0.05)
-

-
-

-
-

-
2

Local
0.983

(±
0.01)

0.718
(±

0.05)
0.982

(±
0.01)

0.716
(±

0.05)
0.947

(±
0.01)

0.620
(±

0.05)
0.968

(±
0.01)

0.694
(±

0.05)

Federated
0.969

(±
0.01)

0.705
(±

0.06)
0.969

(±
0.01)

0.706
(±

0.05)
0.969 +

+
(±

0.01)
0.705

(±
0.06)

0.969
(±

0.01)
0.705

(±
0.06)

Synthesis
0.970 --(±

0.00)
0.697

(±
0.06)

0.970
(±

0.01)
0.700

(±
0.06)

0.972 +
(±

0.00)
0.700

(±
0.05)

0.972
(±

0.00)
0.697

(±
0.06)

5
Local

0.981
(±

0.01)
0.714

(±
0.05)

0.981
(±

0.01)
0.711

(±
0.06)

0.952
(±

0.01)
0.638

(±
0.05)

0.965
(±

0.01)
0.691

(±
0.06)

Federated
0.962 --(±

0.01)
0.697

(±
0.06)

0.962 --(±
0.01)

0.697
(±

0.06)
0.964

(±
0.01)

0.699
(±

0.06)
0.962

(±
0.01)

0.697
(±

0.06)

Synthesis
0.928 -(±

0.02)
0.651

(±
0.05)

0.936 -(±
0.02)

0.654
(±

0.06)
0.948

(±
0.01)

0.666
(±

0.05)
0.939 -(±

0.01)
0.654

(±
0.05)

10
Local

0.978
(±

0.01)
0.707

(±
0.06)

0.978
(±

0.01)
0.701

(±
0.06)

0.957
(±

0.01)
0.648

(±
0.05)

0.961
(±

0.01)
0.671

(±
0.05)

Federated
0.968

(±
0.01)

0.700
(±

0.06)
0.968

(±
0.01)

0.699
(±

0.05)
0.968

(±
0.01)

0.701
(±

0.06)
0.968

(±
0.01)

0.700
(±

0.06)

Synthesis
0.944 -(±

0.01)
0.680

(±
0.05)

0.943 -(±
0.01)

0.680
(±

0.05)
0.945

(±
0.01)

0.682
(±

0.06)
0.945

(±
0.01)

0.681
(±

0.06)

20
Local

0.973
(±

0.01)
0.690

(±
0.06)

0.972
(±

0.01)
0.680

(±
0.06)

0.953
(±

0.01)
0.640

(±
0.06)

0.956
(±

0.01)
0.677

(±
0.06)

Federated
0.971

(±
0.01)

0.701
(±

0.05)
0.971

(±
0.01)

0.701
(±

0.06)
0.970

(±
0.01)

0.702
(±

0.05)
0.970

(±
0.01)

0.701
(±

0.05)

Synthesis
0.954 -(±

0.01)
0.678

(±
0.06)

0.956 --(±
0.01)

0.679
(±

0.06)
0.959

(±
0.00)

0.686
(±

0.06)
0.960

(±
0.01)

0.681
(±

0.06)

30
Local

0.967
(±

0.01)
0.670

(±
0.06)

0.967
(±

0.01)
0.669

(±
0.06)

0.948
(±

0.01)
0.629

(±
0.05)

0.952
(±

0.01)
0.665

(±
0.06)

Federated
0.964

(±
0.01)

0.703
(±

0.06)
0.964

(±
0.01)

0.703
(±

0.05)
0.965

(±
0.01)

0.704
(±

0.06)
0.964

(±
0.01)

0.703
(±

0.05)

Synthesis
0.967

(±
0.00)

0.668
(±

0.05)
0.960

(±
0.01)

0.673
(±

0.06)
0.963

(±
0.01)

0.677
(±

0.06)
0.965

(±
0.00)

0.660
(±

0.07)

40
Local

0.963
(±

0.01)
0.660

(±
0.06)

0.963
(±

0.01)
0.650

(±
0.06)

0.950
(±

0.01)
0.626

(±
0.05)

0.952
(±

0.01)
0.661

(±
0.06)

Federated
0.969

(±
0.01)

0.705
(±

0.06)
0.969

(±
0.01)

0.705
(±

0.06)
0.968 +

+
(±

0.01)
0.704

(±
0.06)

0.968
(±

0.01)
0.705

(±
0.06)

Synthesis
0.943 --(±

0.01)
0.653

(±
0.05)

0.947 --(±
0.01)

0.661
(±

0.06)
0.946

(±
0.01)

0.675
(±

0.06)
0.947

(±
0.01)

0.658
(±

0.06)

50
Local

0.958
(±

0.01)
0.644

(±
0.06)

0.955
(±

0.01)
0.636

(±
0.06)

0.944
(±

0.01)
0.607

(±
0.05)

0.954
(±

0.01)
0.666

(±
0.05)

Federated
0.965

(±
0.01)

0.701
(±

0.06)
0.965

(±
0.01)

0.701
(±

0.06)
0.966

(±
0.01)

0.703 +
+

(±
0.06)

0.965
(±

0.01)
0.702

(±
0.06)

Synthesis
0.928 --(±

0.02)
0.587

(±
0.04)

0.923 --(±
0.02)

0.580
(±

0.06)
0.939

(±
0.01)

0.628
(±

0.05)
0.930 --(±

0.02)
0.608

(±
0.06)
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A. Results

Table
A

.7:R
esultsforLogistic

R
egression

using
R

2L
data

set:
Significance

offederated
learning

and
synthetic-based

learning
results

com
pared

to
locallearning

is
given

w
ith

+
for

p
<

0.05
and

+
+

for
p

<
0
.1

i.i.d.
Feature-based

non-i.i.d.
Label-based

non-i.i.d.
LD

P
non-i.i.d.

N
Scenario

R
O

C
A

U
C

PR
A

U
C

R
O

C
A

U
C

PR
A

U
C

R
O

C
A

U
C

PR
A

U
C

R
O

C
A

U
C

PR
A

U
C

-
C

entralized
0.985

(±
0.00)

0.762
(±

0.01)
-

-
-

-
-

-
2

Local
0.984

(±
0.00)

0.756
(±

0.01)
0.984

(±
0.00)

0.756
(±

0.01)
0.870

(±
0.00)

0.418
(±

0.01)
0.984

(±
0.00)

0.756
(±

0.01)

Federated
0.984

(±
0.00)

0.759
(±

0.01)
0.982

(±
0.00)

0.735 -(±
0.01)

0.984 +
(±

0.00)
0.734 +

(±
0.00)

0.984
(±

0.00)
0.751

(±
0.02)

Synthesis
0.977 -(±

0.00)
0.690 -(±

0.00)
0.978 -(±

0.00)
0.698 -(±

0.01)
0.980 +

(±
0.00)

0.721 +
(±

0.02)
0.977 -(±

0.00)
0.695 -(±

0.01)

5
Local

0.984
(±

0.00)
0.752

(±
0.01)

0.983
(±

0.00)
0.751

(±
0.01)

0.888
(±

0.00)
0.482

(±
0.01)

0.983
(±

0.00)
0.754

(±
0.01)

Federated
0.984

(±
0.00)

0.758
(±

0.01)
0.983

(±
0.00)

0.743
(±

0.01)
0.984 +

(±
0.00)

0.728 +
(±

0.01)
0.984

(±
0.00)

0.728 -(±
0.01)

Synthesis
0.974 -(±

0.00)
0.643 -(±

0.02)
0.975 -(±

0.00)
0.668 -(±

0.01)
0.977 +

(±
0.00)

0.692 +
(±

0.01)
0.973 -(±

0.00)
0.645 -(±

0.01)

10
Local

0.983
(±

0.00)
0.746

(±
0.01)

0.983
(±

0.00)
0.747

(±
0.01)

0.914
(±

0.00)
0.545

(±
0.01)

0.983
(±

0.00)
0.745

(±
0.01)

Federated
0.984

(±
0.00)

0.760 +
+

(±
0.01)

0.984
(±

0.00)
0.758

(±
0.01)

0.984 +
(±

0.00)
0.729 +

(±
0.01)

0.984
(±

0.00)
0.740

(±
0.01)

Synthesis
0.970 -(±

0.00)
0.622 -(±

0.02)
0.970 -(±

0.00)
0.619 -(±

0.01)
0.975 +

(±
0.00)

0.668 +
(±

0.01)
0.970 -(±

0.00)
0.604 -(±

0.01)

20
Local

0.982
(±

0.00)
0.730

(±
0.01)

0.982
(±

0.00)
0.736

(±
0.01)

0.913
(±

0.00)
0.536

(±
0.01)

0.982
(±

0.00)
0.734

(±
0.01)

Federated
0.983

(±
0.00)

0.757 +
(±

0.00)
0.983

(±
0.00)

0.758 +
(±

0.00)
0.984 +

(±
0.00)

0.730 +
(±

0.02)
0.984

(±
0.00)

0.738
(±

0.01)

Synthesis
0.961 -(±

0.00)
0.531 -(±

0.02)
0.966 -(±

0.00)
0.568 -(±

0.01)
0.969 +

(±
0.00)

0.596 +
(±

0.02)
0.964 -(±

0.00)
0.544 -(±

0.02)

30
Local

0.981
(±

0.00)
0.721

(±
0.01)

0.981
(±

0.00)
0.720

(±
0.01)

0.912
(±

0.00)
0.525

(±
0.01)

0.981
(±

0.00)
0.720

(±
0.01)

Federated
0.983

(±
0.00)

0.757 +
(±

0.01)
0.983

(±
0.00)

0.754 +
(±

0.00)
0.984 +

(±
0.00)

0.737 +
(±

0.01)
0.984 +

+
(±

0.00)
0.741 +

(±
0.01)

Synthesis
0.959 -(±

0.00)
0.499 -(±

0.03)
0.963 -(±

0.00)
0.518 -(±

0.02)
0.968 +

(±
0.00)

0.570
(±

0.04)
0.963 -(±

0.00)
0.531 -(±

0.01)

40
Local

0.980
(±

0.00)
0.710

(±
0.01)

0.980
(±

0.00)
0.712

(±
0.01)

0.912
(±

0.00)
0.521

(±
0.01)

0.979
(±

0.00)
0.708

(±
0.01)

Federated
0.983 +

+
(±

0.00)
0.756 +

(±
0.00)

0.983
(±

0.00)
0.754 +

(±
0.00)

0.984 +
(±

0.00)
0.739 +

(±
0.01)

0.984 +
(±

0.00)
0.741 +

(±
0.01)

Synthesis
0.956 -(±

0.00)
0.460 -(±

0.03)
0.959 -(±

0.00)
0.501 -(±

0.01)
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(±
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(±
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0.983 +

+
(±

0.00)
0.758 +

(±
0.00)

0.983 +
(±

0.00)
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(±
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0.983 +
(±
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0.745 +
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Synthesis
0.953 -(±

0.00)
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0.02)
0.955 -(±

0.00)
0.461 -(±

0.01)
0.964 +

(±
0.00)

0.542
(±

0.03)
0.958 -(±

0.00)
0.469 -(±

0.02)
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A. Results

Table
A

.9:
R

esults
for

X
G

Boost
using

C
redit

C
ard

data
set:

Significance
offederated

learning
and

synthetic-based
learning

results
com

pared
to

locallearning
is

given
w

ith
+

for
p

<
0.05

and
+

+
for

p
<

0
.1

i.i.d.
Feature-based

non-i.i.d.
Label-based

non-i.i.d.
LD

P
non-i.i.d.

N
Scenario

R
O

C
A

U
C

PR
A

U
C

R
O

C
A

U
C

PR
A

U
C

R
O

C
A

U
C

PR
A

U
C

R
O

C
A

U
C

PR
A

U
C

-
C

entralized
0.974

(±
0.00)

0.847
(±

0.03)
-

-
-

-
-

-
2

Local
0.978

(±
0.00)

0.831
(±

0.03)
0.974

(±
0.00)

0.820
(±

0.04)
0.738

(±
0.00)

0.419
(±

0.01)
0.975

(±
0.00)

0.825
(±

0.03)

Federated
0.981

(±
0.00)

0.841
(±

0.03)
0.982 +

(±
0.00)

0.835
(±

0.03)
0.977 +

(±
0.00)

0.837 +
(±

0.03)
0.981

(±
0.01)

0.837
(±

0.03)

Synthesis
0.915 -(±

0.02)
0.695 -(±

0.06)
0.919 -(±

0.03)
0.714 --(±

0.06)
0.918 +

(±
0.03)

0.722 +
(±

0.01)
0.918 -(±

0.03)
0.715 -(±

0.03)

5
Local

0.969
(±

0.01)
0.793

(±
0.03)

0.970
(±

0.00)
0.794

(±
0.03)

0.784
(±

0.00)
0.480

(±
0.02)

0.970
(±

0.01)
0.791

(±
0.04)

Federated
0.982

(±
0.01)

0.831
(±

0.03)
0.982 +

(±
0.01)

0.814
(±

0.04)
0.986 +

(±
0.01)

0.825 +
(±

0.03)
0.981

(±
0.01)

0.819
(±

0.03)

Synthesis
0.909 -(±

0.02)
0.605 -(±

0.05)
0.921 -(±

0.02)
0.622 -(±

0.08)
0.913 +

(±
0.03)

0.652 +
(±

0.06)
0.913 -(±

0.02)
0.622 -(±

0.04)

10
Local

0.964
(±

0.01)
0.765

(±
0.04)

0.962
(±

0.01)
0.758

(±
0.04)

0.828
(±

0.01)
0.538

(±
0.03)

0.963
(±

0.01)
0.749

(±
0.05)

Federated
0.983 +

(±
0.00)

0.812
(±

0.03)
0.982 +

(±
0.01)

0.810
(±

0.04)
0.982 +

(±
0.01)

0.813 +
(±

0.03)
0.981 +

+
(±

0.01)
0.812

(±
0.03)

Synthesis
0.921 -(±

0.02)
0.629 --(±

0.09)
0.915 --(±

0.03)
0.611 -(±

0.06)
0.922 +

(±
0.02)

0.610
(±

0.07)
0.913 -(±

0.03)
0.620 -(±

0.06)

20
Local

0.955
(±

0.01)
0.713

(±
0.04)

0.952
(±

0.01)
0.712

(±
0.05)

0.822
(±

0.01)
0.511

(±
0.03)

0.954
(±

0.01)
0.705

(±
0.05)

Federated
0.982 +

(±
0.01)

0.790 +
+

(±
0.03)

0.977 +
+

(±
0.01)

0.793 +
+

(±
0.04)

0.981 +
(±

0.01)
0.801 +

(±
0.04)

0.978 +
+

(±
0.01)

0.787 +
+

(±
0.03)

Synthesis
0.923 --(±

0.02)
0.611 --(±

0.06)
0.922 --(±

0.01)
0.668

(±
0.05)

0.928 +
(±

0.01)
0.636 +

(±
0.05)

0.920 --(±
0.02)

0.601 -(±
0.03)

30
Local

0.949
(±

0.02)
0.677

(±
0.05)

0.950
(±

0.01)
0.679

(±
0.04)

0.818
(±

0.01)
0.486

(±
0.03)

0.949
(±

0.01)
0.684

(±
0.05)

Federated
0.979 +

(±
0.01)

0.776 +
(±

0.04)
0.980 +

(±
0.01)

0.777 +
(±

0.04)
0.979 +

(±
0.01)

0.792 +
(±

0.04)
0.979 +

(±
0.01)

0.782 +
+

(±
0.04)

Synthesis
0.921

(±
0.02)

0.610
(±

0.04)
0.922

(±
0.02)

0.639
(±

0.10)
0.922 +

(±
0.02)

0.601 +
(±

0.03)
0.922 --(±

0.02)
0.642

(±
0.08)

40
Local

0.947
(±

0.02)
0.655

(±
0.05)

0.948
(±

0.01)
0.655

(±
0.06)

0.818
(±

0.01)
0.478

(±
0.03)

0.946
(±

0.02)
0.663

(±
0.05)

Federated
0.980 +

(±
0.01)

0.767 +
(±

0.04)
0.982 +

(±
0.00)

0.764 +
+

(±
0.04)

0.978 +
(±

0.01)
0.770 +

(±
0.04)

0.977 +
(±

0.01)
0.768 +

(±
0.04)

Synthesis
0.924

(±
0.02)

0.526 -(±
0.05)

0.925
(±

0.02)
0.558

(±
0.07)

0.923 +
(±

0.01)
0.612 +

(±
0.06)

0.930
(±

0.01)
0.530 --(±

0.09)

50
Local

0.946
(±

0.02)
0.640

(±
0.06)

0.947
(±

0.01)
0.639

(±
0.05)

0.816
(±

0.01)
0.460

(±
0.04)

0.945
(±

0.01)
0.638

(±
0.05)

Federated
0.979 +

(±
0.01)

0.757 +
(±

0.04)
0.976 +

(±
0.01)

0.756 +
(±

0.04)
0.978 +

(±
0.01)

0.772 +
(±

0.04)
0.979 +

(±
0.00)

0.750 +
(±

0.04)

Synthesis
0.928

(±
0.01)

0.532
(±

0.13)
0.920

(±
0.02)

0.567
(±

0.14)
0.922 +

(±
0.02)

0.642 +
(±

0.02)
0.922

(±
0.02)

0.611
(±

0.07)
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A. Results
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+
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+
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A. Results

Table
A

.13:
R

esults
for

D
evN

et
using

C
redit

C
ard

data
set:

Significance
offederated

learning
and

synthetic-based
learning

results
com

pared
to

locallearning
is

given
w

ith
+

for
p

<
0.05

and
+

+
for

p
<

0
.1

i.i.d.
Feature-based

non-i.i.d.
N

Scenario
R

O
C

A
U

C
PR

A
U

C
R

O
C

A
U

C
PR

A
U

C
-

C
entralized

0.953
(±

0.01)
0.683

(±
0.07)

-
-

2
Local

0.955
(±

0.03)
0.662

(±
0.05)

0.966
(±

0.01)
0.687

(±
0.03)

Federated
0.985

(±
0.00)

0.708
(±

0.05)
0.975

(±
0.01)

0.707
(±

0.06)

Synthesis
0.908

(±
0.06)

0.487
(±

0.18)
0.962

(±
0.01)

0.597 -(±
0.03)

5
Local

0.952
(±

0.02)
0.660

(±
0.06)

0.959
(±

0.02)
0.636

(±
0.07)

Federated
0.984 +

+
(±

0.01)
0.711

(±
0.05)

0.980
(±

0.01)
0.712

(±
0.06)

Synthesis
0.947

(±
0.01)

0.409
(±

0.21)
0.851

(±
0.11)

0.295
(±

0.28)

10
Local

0.959
(±

0.02)
0.648

(±
0.06)

0.957
(±

0.01)
0.659

(±
0.03)

Federated
0.984 +

+
(±

0.01)
0.707

(±
0.05)

0.981 +
(±

0.01)
0.712

(±
0.06)

Synthesis
0.958

(±
0.01)

0.645
(±

0.11)
0.915

(±
0.08)

0.540
(±

0.13)

20
Local

0.959
(±

0.01)
0.635

(±
0.06)

0.959
(±

0.01)
0.622

(±
0.04)

Federated
0.985 +

(±
0.00)

0.708
(±

0.06)
0.978 +

(±
0.00)

0.713 +
+

(±
0.05)

Synthesis
0.924 -(±

0.01)
0.417

(±
0.27)

0.959
(±

0.01)
0.690

(±
0.07)

30
Local

0.958
(±

0.01)
0.626

(±
0.05)

0.956
(±

0.01)
0.638

(±
0.05)

Federated
0.984 +

(±
0.00)

0.708
(±

0.05)
0.978 +

(±
0.01)

0.711
(±

0.06)

Synthesis
0.939

(±
0.02)

0.620
(±

0.03)
0.953

(±
0.01)

0.503 -(±
0.06)

40
Local

0.958
(±

0.01)
0.641

(±
0.06)

0.954
(±

0.01)
0.623

(±
0.07)

Federated
0.984 +

(±
0.00)

0.711
(±

0.05)
0.974 +

(±
0.01)

0.708
(±

0.06)

Synthesis
0.945

(±
0.02)

0.334 -(±
0.02)

0.918 -(±
0.01)

0.365
(±

0.21)

50
Local

0.955
(±

0.01)
0.633

(±
0.05)

0.955
(±

0.01)
0.635

(±
0.06)

Federated
0.986 +

(±
0.00)

0.711
(±

0.06)
0.976 +

(±
0.00)

0.710
(±

0.05)

Synthesis
0.907

(±
0.07)

0.394
(±

0.32)
0.873

(±
0.08)

0.185 -(±
0.18)
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A. Results

Table
A

.15:
R

esults
for

D
evN

et
using

R
2L

data
set:

Significance
offederated

learning
and

synthetic-based
learning

results
com

pared
to

locallearning
is

given
w

ith
+

for
p

<
0.05

and
+

+
for

p
<

0
.1

i.i.d.
Feature-based

non-i.i.d.
N

Scenario
R

O
C

A
U

C
PR

A
U

C
R

O
C

A
U

C
PR

A
U

C
-

C
entralized

0.805
(±

0.01)
0.444

(±
0.02)

-
-

2
Local

0.685
(±

0.09)
0.318

(±
0.21)

0.698
(±

0.02)
0.223

(±
0.03)

Federated
0.939 +

(±
0.03)

0.436
(±

0.13)
0.964 +

(±
0.00)

0.451 +
(±

0.03)

Synthesis
0.796

(±
0.05)

0.357
(±

0.03)
0.822 +

(±
0.05)

0.464 +
(±

0.02)

5
Local

0.709
(±

0.08)
0.249

(±
0.15)

0.761
(±

0.06)
0.273

(±
0.12)

Federated
0.913 +

(±
0.02)

0.288
(±

0.05)
0.967 +

(±
0.01)

0.476 +
+

(±
0.04)

Synthesis
0.726

(±
0.09)

0.323
(±

0.01)
0.810

(±
0.10)

0.371
(±

0.04)

10
Local

0.756
(±

0.05)
0.268

(±
0.08)

0.755
(±

0.09)
0.284

(±
0.16)

Federated
0.930 +

(±
0.03)

0.354
(±

0.10)
0.965 +
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0.442
(±

0.03)

Synthesis
0.723

(±
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0.293
(±

0.11)
0.782

(±
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0.221
(±

0.01)

20
Local

0.762
(±

0.08)
0.280

(±
0.15)

0.762
(±

0.05)
0.278

(±
0.13)

Federated
0.915 +

(±
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0.336
(±
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0.968

(±
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0.503
(±

0.00)

Synthesis
0.712

(±
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0.220
(±

0.09)
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0.282
(±

0.16)

30
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0.755
(±
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0.269
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0.758
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0.265
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Federated
0.921 +
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0.297
(±
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0.970

(±
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(±
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0.05)
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(±
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0.422
(±

0.00)
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0.703

(±
0.04)

0.169
(±

0.09)
0.519 -(±

0.11)
0.081 --(±

0.02)
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A. Results
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A

.17:
R

esults
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A
utoencoder

using
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C

ard
data

set:
Significance

offederated
learning

and
synthetic-based

learning
results

com
pared
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locallearning

is
given

w
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+
for

p
<

0.05
and

+
+

for
p

<
0.1

i.i.d.
Feature-based

non-i.i.d.
N

Scenario
R

O
C

A
U

C
PR

A
U

C
R

O
C

A
U

C
PR

A
U

C
-

C
entralized

0.938
(±

0.01)
0.459

(±
0.11)

-
-

2
Local

0.950
(±

0.02)
0.407

(±
0.07)

0.941
(±

0.01)
0.378

(±
0.06)

Federated
0.941

(±
0.02)

0.363
(±

0.06)
0.937

(±
0.01)

0.363
(±

0.05)

Synthesis
0.922
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0.02)

0.081 -(±
0.03)

0.909
(±

0.03)
0.062 -(±

0.04)
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0.944
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0.375
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0.940
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0.361
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Federated
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(±
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(±
0.01)

0.366
(±
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0.361
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(±
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0.362
(±
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(±
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(±

0.06)

Synthesis
0.933
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0.943
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0.098 -(±

0.05)
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(±

0.02)
0.359
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(±
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0.357

(±
0.06)

Federated
0.941

(±
0.02)

0.362
(±

0.06)
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(±
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0.366
(±

0.06)

Synthesis
0.943
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0.229
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Federated
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0.184 -(±
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0.239
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(±
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0.361
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0.938
(±
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0.359
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0.06)

Federated
0.941

(±
0.02)

0.361
(±

0.06)
0.940

(±
0.02)

0.356
(±

0.06)

Synthesis
0.953

(±
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0.377
(±

0.06)
0.949

(±
0.02)

0.362
(±

0.01)

50
Local

0.941
(±

0.02)
0.360

(±
0.06)

0.938
(±

0.02)
0.357

(±
0.06)

Federated
0.941

(±
0.02)

0.361
(±

0.06)
0.940

(±
0.02)

0.359
(±

0.06)

Synthesis
0.950

(±
0.02)

0.399
(±

0.06)
0.951

(±
0.02)

0.367
(±

0.05)
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A. Results

Table
A

.19:
R

esults
for

A
utoencoder

using
R

2L
data

set:
Significance

offederated
learning

and
synthetic-based

learning
results

com
pared

to
locallearning

is
given

w
ith

+
for

p
<

0.05
and

+
+

for
p

<
0
.1

i.i.d.
Feature-based

non-i.i.d.
N

Scenario
R

O
C

A
U

C
PR

A
U

C
R

O
C

A
U

C
PR

A
U

C
-

C
entralized

0.928
(±

0.01)
0.454

(±
0.03)

-
-

2
Local

0.888
(±

0.01)
0.264

(±
0.03)

0.907
(±

0.01)
0.221

(±
0.02)

Federated
0.908 +

+
(±

0.01)
0.348 +

(±
0.03)

0.880 -(±
0.01)

0.213
(±

0.02)

Synthesis
0.819 -(±

0.02)
0.125 -(±

0.02)
0.816 -(±

0.03)
0.118 -(±

0.02)

5
Local

0.895
(±

0.01)
0.225

(±
0.02)

0.878
(±

0.00)
0.165

(±
0.01)

Federated
0.880 --(±

0.00)
0.270 +

(±
0.01)

0.906 +
(±

0.01)
0.263 +

(±
0.03)

Synthesis
0.805 -(±

0.04)
0.117 -(±

0.02)
0.811 -(±

0.02)
0.121 -(±

0.02)

10
Local

0.896
(±

0.00)
0.186

(±
0.01)

0.822
(±

0.00)
0.129

(±
0.01)

Federated
0.874 -(±

0.01)
0.231 +

(±
0.00)

0.920 +
(±

0.01)
0.234 +

(±
0.01)

Synthesis
0.785 -(±

0.03)
0.112 -(±

0.03)
0.769 --(±

0.03)
0.097 -(±

0.01)

20
Local

0.853
(±

0.01)
0.147

(±
0.01)

0.776
(±

0.02)
0.099

(±
0.01)

Federated
0.908 +

(±
0.01)

0.330 +
(±

0.02)
0.886 +

(±
0.01)

0.169 +
(±

0.02)

Synthesis
0.798 --(±

0.04)
0.111 --(±

0.02)
0.826 +

(±
0.01)

0.125 +
(±

0.01)

30
Local

0.799
(±

0.01)
0.111

(±
0.01)

0.770
(±

0.01)
0.095

(±
0.01)

Federated
0.915 +

(±
0.00)

0.240 +
(±

0.02)
0.864 +

(±
0.01)

0.157 +
(±

0.02)

Synthesis
0.787

(±
0.06)

0.109
(±

0.02)
0.775

(±
0.05)

0.111
(±

0.02)

40
Local

0.784
(±

0.01)
0.102

(±
0.01)

0.769
(±

0.01)
0.096

(±
0.01)

Federated
0.905 +

(±
0.00)

0.194 +
(±

0.01)
0.861 +

(±
0.01)

0.158 +
(±

0.01)

Synthesis
0.775

(±
0.06)

0.108
(±

0.02)
0.812 +
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A. Results

Table
A

.21:
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esults
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Isolation
Forest

using
C

redit
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ard
data

set:
Significance

offederated
learning

and
synthetic-based

learning
results

com
pared

to
locallearning

is
given

w
ith

+
for

p
<

0.05
and

+
+

for
p

<
0.1

i.i.d.
Feature-based

non-i.i.d.
Label-based

non-i.i.d.
LD

P
non-i.i.d.

N
Scenario

R
O

C
A

U
C
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A

U
C

R
O

C
A

U
C

PR
A

U
C
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O

C
A

U
C

PR
A

U
C

R
O

C
A

U
C

PR
A

U
C

-
C

entralized
0.947

(±
0.01)

0.213
(±

0.04)
-

-
-

-
-

-
2

Local
0.948

(±
0.01)

0.213
(±

0.04)
0.949

(±
0.01)

0.215
(±

0.04)
0.930

(±
0.02)

0.221
(±

0.04)
0.929

(±
0.02)

0.204
(±

0.03)
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(±

0.04)
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0.01)
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(±

0.04)
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(±

0.05)
0.937

(±
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(±

0.03)

Synthesis
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(±
0.01)
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(±

0.04)
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0.01)
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(±
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(±
0.01)

0.216
(±
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0.03)
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0.05)
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0.05)

30
Local

0.947
(±

0.01)
0.218

(±
0.05)

0.946
(±

0.01)
0.218

(±
0.05)

0.930
(±

0.01)
0.168

(±
0.03)

0.929
(±

0.01)
0.176

(±
0.04)

Federated
0.947

(±
0.01)

0.218
(±

0.05)
0.947

(±
0.01)

0.217
(±

0.05)
0.941

(±
0.01)

0.186
(±

0.05)
0.940

(±
0.01)

0.198
(±

0.06)

Synthesis
0.948

(±
0.01)

0.231
(±

0.05)
0.949

(±
0.01)

0.240
(±

0.05)
0.948

(±
0.01)

0.233
(±

0.04)
0.949

(±
0.01)

0.242
(±

0.04)

40
Local

0.946
(±

0.01)
0.216

(±
0.05)

0.946
(±

0.01)
0.218

(±
0.05)

0.928
(±

0.01)
0.166

(±
0.04)

0.929
(±

0.01)
0.168

(±
0.04)

Federated
0.947

(±
0.01)

0.215
(±

0.05)
0.947

(±
0.01)

0.220
(±

0.05)
0.939

(±
0.01)

0.182
(±

0.05)
0.942

(±
0.01)

0.183
(±

0.05)

Synthesis
0.949

(±
0.01)

0.240
(±

0.04)
0.951

(±
0.01)

0.242
(±

0.05)
0.948

(±
0.01)

0.237
(±

0.05)
0.950 +

+
(±

0.01)
0.240 +

+
(±

0.04)

50
Local

0.947
(±

0.01)
0.216

(±
0.05)

0.946
(±

0.01)
0.219

(±
0.05)

0.929
(±

0.01)
0.155

(±
0.04)

0.930
(±

0.01)
0.170

(±
0.04)

Federated
0.947

(±
0.01)

0.216
(±

0.05)
0.947

(±
0.01)

0.220
(±

0.05)
0.941

(±
0.01)

0.170
(±

0.06)
0.941

(±
0.01)

0.190
(±

0.06)

Synthesis
0.949

(±
0.01)

0.255
(±

0.06)
0.948

(±
0.01)

0.245
(±

0.04)
0.948 +
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+

(±
0.04)
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A. Results

Table
A

.23:
R

esults
for

Isolation
Forest

using
R

2L
data

set:
Significance

offederated
learning

and
synthetic-based

learning
results

com
pared

to
locallearning

is
given

w
ith

+
for

p
<

0.05
and

+
+

for
p

<
0
.1

i.i.d.
Feature-based

non-i.i.d.
Label-based

non-i.i.d.
LD

P
non-i.i.d.

N
Scenario

R
O

C
A

U
C

PR
A

U
C

R
O

C
A

U
C

PR
A

U
C

R
O

C
A

U
C

PR
A

U
C

R
O

C
A

U
C

PR
A

U
C

-
C

entralized
0.818

(±
0.00)

0.112
(±

0.00)
-

-
-

-
-

-
2

Local
0.815

(±
0.02)

0.111
(±

0.01)
0.813

(±
0.01)

0.110
(±

0.01)
0.778

(±
0.06)

0.119
(±

0.03)
0.778

(±
0.05)

0.105
(±

0.02)

Federated
0.815

(±
0.01)

0.111
(±

0.01)
0.815

(±
0.01)

0.110
(±

0.01)
0.794

(±
0.07)

0.110
(±

0.03)
0.789

(±
0.05)

0.105
(±

0.03)

Synthesis
0.831

(±
0.00)

0.120
(±

0.00)
0.831 +

(±
0.00)

0.120
(±

0.00)
0.815

(±
0.00)

0.109
(±

0.00)
0.830

(±
0.01)

0.119
(±

0.01)
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Local
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(±

0.01)
0.111

(±
0.01)

0.813
(±

0.01)
0.110

(±
0.01)
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0.04)
0.128
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(±

0.02)
0.106
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0.02)
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0.817

(±
0.00)
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(±

0.01)
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(±
0.01)

0.112
(±

0.01)
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0.121
(±

0.03)
0.805

(±
0.02)

0.107
(±

0.02)

Synthesis
0.833 +

(±
0.01)

0.121
(±

0.01)
0.835 +

(±
0.00)

0.122 +
+

(±
0.00)
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(±
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(±
0.00)
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0.119
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0.109

(±
0.01)

0.774
(±

0.01)
0.099

(±
0.01)

Federated
0.819

(±
0.01)

0.112
(±

0.01)
0.818

(±
0.01)

0.111
(±

0.01)
0.807

(±
0.02)

0.108
(±

0.01)
0.792

(±
0.01)

0.101
(±

0.01)

Synthesis
0.831

(±
0.01)
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0.832 +
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0.120 +
+
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0.00)
0.118
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0.00)

0.834 +
(±

0.00)
0.121 +

(±
0.00)
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Local

0.815
(±

0.01)
0.110
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(±

0.01)
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(±
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(±
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0.108
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(±
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0.107
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(±
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(±
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+
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0.119
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0.120
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0.783
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0.109
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A. Results

Table
A
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R
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EPEN
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data

set:
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offederated
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and
synthetic-based
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results
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+
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p
<

0.05
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+
+
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p

<
0
.1
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non-i.i.d.
Label-based
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P
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Scenario
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C
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U
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C
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-

-
-

-
-

-
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0.03)
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0.923

(±
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