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Kurzfassung

In den Anfangszeiten des Internets bestand dieses aus einigen wenigen Geräten, welche
sich gegenseitig kannten. Der Datenfluss war leicht nachzuvollziehen. Heutzutage ist das
Internet stark angewachsen, was es schwierig macht, die Pfade der Daten zu verstehen.
Zudem machte der begrenzte Adressraum von IPv4 den Einsatz von Technologien zur
Einsparung von Adressen erforderlich.

In dieser Arbeit analysieren wir das Routing im heutigen Internet. Zu diesem Zweck
verwenden wir Datensets aus zwei verschiedenen Quellen (Vienna-Monitor, CAIDA-
Monitors) sowohl für IPv4 als auch für IPv6 zu unterschiedlichen Zeitpunkten. Wir
konstruieren ein Framework, um die Rohdaten in einen Graphen zu verarbeiten und
Knotengrad-Statistiken sowie die Betweenness-Zentralität (betweenness centrality) für
die Knoten im Graphen zu berechnen.

Unsere Analyse hat ergeben, dass das Routing für IPv6 zentralisierter ist als jenes für
IPv4, allerdings mehr Redundanz auf lokaler Ebene aufweist. Der dezentrale Scan-Ansatz
vom CAIDA Datenset führte zu kürzeren Pfaden, jedoch insgesamt zu einer stärkeren
Zentralisierung als bei den Scans vom einzelnen Vienna-Monitor. Außerdem haben wir
festgestellt, dass es bei IPv4 praktisch keine Veränderungen im Laufe der Zeit gibt,
während IPv6 mit jeder Messung eine Tendenz zu mehr Zentralisierung zeigt.

Darüber hinaus haben wir die Zentralisierung speziell anhand des Gini-Koeffizienten
quantifiziert. Wir haben festgestellt, dass eingehende Verbindungen weniger konzentriert
sind als ausgehende Verbindungen. Die Betweenness-Zentralität zeigt für alle Messungen
ein hohes Maß an Zentralisierung.
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Abstract

In the early times of the internet, it consisted of a handful of devices which knew each
other, and understanding the data flow was trivial. Nowadays, the internet has grown
tremendously, making the task of understanding the paths the data is taking difficult.
Additionally, the limited address space of IPv4 made the use of technologies necessary to
save addresses.

In this work, we analyse routing on today’s internet. In order to achieve this, we use
datasets from two different sources (Vienna monitor, CAIDA monitors) for both IPv4
and IPv6 from different points in time. We construct a framework for processing the raw
data into a graph and calculate degree statistics as well as betweenness centrality for the
nodes in the graph.

Our analysis has shown that routing for IPv6 is more centralized than for IPv4, but also
employs more redundancy on a local level. The distributed scan approach of CAIDA
resulted in shorter paths, yet more centralization than the scans from the single Vienna
monitor. We furthermore found that while for IPv4 there is virtually no change over
time, IPv6 shows a tendency to more centralization with each measurement.

In addition to that, we quantified centralization specifically using the Gini coefficient.
We found that incoming connections are less concentrated than outgoing connections.
Betweenness centrality shows a high degree of centralization for all measurements.

ix





Contents

Kurzfassung vii

Abstract ix

Contents xi

1 Introduction 1

2 Background 3
2.1 Internet Protocol . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
2.2 Routing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.3 Graph terminology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

3 Methodology 11
3.1 Datasets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
3.2 Representation of the data . . . . . . . . . . . . . . . . . . . . . . . . . 14
3.3 Data processing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
3.4 Choice of graph metrics . . . . . . . . . . . . . . . . . . . . . . . . . . 18
3.5 Challenges . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

4 Evaluation 29
4.1 Comparison of protocols — IPv4 and IPv6 . . . . . . . . . . . . . . . 30
4.2 Comparison of datasets — Vienna and CAIDA dataset . . . . . . . . . 48
4.3 Comparison over time . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
4.4 Measuring Decentralization . . . . . . . . . . . . . . . . . . . . . . . . 71

5 Conclusion 77

List of Figures 79

List of Tables 81

Bibliography 83

xi





CHAPTER 1
Introduction

Ever since its advent, the internet has been an ever-growing network. In the first years,
it consisted of a limited number of computers communicating with each other and
was consequently “easily mappable”. In 2020, networking systems manufacturer Cisco
estimated that in 2018, 18.4 billion devices were connected to the internet and predicting
this number to grow to 29.3 billion by 2023 [Cis20]. These numbers make understanding
the underlying network structure immensely difficult.

Such amounts of devices also bring huge challenges for the utilized protocols. For a long
time, IPv4 was the predominant choice for connected devices. However, IPv4 comes
with a severe limitation: It is only capable of assigning 4.3 billion unique addresses
(even disregarding reserved ranges), which is less than the number of connected devices
nowadays. To alleviate this issue, technologies like NAT (Network Address Translation)
are used, though these are only temporary and in general unsatisfying fixes.

In 1998, a successor IP standard called IPv6 was devised [DH98b], designed to overcome
this major shortcoming of IPv4. It allows for 2128 unique IP addresses and thus makes it
possible for each and every device connected to the internet to receive its own IP address.
Despite its long existence, migrating from IPv4 and IPv6 requires effort, both hardware
and software related, which is why the process is moving on relatively slowly. The Google
IPv6 Statistics [Goo22] offer a rough overview of global IPv6 adoption: According to this
data, by 2022-10-27, 38.02% of Google users access Google services via IPv6.

An important aspect of networking is routing: a sent packet should successfully reach its
destination. On its way, the packet is relayed by multiple intermediate hops. Analysing
the paths of packets will thus yield valuable insights into the structure of the global
internet network, but can potentially also reveal local peculiarities. For example, Maier
[Mai21] discovered loops in packet routing using such data. At the same time, with the
migration from IPv4 and IPv6, plenty of intermediate and transition technologies are in
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1. Introduction

use. Such data, when compared to each other, can reveal the level of similarity between
these two networks.

While routing in the early internet was easily understandable and mappable (due to its
little size), this task became increasingly difficult as the network grew over the years.
As such, a “map” of the internet does not exist and can only be constructed through
empirical measurements.

In this work, we want to take a deeper look at the internet’s routing infrastructure.
Therefore, we use existing traceroute collections and process them into a graph in order
to analyse the resulting graph using graph-theoretic methods. In doing so, we have to
consider and overcome limitations of hardware and time constraints.

There are multiple datasets that can be used. In our work, we use data collected by Maier
for his work [Mai21] (“Vienna dataset”) as well as data collected by CAIDA using their
Ark infrastructure [fAIDAc] [fAIDAd] (“CAIDA dataset”). We transform the collected
data into a graph and then compare these graphs.

In Chapter 2, we first give background about the foundations of internet traffic and go
into detail about how routing works, as well as providing the necessary understanding
for graph terminology and concepts.

We then discuss the methodology applied in our measurements in Chapter 3. Here,
we describe the setup used for performing the measurements, the challenges that we
encountered, and how we overcame them.

Finally, Chapter 4 presents the results collected by the framework that we developed
as a result of the considerations of the previous chapter. We compare the statistics on
multiple levels so that we can obtain more insights into the routing structure of the
internet.

For comparing the data, we focus on multiple aspects. One of them is the difference
between IPv4 and IPv6 within the same dataset. With this, we get an understanding
about whether routing is done similarly for both protocols.

Another aspect is the difference between datasets. The Vienna dataset is collected from
a single point in a single location, whereas the CAIDA dataset is composed of data
collected by several monitors around the world. At the same time, we also want to see
whether IPv4 and IPv6 differ in the same ways for both datasets. By comparing these
to each other, we find out the degree to which the vantage point makes a difference for
routing in the internet.

Lastly, we also focus on the temporal aspect, where we compare measurements from
different points in time to understand how routing changes over time. These three aspects
taken together give us a temporal and spatial understanding of how routing works.
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CHAPTER 2
Background

In this section, we will provide background on the topics that are discussed in the
subsequent sections of this work.

2.1 Internet Protocol
The Internet Protocol (IP) is a protocol for transmitting a “package of bits” (i.e., a
packet) from a source host to a target host, which are potentially situated in different
networks. Version 4, referred to as IPv4, has been standardized in RFC 791 [Pos81]. It
defines the required function for fulfilling the purpose of delivering the data. Conceptually,
it is designed as being one level above the local network protocol and one level below the
transport protocol (TCP, UDP . . . ).

Addressing other hosts in IPv4 is done using a 32-bit address, which is commonly repre-
sented in human-readable form as 4 blocks of 8-bit decimal integers (e.g., 123.45.67.89).
If a host wants to forward a packet and does not have a link to the destination host, it
passes the packet to a gateway. Gateways then forward data across networks until it
reaches the target network, where the data is forwarded to the target host. To enable
inter-gateway communication and routing coordination, gateways implement the Gateway
to Gateway Protocol (GGP).

The header of a packet sent via IP contains 14 fields, most notably the source address,
the destination address, and the Time To Live (TTL). While the standard specifies TTL
to be seconds, it has to be decreased by at least one on each host that processes the
message. Since routing usually takes milliseconds rather than seconds, this can be used
as a way to limit the amount of hosts that a packet passes, after which the packet would
be discarded.

The 32-bit addresses of IPv4 allow for 232 = 4, 294, 967, 296 distinct IP addresses. The
IANA IPv4 Special-Purpose Address Registry [Aut21] specifies roughly 300 million special
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2. Background

purpose addresses, reducing the total size of the addressable IPv4 space to 4 billion
addresses.

In 1998, a successor protocol called IPv6 was specified in RFC 2460 [DH98b]. Some notable
changes are the simplification of the header format, improved support for extensions, and
a larger addressing space.

The header contains fewer fields, though source, destination, and hop limit are still
present. The TTL is now called Hop Limit and explicitly specified as being an actual
limit of hops a packet should be allowed to take, rather than seconds.

Addressing in IPv6 is defined in RFC 2373 [DH98a]. Compared to IPv4, the address space
was increased: Addressing is now done using 128-bit addresses, which potentially allows for
2128 ≈ 3.4·1038 distinct addresses. Addresses are represented as 8 pairs of bytes in hexadec-
imal form, separated by colons (e.g., 1044:0:0:0:2:300:1FDA:D34D), whereas one
group of zeroes (at most) can be abbreviated as “::” (e.g., 1044::2:300:1FDA:D34D).

In 2020, networking systems manufacturer Cisco published a report [Cis20], estimating
that in 2018, 18.4 billion devices were connected to the internet and predicting this
number to grow to 29.3 billion by 2023. Technologies to facilitate the sharing of an IP
address by multiple servers or services do exist.

For example, Network-Address-Translation (NAT) assigns the same public IP address to
all devices in a network. Now, any device inside this network cannot accept any inbound
connections and has to initiate any connection it wants to establish, because the devices
inside the network are not uniquely identifiable anymore. For web servers, there are
techniques like reverse proxies, which allow for multiple websites to be hosted on the
same machine while still allowing them to be opened separately. This, however, creates
problems with TLS certificates, as the web server does not know which of the domains
the user wants to connect to. There is also a solution for this, Server Name Indication
(SNI), where the caller includes the domain name in the connection request.

As you can see from these examples alone, these quick fixes build up quickly and
the constructs become harder to maintain as time passes, technology advances, and
requirements increase. With the ever-growing amount of internet-connected devices,
these builds become more and more impractical.

Despite IPv6 having been standardized as far back as 1998, its adoption is still far from
complete. Migrating from IPv4 and IPv6 requires effort, both hardware and software
related, which is the most likely reason as to why the process is moving on relatively
slowly. The Google IPv6 Statistics [Goo22] offer a rough overview of global IPv6 adoption:
According to this data, until 2013, only less than 1% of Google users accessed Google
services using IPv6. By 2022-10-27, the number increased to 38.02%.

What makes a full transition even more difficult is the fact that many services are only
operating from IPv4. Thus, switching directly from IPv4 to IPv6 would result in a loss of
connectivity to certain hosts. For this reason, there are mechanisms which should enable
a smooth transition to an “IPv6 world”.
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2.2. Routing

The simplest solution is to assign both an IPv4 and an IPv6 address to every machine,
which is called Dual Stack. However, since IPv4 addresses are already scarce (as described
above), a more commonly implemented mechanism is Dual Stack Lite, where a customer
does not get a dedicated IPv4, but shares this address with a number of other customers.
While this enables outbound connections from the machine to the internet, it poses an
issue for inbound connections, as the IP address is not uniquely assigned to one device.
The remote router handling the request can therefore not forward the inbound connection
request.

Alternatively, (temporary) mechanisms have been designed to forward IPv6 data to
IPv4 targets using special data formats, encapsulations, or tunnels. The idea behind
these mechanisms is to simplify the connection between IPv6-only and IPv4-only hosts,
while at the same time moving the burden of inter-protocol communication to the router.
These standards have proven to be infeasible in practice, though. For instance, the 6to4
transition mechanism, which encapsulated IPv4 data in IPv6 packets, was obsoleted as
early as 2015. The reason was that configuration was complicated, leading to transmission
failure and lower IPv6 acceptance for network administrators [TC15].

2.2 Routing
The challenge of data transmission across network boundaries is to ensure the data arrives
at the destination. Due to the vast size of the internet, however, a gateway does not
know all other gateways, which means that the data might need to travel via several
gateways before it reaches its destination.

Initially, this was done via the Gateway to Gateway Protocol (GGP), which the IPv4
standard specified as the standard protocol for coordinating routing between two gateways
(in 1981). This protocol, however, quickly reached its limits, which is why in 1984, the
Exterior Gateway Protocol was defined [Mil84]. Its successor, BGP, has been introduced
in 1989 and is still in use as of today (BGP-4, defined in 2006) [RLH06].

2.2.1 Border Gateway Protocol (BGP)

BGP is a mechanism for data exchange between Autonomous Systems (referred to as AS).
The standard defines an Autonomous System as a group of routers that is administered
by one entity, manages routing within its network using internal protocols, and uses a
protocol (for example BGP) to talk to other ASes.

An AS can announce IP prefixes and what IPs are accessible inside its network to all
ASes to which it has a direct link via an UPDATE message. These, in turn, broadcast
this information to all ASes they know. This mechanism could potentially create loops,
as the message is broadcast from every AS to every other AS. To avoid this, if any AS
appears twice in the propagated route, this route is simply discarded. The received routes
are then collected in a table, commonly referred to as BGP table.
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2. Background

Due to this way of propagation, each AS receives information about routes to every
announced prefix and knows which neighboring ASes it can ask for passing on information.
When an AS receives a packet for a specific destination IP and should relay it forward,
it would check the available paths it received and forward it on the path that it deems
optimal.

Figure 3.1 shows how an AS advertises routes to the addresses it administers. Arrows
show the directions it is propagated to. A red arrow means that the recipient of that
message finds a loop in the path and therefore discards it. In this scenario, AS T
advertises a prefix for its addresses via an UPDATE message (Step 1). B and D receive
that message and now know that there is a path from themselves to T. These ASes then
propagate this information to all ASes they know (Step 2). It is important to note that
each AS can only announce one path to the neighbors. Should the chosen path change
(Step 3), then the new path can be propagated (the newly chosen path is in red font). If
a path happens to contain the same AS multiple times (as can be seen in every step from
2 to 5), that route is discarded and not added to the table (denoted by a red arrow).

When a routing request for IP T3.1 is received, the BGP table is checked to see what
prefix it belongs to. The AS will pass the packet all the way to T, after which T takes it
over and takes care of routing the packet internally.

While an AS can announce a certain path for a prefix, it is not bound to actually route
via the announced path. In our example, AS C could either route the request via A or via
D, even though it announced that the route via A is the chosen one. As a consequence of
this, an AS cannot influence the decision of the next AS in the chain. Given a connection
between an arbitrary AS W and an arbitrary AS X, if two possible paths originate from
X, the preceding W cannot determine which of them would be taken. Conceptually, X
only knows about a single path anyway, since X only announced its chosen path.

This, however, makes analysis of paths that packets actually take challenging. One way
to analyse routes is the inspection of BGP tables. Organizations like RIPE NCC have
set up collectors in ASes in various locations to collect and dump the BGP routing data
from these ASes for public access [RIP22]. Due to the reasons mentioned above, however,
we know that BGP routes are not able to represent the actual routes that a packet takes
when it is actually sent. The routes can change at the discretion of the involved ASes.

2.2.2 traceroute
While BGP tables can provide an overview over what the intended routing paths for
packets are, they do not necessarily represent the actual paths that are taken. To
overcome this problem, the route that a packet takes as it travels to the destination can
be traced. This is commonly referred to as a traceroute.

A traceroute is performed by taking advantage of the TTL or Hop Limit attribute of IP
packets. If the limit of a packet is zero, the packet is not forwarded, but an ICMP Time
exceeded message is returned to the sender. This message contains the IP address
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Figure 2.1: Graphical representation of BGP update
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of the router where the limit was found to be zero. By starting with a limit of 1 and
increasing it by 1 every time, it is possible to obtain a picture of the entire route to the
target by collecting the data from the error responses.
Doing this repeatedly reveals the information about the route that is actually taken in
practice by a packet sent to a certain destination. The drawback for this method is that
the information is not necessarily complete. A router that encounters a packet with a
limit of zero is required to drop it, but might not want to reveal its identity to the sender
and therefore does not respond to the traceroute request. In our example from above,
the administrators of AS T might not want to reveal their internal routing structure, and
as such would configure any internal hosts to not respond to traceroute requests.
The IPv4 specification [Pos81] does not mandate that an ICMP Time exceeded mes-
sage needs to be sent, rather it only states that the packet must be destroyed. For IPv6,
however, the specification [DH98b] requires that such a message is returned to the sender.
In practice, this does not always happen (as evident from the evaluation in Chapter 4).
Either way, this leaves holes in the paths for which it is not possible to confidently obtain
the IP address.
In their work, Augustin et al. [ACO+06] have researched problems that occur when
doing traceroute in the simple way described above. The three issues that were identified
were cycles, loops, and diamonds. The most important cause for this are load balancers.
A load balancer might route a packet to one and the same host in different ways in order
to keep an equal load on the different paths to the same destination.
The authors describe a tool called Paris traceroute which aims to overcome (or at least
alleviate) the identified problems. To achieve this, they ensure that IP headers which are
used for load balancing stay the same between each probe. At the same time, fields that
are not used for load balancing are changed such that the packet always has the same
size.
The YARRP tool for discovering internet topology makes use of this technique. A classical
traceroute needs to traverse the same hosts multiple times: If there is a target at 10 hops
distance, then the host at hop 7 will be reached 4 times (once with hop limit 7, once with
8, once with 9, once with 10). This can lead to network congestion or overload. Because
of this, YARRP uses a pseudorandom algorithm where not only the target hosts, but
also the hop limit is part of the random selection process. Since now the hops are spread
apart in time as well, network congestion is way less likely to occur. For more details on
this tool, please refer to Section 3.1.1.

2.3 Graph terminology
For our analyses, we will represent the obtained data as a graph. In this section, we want
to give a brief overview over the terminology that is used to describe graphs.
A graph G = (V, E) is a data structure that is composed of nodes or vertices (V ),
representing some entity, and edges (E), representing connections or relationships

8



2.3. Graph terminology

BA

Figure 2.2: Example of a diamond between nodes A and B

between these entities. Edges can be undirected, meaning that the relation goes both
ways, or directed, meaning that the relation goes in the direction of the edge only. A
path between two nodes is a sequence of nodes that is passed in order by moving along
edges between the nodes on the list. A shortest path, therefore, is the shortest such
path (in case multiple distinct paths exist).

The neighbors of a node are nodes which can be reached by traversing one edge. The
nodes that come before and after a node on a path are called the predecessor and
successor of that node in the path, respectively.

A directed graph can have cycles, which occur when a node is visited multiple times on
a path. A cycle where the same node is visited multiple times in a row is called a loop
(e.g., A → B → B → B).

Diamonds occur when there are multiple paths from one node to another node. They
are called diamonds because of their shape in graphical representations (Figure 2.2 shows
a diamond between Node A and Node B).

A tree is a graph which has no cycles and no diamonds. The starting point is called
root, the ending points are called leaves. Even though the data we present describes
graphs that do have cycles and diamonds, for simplicity we will still use the terms root
and leaf to refer to the origin(s) and the ending nodes of the directed graph.

Representing data as a graph is especially useful when analysing data flows. Intuitively, the
data flows from node to node via the existing edges in the graph. The graph representation
enables analysis on a broader level: Graph metrics can reveal the importance of a node
relative to the rest of the graph. Calculated over the whole graph, we understand better
how information moves in the network.

Another benefit of this is that there are already plenty of algorithms and metrics, which
we can easily adapt and use for our purpose here. With large graphs, this is especially
important, as algorithm efficiency is the main constraint when dealing with a large data
size. For more information about the chosen metrics as well as the rationale of choosing
them, please refer to Section 3.4.
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CHAPTER 3
Methodology

In this chapter, we will describe the analysed datasets as well as the methods to process
the data and obtain the results. Furthermore, we will discuss the challenges associated
with this task.

3.1 Datasets
For our analysis, we relied on two different data sources, Vienna scans (performed by the
YARRP tool) and scans performed by CAIDA using their Ark infrastructure.

3.1.1 Vienna scans

The first data source makes use of a tracerouting tool called YARRP (“Yelling At Random
Routers Progressively”) created by Beverly [Bev16]. This tool is specifically designed for
large scale probing in order to reduce scanning overhead and prevent network congestion
or overloading. For this, it employs Paris Tracerouting as described in Section 2.2.2.

In a previous work, Maier [Mai21] analysed misconfigurations of routers on the internet.
For this purpose, traceroute scans were performed and analysed in order to detect routing
loops. In our work, we make use of the raw data of the traceroute scans that were
performed periodically. Since the machine performing these scans is located in Vienna,
we call this datasource the “Vienna scans”.

In the IPv4 scans, the monitor collects one trace per IPv4 /24 prefix. A full scan takes
about 12 hours and produces about 10 GB of probe data. For IPv6 scans, the monitor
collects one trace per IPv6 /48 prefix. These take significantly longer: one full scan takes
19 days and produces about 2.5 TB of data. The size of the IPv6 scan data poses a
challenge for data processing which is further discussed in Section 3.5.2.
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3. Methodology

The scans are provided in the .yarrp format, which is a custom textual format of the
YARRP tool. For reasons of reliability and avoidance of network congestion, Maier split
up the scans into multiple files. Information on each probe is provided on a separate line,
values separated by a space. Three values are of relevance for us: the target IP, hop IP
and TTL of the probe.

One of the most significant design decisions for the YARRP tool was the decision to not
perform the traceroute sequentially, but to probe only one TTL for one route at a time.
By doing this, it is possible to parallelize the probes more efficiently, as there are no
dependencies on any single probe. Furthermore, by randomizing the probes not just by
IP, but also by TTL, network congestion on the target side is significantly reduced, since
packets reaching one particular network are not sent at once, but over a longer period of
time.

The drawback of this decision is that probes belonging to the same target IP are not
necessarily close together in one file (and possibly not even in the same file altogether).
According to Beverly [Bev16], he willingly accepted this drawback, since it makes the
actual probing more efficient, whereas the gathering of the probes into full traceroutes
can be performed offline, after the scan.

In order to bring the probes together into one contiguous path, the entire scan data
has to be read into memory and the data grouped by target IP. Due to the size of the
scan data, the entire data cannot be held in memory at once. For more details on our
approach of processing this data, please refer to Section 3.3.

3.1.2 CAIDA scans
The Center for Applied Internet Data Analysis (CAIDA) is hosting an infrastructure called
Archipelago (Ark) [fAIDAa] for performing various internet measurements periodically.
As part of these measurements, CAIDA is running frequent traceroute scans (using the
scamper tool [fAIDAb]) in order to obtain insights into internet topology. For these scans,
the Paris Tracerouting is employed, just like for the Vienna scans (see Section 2.2.2).

For the IPv4 dataset [fAIDAc], the monitors send a probe to one randomly selected
address from each IPv4 /24 prefix. There are multiple monitors in different locations
of the world, which are coordinated in such a way that one probing cycle takes roughly
24 hours. A drawback of this dataset is that only scans older than 1 year are publicly
available. Our comparisons across datasets (for IPv4) therefore are limited to data before
2021-10.

For the IPv6 dataset [fAIDAd], the monitors operate similarly—one randomly selected
address plus the ::1 address from all announced IPv6 prefixes up to /48, no matter their
actual length. A probing cycle in this dataset also takes roughly 24 hours. In contrast
to the IPv4 dataset, all IPv6 scans, including the latest ones, are publicly available.
The drawback for this dataset, however, is the fact that some monitors might be down
(which they often are) as well as the fact that partial routes to unreachable targets
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are not present in the dataset. The amount of IP addresses contained in these CAIDA
scans is smaller than the amount of IP addresses in a Vienna scan. In a comparison
of data from 2022-02, the CAIDA probing cycle (combined for each monitor location)
contained 355,398 nodes, whereas a scan in the same time period from the Vienna dataset
contained 62,118,844 nodes (only counting nodes with at least one edge). Nonetheless,
the information gathered is still useful for high-level comparisons.

The scans are provided in the .warts format specifically designed for the scamper tool
[fAIDA11]. The output files capture (among other information) the IP address and the
TTL of a probe, with probes being collected as traceroute objects. As these objects
contain a path-like representation of the data, they allow us to easily convert the data
into graph form. For more information on how the data processing of the raw scan data
is done, please refer to Section 3.3.

3.1.3 Dataset comparison

In this section, we want to briefly summarize the properties of the Vienna dataset and
the CAIDA dataset which were introduced and detailed in the sections above.

What is common to them is that for both datasets, the measurements are done using the
Paris traceroute technique. The IPv4 scans trace the route to a random IP per /24 prefix.
For IPv6, the scans trace the route to a random IP per announced prefix of length /48
or shorter, as well as the ::1 address of each such prefix.

The following listing highlights the differences between the two datasets.

Vienna dataset

• Data is collected using the YARRP tool [Bev16].

• A single machine in the same location is probing all prefixes in pseudorandom
order over the course of 19 days.

• Unsuccessful routes are retained up until the point of failure.

• Reliability for an entire scan guaranteed, as it is just one machine and the scan
would not complete otherwise.

• Probes split into multiple text files. Paths need to be put together after the
measurement.

• Raw data size is large: 12 GB for IPv4, 641 GB for IPv6.

• Graph data size is large: IPv6 has 62,118,844 connected nodes.

• Availability up to February 2022 (as of writing).
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CAIDA dataset

• Data is collected using the scamper tool [fAIDAb].

• Multiple machines (monitors) in different locations are probing a randomly
assigned portion of prefixes over the course of 24 hours.

• Unsuccessful routes are discarded.

• Reliability is varying, as some monitors might be offline during a cycle.

• One binary file per monitor. Paths are already given in a path representation
(i.e., no merging necessary).

• Raw data size is small: 1.9 GB for IPv4, 1.4 GB for IPv6.

• Graph data size is small: IPv6 has 355,398 connected nodes.

• Availability up to one year earlier (IPv4) or the current day (IPv6).

3.2 Representation of the data
The collected routing data is represented in memory as a directed graph. In this graph,
each node represents one route hop (and thus one IP address). Each directed edge
represents the direction of movement of a packet on a traced route.

N1 N2

...

...

...

...

...

...

... ...A B

Figure 3.1: Visual representation of a traceroute through the graph

Figure 3.1 represents such a route in the graph. If an edge between a node N1 and a node
N2 exists, then for some paths between A and B, data packets are transferred from N1
to N2. The connection does not contain the information as to how often this connection
is actually used, only that it exists and appears in at least one path in the dataset.

The graph itself is represented in memory using adjacency lists: For every node in the
graph, there is a set which contains all adjacent nodes. Using these lists, the graph can
be traversed. The reason for using adjacency lists is to exploit the sparseness of the graph
and thus reduce the memory usage. Due to the size of the input data, a dependency
matrix is not feasible within any reasonable memory constraints. The Vienna IPv6 scan
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Input data
(.warts.gz)

Preprocessing

Deduplication

Calculation
of statistics

Edges (CSV)
Node-IP mapping (CSV)

Deduplicated edges (CSV)

Collected statistics

Figure 3.2: Graphical representation of the data processing pipeline for CAIDA scans

of 2022-02 contains 62 million nodes with in-or-out-degree greater than 0. If we assume
exactly one bit (indication of true or false) for each element of Node × Node, we would
need 62, 000, 0002/8 Bit = 480.5 TB of memory, not counting any potential overhead.
Since the graph is sparse as nodes have few connections in general, using adjacency lists
results in significant storage and memory savings.

The choice to represent the data as a graph has been made because this is the most
intuitive interpretation of the given data. A traceroute is essentially a path from a
machine to another, passing other machines on the way, with edges representing a
(directed) connection between two of these machines. By putting these paths together,
we obtain a partial snapshot of the internet as observed at one specific point in time by
a specific set of monitors. By using a graph representation, we are furthermore able to
run a graph-theoretic analysis on the data to obtain deeper insights into the network.

3.3 Data processing
As the data is only available as raw traceroute scans, we need to transform the data into
the graph form that allows us to run the analyses. Depending on the source format of
the data, the pipeline differs slightly.

What is common for both pipelines is that the process has been split up into separate
stages, such that any stage can be triggered at any point, as long as the outputs of the
previous stage are present.

Figure 3.2 shows how data processing is performed for data obtained by CAIDA scans.
A scan consists of several input files, one per each machine that performs the scans
(sometimes split into multiple files). The files are read in one by one and processed

15



3. Methodology

Input data
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Intermediary
(binary):

Edge buckets
Node-IP mapping

Figure 3.3: Graphical representation of the data processing pipeline for Vienna scans

sequentially. The data is provided in the .warts format [fAIDA11], developed by CAIDA
for their scamper tool. A .warts file contains a list of trace routes, and for each of the
trace route objects, the list of hop probes is given. In the Preprocessing step, an ID is
assigned to every encountered IP and then, based on the hop probe list, the edges are
computed (i.e., an edge is created between any two hops in the list). The result of this
are two CSV files: one containing the mapping between the IP and the assigned IDs, the
other one containing the edges.

Figure 3.3 depicts the process for scans originating from the Vienna dataset. A scan in
this dataset consists of several files which do not contain collections of traceroutes, but
single probes in pseudorandom order, until every TTL was attempted for every target IP
[Bev16, p.2]. This adds a challenge to the graph creation: the paths now need to be put
together correctly before edges can be generated.

In order to achieve this, we slightly adapt the Preprocessing step for the Vienna pipeline
and change it to a Preprocessing-Merging approach (depicted in Figure 3.4). Just like for
the CAIDA scans, we assign a unique 128-bit integer per IP. However, we do not have
enough information to generate the edges (i.e., we only know the position of the node in
the path, but not its predecessor or successor). For this reason, in the Preprocessing step,
we store the relevant probe information (hop IP, hop TTL, target IP) in 256 buckets.
The bucket is determined by assigning each probe a number from 0 to 255 depending on
the target IP, since every full traceroute path has the same target IP. For IPv4, we XOR
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Figure 3.4: Graphical representation of the Preprocessing-Merging steps for Vienna scans

the second and the fourth byte. For IPv6, we XOR the last byte of the public segment
(65th-least significant byte) with the last byte of the private segment (the least significant
byte). While these might not be perfectly distributed values, they worked well enough
for our purposes.

To reduce the amount of memory required at a single point in time, the buckets are
flushed to disk in a binary format after processing one .yarrp file, after which the data
in memory is cleared. The next time a particular bucket is required, it is loaded from
disk first (if it exists). The idea behind this approach is that due to the splitting of the
data into 256 (more-or-less) evenly sized buckets, it is highly unlikely that one input file
requires to access all buckets in memory at once. Even then, should this ever be the case,
a mechanism could be implemented which evicts the least used buckets to disk, should
the available memory become scarce at any point.

In the Merging step, the buckets are read back in again. For any possible traceroute
target, the probes are now all present in a single bucket. It is therefore possible to read
the buckets in one by one and write the edges into the output file without keeping any
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state between the processing of the buckets. With this, only a single bucket is retained
in memory at any given time.

The remaining processing pipeline steps are the same for both data sources. In both
pipelines, in the Deduplication step, the edges are deduplicated in memory, which reduces
the storage on disk as well as the memory usage of the graph. The resulting graph is
then used to perform the actual statistics calculation in the Calculation step.

The actual statistics calculation makes use of the “minimal” graph as computed above and
is always kept in memory entirely. For this, the node-to-IP mappings are not considered
any further.

For running evaluations on the collected statistics, efficiency or memory constraints are
not an issue anymore, as the collected data is limited to a handful of datapoints per node.
Because of that, we make use of additional Python scripts for aggregating the data and
generating plots.

3.4 Choice of graph metrics
For our analysis, we have focused on two metrics as our main comparison point: Degree
and Betweenness Centrality. In this section, we will describe these metrics, as well as
discuss metrics that we also considered, but chose to not implement (and also why we
chose not to implement them).

3.4.1 Degree
The first metric we consider is degree. Essentially, for every node in the graph, we simply
count how many incoming edges (in-degree) and how many outgoing edges (out-degree)
the node possesses. This is one of the simplest node metrics and can be easily calculated
in a short amount of time.

Even though it is simple, it reveals the position and role of a node in the routing graph.
Root nodes have an in-degree of 0 and an out-degree of at least 1, leaf nodes have an
in-degree of at least 1 and an out-degree of 0. For the intermediary nodes, we have four
different types in the graph. Figure 3.5 shows these four types:

A. Few edges in, few edges out. These nodes receive data from the same few
source nodes and forward the data to the same few target nodes. These nodes are
either passed infrequently by traceroutes, or simply do not know many other nodes.
This is exemplified by Node A in the figure.

B. Many edges in, few edges out. These nodes receive data from many nodes, but
hand it over to a select few. This could be a node at the entrance of a passage (e.g.,
undersea cable) or at the edge of an AS (handing over traffic to an internal router,
which handles internal routing). This is exemplified by Node B in the figure.
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A

DC

B

Figure 3.5: Four different types of nodes in the routing graph

C. Few edges in, many edges out. These nodes receive data from just a few nodes,
but spread it out to many other nodes. This could be a node at the exit of a passage
(e.g., undersea cable), or an exit router of the origin ISP. This is exemplified by
Node C in the figure.

D. Many edges in, many edges out. These nodes receive data from many sources
and pass it on to many targets. These nodes are probably central distribution
nodes for a region, receiving traffic from several routes and passing it on wherever
it should go (e.g., internet exchanges). This is exemplified by Node D in the figure.

Analysing the distribution of node degrees helps us get an understanding of what type
of routers the global routing infrastructure is made of. At the same time, we have an
approximate measure of importance—we can only consider it approximate, because a
low degree node can still be passed many times via the few edges it has.

We can extend this measure by not only counting the degree of the node itself, but
also the degrees of its neighbors. We calculate the Average Neighbor Degree per node
by averaging the degrees of the neighbors. By going one step further, we obtain the
Iterated Average Neighbor Degree, which calculates the average over the neighbors and
the neighbors’ neighbors into one value.

In doing this, we extend our view from the direct paths into and out of a single node
to the reach a node has (and the degree to which it itself is reachable by others). By
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combining these metrics in our evaluation, we obtain a better picture of the relevance or
importance of a node in the graph rather than just evaluating the degree of the singled
out node.

3.4.2 Betweenness centrality
The centrality of a node is, simply put, how important that node is in the graph network.
Centrality measures are a quantification of this importance. They can be based on various
properties like edge counts, position in the network, or position on paths throughout the
network.

Betweenness centrality is a measure that has first been defined by Freeman in 1977
[Fre77]. It is a measure of centrality that is based on the count of the shortest paths it is
part of.

For a given node pair (s, t) from the set of all nodes V , there are σst connecting shortest
paths. (If σst = 0, we do not consider it.) For a given node v, we count how many of
these shortest paths contain v (written as σst(v)). We do this for every node pair and
sum up the results to obtain the betweenness centrality for CB(v). Brandes [Bra00]
summarizes it as follows:

CB(v) =
�

s ̸=v ̸=t∈V

σst(v)
σst

The start and end nodes (s, t) are not considered because, trivially, they would be part of
any shortest path between s and t. This would add no useful information to the metric.
For this reason, the root nodes as well as all leaf nodes, by definition, have a betweenness
centrality of 0.

To exemplify this metric, consider Figure 3.6. Here we see a simple graph with five nodes,
the shortest paths are listed to the right.

N1A BM

N2

Shortest paths

A - N1 - M - B
A - N2 - M - B

A - N1 - M

A - N2 - M 

N1 - M - B
N2 - M - B 

Figure 3.6: Simple graph with list of the shortest paths

As already established, CB(A) = CB(B) = 0. There are 2 shortest paths between A and
B, one passes N1 → M and the other passes N2 → M . Between A and M , we also have
2 shortest paths, one going via N1 and the other one via N2. Between N1 and B there is
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only one (via M), same goes for N2 and B. We now sum up the intermediate results to
obtain the final betweenness centrality:

CB(N1) = σAB(N1)
σAB

+ σAM (N1)
σAM

= 1
2 + 1

2 = 1

CB(N2) = σAB(N2)
σAB

+ σAM (N2)
σAM

= 1
2 + 1

2 = 1

CB(M) = σAB(M)
σAB

+ σN1B(M)
σN1B

+ σN2B(M)
σN2B

= 1
1 + 1

1 + 1
1 = 3

As we can see, unique paths are counted wholly. If multiple shortest paths exist, then
the betweenness is divided among the nodes of the path (just like N1 and N2 are only
getting 1

2 , as there are 2 paths to the same destination). This allows the betweenness
centrality to fall below 1. However, this can only happen for paths of length 2, as Figure
3.7 exemplifies.

B

A1

A2

Y1

X1 X2

X3 X4

Y2

Figure 3.7: Simple graph structure to exemplify a betweenness centrality below 1

There are 2 shortest paths from A1 to B, so X1 − X4 only get a betweenness of 0.5 for
that. However, X1 is on the only shortest path from A1 to X2, causing its betweenness
centrality to grow to 1.5. The same is valid for X2 − X4 respectively. The only nodes
that remain below 1 are Y 1 and Y 2, as they are not part of any other shortest path in
this graph.

What this essentially means is that if we have a betweenness centrality of below 1, the
node is always on one of multiple shortest paths, but never on a single shortest path.
Removing Y 1 would not harm any connections and still keep the shortest path between
A2 and B intact. Removing any node from X1 − X4 does harm connectivity, or forces us
to take longer detours between 2 nodes (if any exist). Even so, a value below 1 does not
mean that the node is without purpose. In order to build a resilient network, a certain
degree of redundancy is needed in case one of the existing paths becomes unavailable.
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Another purpose of such nodes could be load balancing in order to not overload a single
node with the entire data flow.

As the graph grows larger, the number of paths in the graph grows substantially as well.
The betweenness centrality would therefore also grow in the same manner, which makes
comparing this metric between graphs difficult. In order to enable comparability of this
value, we make use of the normalized betweenness centrality.

One way to calculate this is to divide each value by the number of theoretically possible
paths to all nodes (i.e., (|V |−1)(|V |−2)). This value assumes that the node is present on
every shortest path to every other node, which is a maximum that is almost impossible
to reach. We therefore decided to instead divide by the highest betweenness centrality
value that is encountered in the graph. Thus, the node (or nodes) with the maximum
value would be scaled to 1, while all other nodes would be in the number range [0, 1).
This makes our metric more comparable, since the discrepancy between the potential
ideal maximum and the actually present maximum would keep growing as the graph
grows in size.

Calculating this value is not trivial. We need to know the shortest paths from every node
to every other (reachable) node, and then count the occurrences of nodes on these paths.
This task is time and space consuming. In 2001, Brandes devised an algorithm [Bra00]
which brought the requirements down from Θ(n2) space and Θ(n3) time to O(n + m)
space and O(nm) time. While this sounds good in theory, it is important to remember
that this is actually required per node, which raises the total required time to O(n2m).

Luckily, due to the nature of betweenness centrality, it is easily possible to parallelize the
algorithm. Calculations of CB(n) are not completely unrelated to each other because of
the algorithm design. However, to merge them, it is sufficient to add them up, since this
is exactly what the serial version of the algorithm also does. While this gives us an almost
perfect time speedup, it also increases the space requirement. A detailed description of
the challenges encountered can be found in Section 3.5.2.

For every node in the node set V , the algorithm performs a breadth-first traversal while
keeping track of the shortest paths to nodes as well as the shortest path count. During
backtracking, the occurrences of a node on a shortest path are added up and scaled in
such a way that at the end of the backtracking, the given node and its dependencies are
calculated correctly. In the final step, these values are merged (added) into a shared data
structure. In the parallel version, the values are merged into a shared data structure
per thread, and the thread data is then added up into one final result array, which now
contains the correct and accurate betweenness centrality of all nodes.

To gauge how much control a certain node or AS has over the paths in the graph, we
calculate the relation of the betweenness centrality of certain nodes compared to the
total sum of the betweenness centrality of all nodes. We refer to this as “controlling”
or “holding” x% of betweenness centrality in the graph that results from the respective
measurement data.
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3.4.3 Other considered metrics
During our initial evaluation, we considered many metrics and decided on the ones above.
In this section, we will go into metrics that were considered, but ultimately not chosen.

Closeness centrality is a measure based on path lengths. For every node, the shortest
path to every other node is computed. The number of other nodes (i.e., |V | − 1) is then
divided by the sum of the lengths of the shortest path to every other node:

CC(v) = |V | − 1�
w∈V

d(v, w)

A perfectly central node would have a distance of 1 to every other node, and so the
denominator of the equation above would be equal to the numerator—resulting in the
closeness centrality to be 1. The longer the paths are, the larger the denominator,
resulting in a decreasing value. The node that is the “farthest” away from all other
nodes would have the largest distance sum, resulting in the smallest closeness centrality.
Therefore, this metric gives insight about how central a node is in the graph.

We decided against this metric as we are not concerned about how central nodes are in
the network. Our graph is directed, and so this metric loses even more meaning as not
every node can be reached from every node.

Furthermore, Evans et al. [EC22] have found out and empirically tested that closeness
centrality and degree are actually (non-linearly) correlated. They conclude that computing
closeness centrality does not add any valuable insight into the graph structure if degrees
have already been analysed.

The Eccentricity of a node is the longest path that a node v has to any other node.
In theory, this helps us to understand whether we have nodes in the graph which are
somewhat isolated from the rest of the network. However, our graph is directed, and in
a directed graph, this metric is hard to compare between different nodes. Most nodes
next to leaf nodes will have a value of 1, whereas starting points will have a large value.
At the same time, the existence of a path between two nodes does not necessarily imply
that if these nodes connected to each other, they would take this route. In such a case,
routing might appear entirely different, as the graph data is based on an entirely different
data flow. Therefore, we do not consider this metric useful for our purposes, and the
same is valid for all eccentricity-related metrics like radius or diameter.

Neighbor-based metrics investigate the relations between a node and its neighbors.
For example, the Local Clustering Coefficient of a node measures how “close” its neighbors
are to being a clique (i.e., the neighbors are all interconnected with each other). Due to
our method of measuring, neighboring relations are incomplete and thus such a measure
would not reflect useful information about the graph.

The number of paths between two nodes reveals details about how paths are forming
in the graph. One possible application for this metric is to count the number of distinct
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paths between two important nodes. Due to the setup of our measurements, paths are
forming from one (or a few) roots. As discussed in 2.2.1, we would expect that paths
between two nodes are usually unique, though in practice, they rarely are. This metric
could therefore reveal to us to what extent this occurs.

A challenging aspect of this metric is the selection of important nodes. One could go
by collecting some other intermediate metric first and ranking the nodes by that, then
selecting the topmost nodes. This two-step approach is a hindrance to comparability
across scans, and as such of little value to our scans.

In summary, while there were a few other potentially useful metrics, we decided to
focus on the comparison of the selected two metrics. The information from these metrics
already reveals important details about the graph structure. The additional metrics, while
useful on their own, are either not useful for the scope of our analysis or do not add much
information to the information from the already collected statistics. Additionally, they
each come with their own difficulties in calculating which require deeper consideration.

3.5 Challenges
In this section, we discuss the challenges of our measurement setup as well as the
approaches we have taken to overcome them.

3.5.1 Vantage point bias
One factor to consider for our measurements are the fact that the internet “appears”
different to every observer from both a location and a time perspective. The simplest
case of a deviation could simply be a machine on a route that stops responding or is
taken offline, which causes a route to be cut short at that point or the request being
re-routed through other points. Another visible difference between two measurements
is the simple replacement of a machine on a route with one of a different IP (and, as a
consequence, updating the routing). This would cause the more recent route to slightly
differ from the previous route.

These simple factors, however, are not the only influencing factors. The routes between
ASes are, in general, determined by the announced BGP tables. Each router will always
send the packet on the best path available. The definition of what is best can differ from
router to router and takes into consideration different factors. For example, the Cisco
BGP Best Path Selection Algorithm [Cis22] allows for customization of the process of
finding a path by assigning custom costs to certain routes, thereby altering the definition
of “best” according to the specified costs. In essence, this means that the path a packet
takes from a given source to a given destination can change every moment.

An example of such a detour is shown in Figure 3.8. In this example, we want to send a
packet from both A1 and A2 to B. While a potential path between Node X and Node Y
exists, Node X could decide that the path via Y is not the optimal path and send the
packet via another route.
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A1

A2 Y

X

B

Figure 3.8: Example of a possible alternative route consideration

One reason this might be used is load balancing. ASes might announce distinct prefixes
for different paths in an attempt to split the incoming load among multiple machines.
Bu et al. [BGT04] have discovered that in 2004, prefixes intended for enabling load
balancing were responsible for an additional 20% to 25% of prefixes, which indicates that
this is a common use case.

Geopolitical conflicts have also shown to have an effect on routing of packets on the
internet. In 2021, Limonier et al. investigated the routes which packets take around the
conflict zones of Eastern Ukraine [LDP+21]. They performed a traceroute from Donetsk,
which lies within the conflict zone, to Moscow, and found that it takes a route through
Russia with 3 hops in 13 milliseconds. When performing the same traceroute from Dnipro
(which lies to the west of the conflict zone) to Moscow, they found that it does not take
the shorter path through Russia. It takes a detour via Germany, Poland, and Belarus
before it arrives in Russia, requiring 11 hops and 78 milliseconds to arrive there.

In general, it can be said that a path from one system to another is not constant, but
can change due to technological, temporal, geographical or even geopolitical factors.

While the nature of the problem does not allow us to fully counter the problem, we
seek to alleviate the problem by taking into consideration measurements from different
locations. Other than the measurements from the Vienna dataset, which are done from
one single location, we also make use of scans in the CAIDA dataset, which are collected
by multiple monitors in various regions all around the globe.

This, in turn, introduces even more volatility between scans, as the monitors are probing
different prefixes in a pseudorandom fashion. In effect, this means that one monitor
might probe a prefix in one cycle, but not in the next—in the next cycle, this same prefix
is probed by a different monitor, potentially in a completely different location.

For this reason, when comparing the data we not only perform comparisons between the
dataset, but also against other measurements from the same source.

3.5.2 Data size
Internet scans (specifically IPv6 scans) have a considerable data size, as there are
numerous targets that need to be scanned. As such, one main challenge was to enable
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processing the data in reasonable time, while also staying within the given hardware
constraints (CPU, memory) of our hardware.

CAIDA scans are manageably small. More concretely, the CAIDA IPv4 scan conducted
on 2021-09-30 consists of 70 files of 1.9 GB in total (compressed .warts.gz format).
The IPv6 scan of the same day consists of 45 files of 1.4 GB in total (same format).

The Vienna dataset scans, however, are too large to be processed in a “naive” way. In
absolute numbers, while the Vienna IPv4 scan conducted in February 2022 consists of
just one file of a compressed size of 2.6 GB (compressed .yarrp.tgz format), the IPv6
scan of the same time period consists of 1,101 files of a total of a compressed size of 641
GB (same format).

Our go-to approach of using Python scripts to process the data therefore quickly proved
to be unsuitable, as the preprocessing alone would take several days. An implementation
in Rust would finish in a few hours, which is why we chose to continue with the Rust
implementation.

For the statistics calculation part, however, the data size was too large, which caused
the processing machine to run out of resources during the calculation. Most notably, the
calculation of betweenness centrality required about 250 GB of RAM to function, and
even then, the calculation would still take several months.

An additional challenge was parallelism. Every thread requires a thread-local storage.
Alternatively, a shared storage can be used—but then, there is a large synchronization
overhead to prevent stale reads or double writes which severely diminishes the benefits of
multithreading.

The betweenness centrality calculation was done using the Brandes algorithm [Bra00],
which runs in O(nm) and requires O(n + m) space. The algorithm allows “perfect”
parallelization as it allows to compute the result for a single node completely independently
of all other nodes. At the end, the intermediate results of each thread only have to be
added up. However, this also means that each thread requires up to O(n + m) space in
memory, which increases the total memory usage significantly and makes multithreading
memory-expensive.

With plenty of optimizations added to the code, there was no significant improvement in
lowering the expected duration of the calculation. We therefore increased the hardware
resources. With 80 (virtual) cores, 900 GB of RAM and 200 GB of swap space, the
calculation finished in 30 days.

3.5.3 Unknown hops
In Section 2.2.2, we discussed that some routers are not returning an error message to the
sender when they encounter a package with expired TTL or hop limit. When building
the graph, however, we now have the problem of unknown connections between two nodes
which correspond to no known IP address. Assume that we have a path A → X → B1.
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In this situation, the unknown node does not pose an issue. However, assume that we
encounter a second path A → Y → B2 to a different target. We cannot tell whether or
not X is equal to Y in this instance.

This is even more problematic when unknown hops appear in succession. Consider Figure
3.9a. In this figure, we want to use three routes, from A to B1, B2, and B3 respectively.
After Node X, we encounter three unknown hops, with the next known hop being either
one of Y1, Y2, or Y3. The figure presents a routing scheme where the paths split and
join multiple times before they reach the next visible hop again.

Without feedback from these hops, however, we cannot make complex assumptions about
the actual paths between X and Y. We therefore consider two simplifying assumptions
about the path:

1. Each hop is an entirely distinct one, i.e., none of the unknown nodes is passed twice
and the paths between X and Y are completely disjunct. (Figure 3.9b)

2. Each hop is the exact same for all paths, i.e., the unknown portion is identical for
all paths. (Figure 3.9c)

We first considered Option 1 and assumed that every encountered unknown node is
unique. This simplifies the processing of the data, as we can simply assign IDs to these
nodes and do not need to keep track of assignments. The problem with this approach
is that the number of nodes becomes impractical quickly. Consider a scenario where
the route to prefixes for a certain geographical region are behind a router that does not
identify itself. All paths into those prefixes will cause a new node to be generated in the
dataset, causing the graph to grow quickly into unmanageable sizes.

We therefore chose to go with Option 2. When encountering an unknown node on a path
A → X, we assign a negative integer to that node based on the previous node A and
remember the assignment. Next time we encounter an unknown node A → Y , we make
the assumption that Y = X and assign the same ID. The same procedure is applied when
the previous node is already a negative one (e.g., X → Y → B).

There are two main benefits to assigning negative numbers instead of positive ones.
Firstly, it removes the need of having to first count the number of positive nodes before
negative nodes can be assigned. Alternatively, both known and unknown nodes could
pull IDs from the same (positive) counter, though this would inseparably intermingle
known and unknown nodes in the number sequence. This brings us to our second benefit:
It is always obvious whether a given node ID is from an identifiable node, or rather the
result of our simplifying assumption. It furthermore allows for separate analysis of known
and unknown nodes without having to join additional data sources to identify which is
which (e.g., node-to-IP mapping).
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(a) Missing node hypothesis with more complex routing
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(b) Missing node hypothesis with the most amount of nodes (distinct node for every hop)
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(c) Missing node hypothesis with the least amount of nodes (the same for all paths)

Figure 3.9: Three different missing node hypotheses
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CHAPTER 4
Evaluation

In this chapter, we will analyse the data that we collected using the approaches described
in the previous chapter. Before we analyse the results in detail, we want to give an
overview over what we are going to analyse in this chapter. We want to focus on 3
dimensions of comparison:

1. Comparison of protocols. We compare the data for IPv4 and IPv6 within each
dataset to find out whether routing works differently for the protocols. On top of
that, we want to see if the same differences are evident in both datasets.

2. Comparison of datasets. We compare the data across the datasets to find out to
what degree the vantage point of the measurement influences the observed routing
paths.

3. Comparison over time. Routing paths change over time, as networks are restructured
and topologies change. We want to find out to what extent this is visible in the
global routing paths.

For these dimensions, we want to compare the data in these ways:

1. We analyse the entirety of the data using (normalized) plots, so that we can spot
differences visually and investigate them more closely.

2. We extract a listing of the nodes with the highest betweenness centrality to under-
stand how they relate to the rest of the nodes in the graph.

The included plots all show the Cumulative Distribution Function (CDF) of the values
in question. A CDF displays the proportion of data elements (node) that has the given
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value or lower. For example, if the plot at 0.6 shows a value of 102, that means that
60% of nodes have a value of 102 or less, and 40% have one that is higher than that. We
make use of CDFs because they allow for easier comparability across datasets of different
size, as the data is fitted into the same y-range. On top of that, for the betweenness
values, we use a normalized x-axis. As the betweenness centrality value increases with
the size of the graph, in order to have a comparable value, we scale by the highest value
in the graph. This way, the node with the highest value in the given graph has a fixed
normalized value of 1, no matter the data source or protocol.

The following table lists all datasets that were used at any point during the analysis.

Vienna datasets IPv4 2021-09
2022-02

IPv6 2022-02

CAIDA datasets1

IPv4 2021-09

IPv6
2021-09
2022-02
2022-09

1 For CAIDA datasets, we have always collected the last available file per monitor in
the given month.

4.1 Comparison of protocols — IPv4 and IPv6
In this section, we compare the data for IPv4 and IPv6 within the same dataset and time
period for both of our datasets.

4.1.1 Degrees — Vienna dataset
We begin by comparing the distribution of node degrees in the graphs, taking into account
Degree, Average Neighbor Degree, and Iterated Average Neighbor Degree (all of them for
both in and out). Figure 4.1 shows the CDFs for these statistics on IPv4 and IPv6. The
left column shows the data for connections coming in, the right column for connections
going out.

What the plots are not showing are the nodes with both an in-and-out-degree of 0. The
Vienna dataset also includes unsuccessful paths. The targets that were not successfully
reached by a route are still assigned a node ID, yet are not connected to any other nodes.
Table 4.1 shows their number and proportion. Almost all nodes, 99.34% of IPv4 and
98.82% of IPv6 nodes, have both an in-and-out-degree of 0 and are thus not connected
to the rest of the graph.

Table 4.1 furthermore shows that out of all the nodes in the graph, almost all were
identifiable, yet 0.3% of IPv4 and 0.001% of IPv6 nodes did not report their IP (with
the caveat mentioned in Section 3.5.3). As discussed in Section 2.2.2, IPv6 routers are

30
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IPv4 IPv4 % IPv6 IPv6 %
Total nodes 12,161,720 100% 5,270,911,453 100%

Identifiable nodes 12,125,128 99.7% 5,270,483,153 99.99%
Unidentifiable nodes 36,592 0.3% 428,300 0.01%

Degree 0 in+out 11,351,154 99.34% 5,208,785,659 98.82%

IPv4 IPv4 % IPv6 IPv6 %
Degree >0 in+out 810,566 100% 62,125,794 100%

Identifiable nodes 773,974 95.49% 61,697,494 99.31%
Unidentifiable nodes 36,592 4.51% 428,300 0.69%

Leaf nodes (degree-OUT 0) 390,720 48.2% 5,833,062 9.39%

Table 4.1: Node counts and proportions (Vienna dataset 2022-02)

required to return an error to the sender if the packet hop limit reaches 0, though not all
routers are doing it. We see that their proportion in the graph is negligible.

If we only consider the nodes that are connected to the graph, we see that the proportion
increases more for IPv4 than for IPv6. 4.51% of connected IPv4 nodes do not report
their IP. For IPv6, that number still remains well below 1%.

For degree, we notice an extreme discrepancy between the two protocols. Whereas
almost half (48.2%) of the IPv4 nodes in the graph are leaf nodes (i.e., they only have
incoming, but no outgoing edges), not even 10% of IPv6 nodes (9.39%) in the graph are
leaf nodes. This indicates that proportionally, there are many more nodes involved in
routing for IPv6. The simplest explanation for this could be load balancing. As the load
gets distributed among several nodes, we discover multiple “stops”. This might not be
the case for IPv4, where IP addresses are limited, and load balancers might share an IP
address.

We now analyse the plots in Figure 4.1. Here, we also see a large discrepancy between
IPv4 and IPv6. For IPv4, 61.51% of nodes have exactly one inbound edge, after which
the curve increases smoothly up until around 30. Following that, the curve is going
almost horizontally to the right end, with the maximum value being 164. For IPv6,
however, we observe a peculiar difference: Only 10.26% of nodes have an in-degree of
1. However, 89.23% of nodes have an in-degree of 2. This means that almost all nodes
in the entire IPv6 graph, 99.49%, have an in-degree of 2 or lower. The highest value
recorded here is 12,590. As a result of our measurement setup, there can only be one
node with an in-degree of 0 (other than the disconnected nodes), namely the starting
point of the measurement.

For the out-degree, the situation appears similar, though with a crucial difference. IPv4
behaves similarly as for in-degree. 79.32% of nodes have an out-degree of 0 or 1 (31.12%
with degree 1). For IPv6, we see that 99.26% of nodes have a degree of 0 or 1, of which
only 9.39% are of out-degree 0, the rest being of out-degree 1. This, again, is an indicator

31



4. Evaluation

(a) Degree IN (b) Degree OUT

(c) Average Neighbor Degree IN (d) Average Neighbor Degree OUT

(e) Iterated Average Neighbor Degree IN (f) Iterated Average Neighbor Degree OUT

Figure 4.1: Comparison of Degree CDFs between IPv4 and IPv6 (Vienna dataset 2022-02)
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of a higher involvement of intermediate nodes in IPv6 routing. The reason for this could
be a reduced NAT usage due to the larger address space of IPv6.

If we analyse combined degrees, we find that for IPv4, the most common nodes are leaf
nodes with 1 edge in (38.52%), followed by 1 edge in, 1 edge out (16.92%) and 2 edges
in, 1 edge out (11.45%). This means that two thirds of the graph (66.9%) are made out
of simple gateways, merging nodes or leaf nodes.

For IPv6, we see that the most common combination is, in fact, 2 edges in and 1 edge out.
This combination alone amounts for 89.13%. The second most common combination,
leaf nodes with 1 edge in, only amounts for 9.34%, the rest of combinations being below
1% each. What this means is that if we disregard leaf nodes, virtually the entire graph
consists of 2-in-1-out nodes. Since this measurement was taken from a single vantage
point, this means that there is a vast number of diamonds in this graph. This also
means that almost all nodes in the graph are reachable by at least 2 paths. Again, load
balancing could be the reason for this. While it was transparent for IPv4 due to NAT, it
is now visible for IPv6, resulting in two detectable entry edges for most nodes.

As for the highest recorded out-degrees, for IPv4 it is 8,180. This is 1.01% of all nodes,
meaning that the node with the most outgoing connections in the graph can reach 1.01%
of all nodes in the graph with just one hop. For IPv6, the highest out-degree is 11,311,477.
This is equivalent to 18.21% of nodes in the graph, meaning that for IPv6, there is one
node that has a direct connection to almost a fifth of the nodes that were discovered in
the measurement. Proportionally, this is 18 times as much as the top node for IPv4. The
second highest, 5,078,686, is at not even half of that.

Next, we analyse the Average Neighbor Degree (AND) (second row in Figure 4.1). IPv4
nodes seem to predominantly have a low in-AND, with the frequency decreasing as the
in-AND increases. This means that in general, IPv4 routing nodes do not know many
neighboring nodes. In fact, 65.55% of nodes have an in-AND of 3 or lower, meaning
that their “incoming” neighbors each have an in-degree of 3 or lower on average. The
out-AND findings confirm this: 94.44% have an out-AND of 3 or lower, meaning that on
average, their neighbors each have 3 or fewer outgoing connections. What we see here is
that out-AND tends to be lower than in-AND. While distributed paths often merge at
certain target nodes, few nodes actually distribute the traffic load among different paths.

For IPv6, the situation is different. 61.04% of nodes have an in-AND of 50 or more,
meaning that most nodes have incoming connections. These connections have, on average,
at least 50 incoming connections themselves, meaning that inbound connectivity is high.
At the same time, we see that 98.87% of nodes have an out-AND of 1 or lower. By
definition, leaf nodes have an out-AND of 0, as they have no outgoing edges. However,
as established previously, these only make up 9.39% of the entire graph. In fact, we see
that only 0.03% of nodes have an out-AND that is between 0 and 1 exclusively. Most
nodes (89.87%) have an out-AND of exactly 1. Expectedly, we see that 89.39% of nodes
in the graph have an out-degree of 1. We conclude that almost all intermediate nodes in
our graph have exactly one outbound connection to a node which itself has exactly one
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outbound connection. Again, we discover that for IPv6, on a low level, routing seems to
be more redundant than for IPv4, where it seems to concentrate on fewer paths.

Analysing the most common values, we see that for IPv4, the top 10 most common values
are 20 or lower for in-AND, and 6 or lower for out-AND. For IPv6, the most common
in-AND value is 4,028.5, which is shared by 18.17% of nodes in the graph. Another
common value is 1,826.5 (8.16%). Three more values are above 100, the rest are 32 or
lower. One notable finding is that for out-AND, the 10th most common value (shared
by 0.01% of nodes, in absolute numbers 7,572 nodes) is 5,655,739.5. We recall that the
highest out-degree in the graph is 11,311,477, the second-highest being 5,078,686.

Since we are evaluating an average, the only reasonable possibility for this to occur is for
it to be the result of averaging over 2 nodes: One of them with out-degree 11,311,477
and the other with out-degree 2. It turns out that all of these nodes have an edge going
to the mass node, and one edge pointing to themselves (self-loop). As for other values,
we already established that the most common out-AND is 1 (89.39%) and the second
most common is 0 (9.44%), the rest being below 0.3%. There we find 11245 as well as 6
values between 4300 and 5200, the rest are of value 7 or lower.

Finally, we analyse the Iterated Average Neighbor Degree (IAND) (third row in Figure
4.1). As we now build the average over two hops, we see that for in-IAND, the CDFs
of IPv4 and IPv6 grew closer together. We observe two major differences compared to
AND: For IPv4, the CDF “begins” earlier on the x-axis. For IPv6, the increase at around
0.6 is missing, as well as the sharp inclines at the end.

The change in the IPv4 plot indicates that there are fewer nodes with an in-IAND in the
lower ranges. The raw data confirms this: While 32.41% of nodes have an in-AND of
below 2, only 24.22% of nodes have an in-IAND of below 2. This, in turn, means that
nodes, which are not connected well to the graph through their direct neighborhood,
are generally connected better through their two-hop neighborhood. This also caused
the maximum value to drop from 164 for in-AND to 82.5 for in-IAND, indicating that
highly-connected nodes are usually not close together.

The change in the IPv6 plot is an indicator for the same phenomenon. The sharp inclines
that were high up on the in-AND chart moved further down on the in-IAND chart. In
fact, the largest incline (in-AND 4,028.5) moved down to the middle of the plot (23.57).
The exact same amount of nodes is included in both (18.17%), and indeed, they are
the exact same nodes. The maximum dropped from 763.67 for in-AND to 353.75 for
in-IAND, which further confirms this point.

Despite the distribution of in-IAND changing in certain regions compared to in-AND, we
observe that the out-IAND is virtually identical to the out-AND graph. The reason for
this is the distribution of values: We found 89.30% of nodes with out-IAND of 1 and 9.44%
with a value of 0, which is similar to the 89.39% and 9.44% that we found for out-AND.
The 1.26% remaining nodes do not leave a large impact on the plot. The maximum value,
however, did change from 11,311,477 to 5,655,739. This is easily explained by considering
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IPv4 AVG IPv6 AVG IPv4 MAX IPv6 MAX
Degree IN 2.0288 1.9401 164 12,590
Degree OUT 2.0288 1.9401 8,180 11,311,477
AND IN 5.0202 967.5179 164 12,590
AND OUT 1.2534 944.8912 763.6667 11,311,477
IAND IN 6.8827 157.4636 82.5 9,209.5
IAND OUT 0.8126 22.0393 353.7538 5,655,739

Table 4.2: Average and max values per protocol (Vienna dataset 2022-02)

that the millions of neighbors of the one node with an out-degree of 11,311,477 have
lower out-degrees themselves, causing the average to be lowered significantly.

Table 4.2 shows the average and max values of the collected degree statistics per protocol.
We observe that in-degree and out-degree are equal, both for IPv4 and IPv6. Furthermore,
the value differs between protocols by a value below 0.1. When considering the average
degree of the neighbors, the situation changes completely. While degree is almost the
same, AND differs significantly. From the IPv6 nodes, 28.90% have a value in-AND
above average, and only 0.21% have an out-AND above average. This is due to the
fact that the maximum value of out-AND is higher than the one of in-AND (11,311,477
vs. 12,590). These effects even out, which leads to the ANDs being close to each other.
This, in essence, means that on average, nodes are similarly well connected, inbound and
outbound.

If we consider IAND, we see that for IPv4, the value changes only slightly. Most notably,
out-IAND falls below 1, meaning that on average, the nodes in the two-hop neighborhood
of a node have an out-degree of below 1. For IPv6, we again see that the value is
higher than the IPv4 value, but lower than the AND values for IPv6. This means that
high-degree nodes usually have low-degree neighbors. Nonetheless, average connectivity
is higher in IPv6 than in IPv4. Even though the plots appears almost identical, it seems
that there are fewer high-up outliers, which pushes the average down.

4.1.2 Degrees — CAIDA dataset
We now compare the degree statistics between protocols for the CAIDA dataset of
2021-09.

Table 4.3 shows the amount of nodes in this dataset. Unlike the Vienna dataset compari-
son, we do not have nodes with degree 0 both in and out, as unsuccessful traceroutes are
not recorded by the CAIDA dataset.

As discussed in Section 2.2.2, IPv6 routers are required to return an error to the sender
if the packet hop limit reaches 0, though not all routers are doing it. We see that their
proportion in the graph is significant: 12.21% of nodes did not return an error packet,
which is proportionally more than twice as much as IPv4 (5.75%).
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IPv4 IPv4 % IPv6 IPv6 %
Total nodes 1,034,262 100% 356,146 100%

Identifiable nodes 974,761 94.25% 312,659 87.79%
Unidentifiable nodes 59,501 5.75% 43,487 12.21%

Leaf nodes (degree-OUT 0) 563,456 51.87% 151,050 42.41%

Table 4.3: Node counts and proportions (CAIDA dataset 2021-09)

Analysing the leaf nodes, 51.87% of IPv4 nodes are leaf nodes, whereas it is only 42.41%
of IPv6 nodes. Proportionally, more of the IPv6 nodes are involved in intermediate
routing than IPv4 nodes, possibly due to the extended addressing abilities.

Figure 4.2 shows the CDFs for the collected statistics for IPv4 and IPv6. We observe
that the distributions across protocols for every metric, both in and out, are similar. No
significant differences between the two measurements can be observed. For degree (in
and out), out-AND, and out-IAND, we see that the IPv6 curve starts earlier by 0.1, and
converges around the 1.0 mark.

For degree in and out, we see that the majority of nodes has a degree of 0 or 1. There
are 66 nodes (IPv4) and 39 nodes (IPv6) with an in-degree of 0—these are our vantage
points. The total proportion of nodes with an in-degree of 0 or 1 is 63.58% (IPv4) and
55.34% (IPv6). This proportion is higher for IPv4 than for IPv6. The same is valid for
out-degree (77.31% for IPv4 and 68.87% for IPv6).

As for AND and IAND, we observe that while in-AND and in-IAND grow steadily until
0.9 and then grow more quickly, out-AND and out-IAND only start around 0.6 and grow
steadily until almost 1. However, this seems to only happen between the y-values 0 and
10. While for the in-direction, the nodes in this range are more evenly distributed, for
the out-direction, we see that most nodes have a value of 1 or lower.

Table 4.4 lists the average and maximum value per metric and protocol. We see that the
maximum out-degree value is higher for IPv4 than for IPv6. This is most likely due to the
smaller size of the IPv6 dataset. Other than that, the values are higher for IPv6 despite
the smaller dataset. Again, we observe that routing seems to be more concentrated
towards central points for IPv6. As for the averages, they are similar across the protocols,
with only in-IAND being slightly lower for IPv6. Nonetheless, we see that despite the
maximum out-degree being higher for IPv4, the average maximum out-degree is actually
lower. The average out-AND is only half as much as the IPv6 value. It appears that
while IPv4 has the higher-ranking maximum routing nodes, for IPv6, nodes are connected
better, as their neighbors have higher-degree neighbors on average. This also means that
degrees on the lower end of the spectrum are more common for IPv6.

Analysing the top values for AND, we see no surprises. For in-AND, the 20 most common
values are all 17 or lower, for out-AND it is 9 or lower (except for the value 13 for IPv6).
Regarding in-IAND, we see that all common values are 9 or lower. For out-IAND, the
values do not even go above 3. Proportionally, we find that for 84.79% of IPv4 and
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(a) Degree IN (b) Degree OUT

(c) Average Neighbor Degree IN (d) Average Neighbor Degree OUT

(e) Iterated Average Neighbor Degree IN (f) Iterated Average Neighbor Degree OUT

Figure 4.2: Comparison of Degree CDFs between IPv4 and IPv6 (CAIDA dataset 2021-09)
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IPv4 AVG IPv6 AVG IPv4 MAX IPv6 MAX
Degree IN 2.5718 3.2790 293 1,338
Degree OUT 2.5718 3.2790 3,532 2,431
AND IN 7.7803 8.9673 293 1,338
AND OUT 1.8935 3.6763 1,501 2,431
IAND IN 10.2280 9.5980 166.1364 669.5
IAND OUT 1.1048 1.9833 727.5 1,216

Table 4.4: Average and max values per dataset (CAIDA scans 2021-09)

76.19% of IPv6 nodes, the two-hop-neighborhood has an average degree of at most 3. We
do see, however, that it is significantly lower for IPv6, which explains the higher average.
The most common value for out-AND and out-IAND is 0 across both protocols. 70.59%
of IPv4 nodes and 57.73% of IPv6 nodes have this value (for both metrics). This includes
both the leaf nodes and the nodes shortly before a leaf node, which make up a majority
of the nodes.

4.1.3 Betweenness centrality — Vienna dataset
We now analyse the betweenness centrality. Figure 4.3 compares the cumulative distribu-
tion of betweenness centrality of the Vienna v4/v6 scans of 2022-02. It does not include
or count nodes with a betweenness value of 0, i.e., leaf nodes and unreachable nodes.

Figure 4.3 shows the cumulative distribution functions of IPv4 and IPv6 on top of each
other. We observe that the IPv4 plot and the IPv6 plot are appearing similar, the only
difference being the scale. Due to the IPv4 dataset having fewer nodes, the betweenness
maximum was lower than the one for IPv6. This causes the normalized values at the
lower end to be smaller relative to the IPv4 values. For this reason, the bottom displays
the scale for the IPv6 curve, the top displays the scale for the IPv4 curve.

For both protocols, we see an almost horizontal progression around 1.0. This means that
the nodes with a high betweenness centrality are just a few. This, in turn, means that
only a small amount of nodes is in control of a majority of the betweenness centrality.

On IPv4, about 3.1% of nodes have a normalized betweenness higher than 10−3.4 each,
yet control 84.33% of the betweenness centrality in the entire graph. For IPv6, the
centralization is even more obvious: Roughly 3.01% of nodes have a normalized between-
ness higher than 10−5 each, yet control 95.45% of all betweenness centrality, which is 11
percentage points higher than for IPv4.

For a measurement performed from a single location, this is expected. Nodes that control
access to certain regions (e.g., the router that sends data via underwater cables to North
America) are part of every shortest route to any node in that region. Similarly, any AS
on the way from our vantage point to that node would be similarly central, since the
shortest path (or paths) to that node is (or are) going to be the same every time.
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Figure 4.3: Comparison of Betweenness Centrality CDFs between IPv4 and IPv6 with
normalized log y-axis (Vienna dataset 2022-02)

In general, if we regard the connection between ASes to be a giant “highway”, then
the highway nodes and exits are going to be of central importance and appear in many
shortest paths. This explains why the few nodes in the upper ranges are central to most
of these paths.

Another similarity between the two curves is that they both start almost horizontally,
indicating that only few nodes are at the low end of the spectrum (not counting those
with betweenness 0). A likely explanation for this phenomenon are nodes on the longer
branch of a diamond. Such nodes would only be on few shortest paths (namely the ones
to themselves) and thus have a small betweenness centrality. The effect is even stronger,
the closer these nodes are to the leaf nodes.

While the IPv4 and IPv6 plots appear similar, we observe a few key differences. One of
them is right at the beginning of the curves. While both of them start almost horizontally,
at around 10−14, the IPv6 curve is going vertically for about 0.04 (or 4%) of y-values.
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Examining the incline closely, it appears that 3.98% of nodes have a (raw) betweenness
centrality value of exactly 1 (28,488 out of 715,418). Of those nodes, we find that 98.14%
are assigned a negative ID number (27,959 out of 28,488), meaning that these nodes did
not respond to the traceroute request. This could be due to nodes close to the end of
routes which have been configured not to reveal the internal routing structure. Since
such nodes are at the end of the paths (i.e., just one node before the leaf node), their
betweenness centrality is 1 (unless they are part of a diamond, which would push their
value below 1).

For IPv4, such an incline does not exist; only 0.57% of nodes have a betweenness centrality
of 1 (1,810 out of 319,202). Out of those, just 63.87% have a negative ID (compared to
98.14% for IPv6).

For both IP versions, we observe that the majority of nodes has a betweenness centrality
around the middle of the range. In fact, 82.64% of IPv4 nodes have a normalized
betweenness value between 10−6 and 10−4, while 85.93% of IPv6 nodes are between 10−9

and 10−5. This most likely represents the wide network of ASes that is not close to the
origin point. Those close to the origin point would necessarily get passed often, whereas
those further away only get passed when a node closer to them is the target.

As for nodes with an absolute betweenness centrality of below 1, again, we observe a slight
difference. In relative values, a betweenness centrality of 1 corresponds to 1.89 · 10−10

for IPv4 and 2.19 · 10−14 for IPv6. Observing the graph, they appear to be close to
each other. In numbers, this amounts to 0.11% for IPv4 (351 out of 319,202) and 0.24%
for IPv6 (1,683 out of 715,148). This is the number of nodes that could be replaced
without any imminent negative effects on the routes in the graph. Relatively speaking,
IPv6 has twice as many such nodes than IPv4. The only sensible explanation for this is
load balancing, where between some node A and B, which are exactly 2 hops apart, the
probes were distributed among multiple paths between A to B during the measurement.

For IPv4, 256 out of 351 nodes (72.93%) reported their identity (i.e., had a non-negative
node ID). For IPv6, this number amounts to 1,093 out of 1,683 (64.94%), which is
similar in relative terms, albeit slightly lower. This means that, at least on this level, the
majority of routers used to create multiple paths are configured to reveal their identity
to a traceroute probe.

For IPv6 we observe a wider range of betweenness values below 1. The lowest value
for an IPv4 node is 0.125, which means that this node is sharing its path with 7 other
nodes (as 1/0.125 = 8, assuming that this node is not part of multiple such paths). For
IPv6, we have 334 nodes that have a value below 0.125 (334 out of 1,683 nodes below 1,
19.85%). The lowest value encountered is 0.015 which, assuming no other paths, would
mean that this node is on one of the 68 shortest paths for a certain node. Again, this
might be due to a lower use of NAT, as the IPv6 address space is larger and allows for
more generous assignment of IP addresses.
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IP address CC1 Prefix AS number NBC2

223.120.10.85 HK 223.120.10.0/24 AS5845 1.0
149.38.4.49 US 149.38.0.0/16 AS174 0.5267

84.116.136.118 EU 84.116.0.0/16 AS6830 0.3293
154.54.28.130 ??3 154.48.0.0/12 AS174 0.2868
84.116.130.165 EU 84.116.0.0/16 AS6830 0.2411
129.250.2.51 US 129.250.0.0/16 AS2914 0.2392
64.125.29.126 US 64.124.0.0/15 AS6461 0.2184
62.115.138.22 EU 62.115.0.0/16 AS1299 0.2088
212.133.7.161 SK 212.133.0.0/17 AS3356 0.2068

* AT * Outbound ISP 0.1960
83.231.187.1 GB 83.231.128.0/17 AS2914 0.1896
130.117.51.41 US 130.117.0.0/16 AS174 0.1796
154.54.24.222 ??3 154.48.0.0/12 AS174 0.1665

* AT * Outbound ISP 0.1616
83.167.55.208 FR 83.167.32.0/19 AS8218 0.1460
129.250.2.111 US 129.250.0.0/16 AS2914 0.1411
38.104.164.234 US 38.0.0.0/8 AS174 0.14
213.46.182.18 NL 213.46.160.0/19 AS6830 0.1392
62.115.122.159 EU 62.115.0.0/16 AS1299 0.1363
149.29.9.162 US 149.29.0.0/16 AS174 0.1343

1 CC: Country Code (as reported by WHOIS)
2 NBC: Normalized Betweenness Centrality
3 WHOIS not responding to this query. Most likely US (refer to

Table 4.7).
Table 4.5: Top 20 AS with the highest betweenness centrality (IPv4, Vienna dataset
2022-02)

4.1.4 Nodes with the highest betweenness centrality — Vienna dataset
Now we investigate the nodes with the highest betweenness centrality. Table 4.5 lists the
20 nodes with the highest betweenness centrality for IPv4. We used the Linux CLI tool
whois to query the WHOIS information for the IP and find the prefix, location of the
prefix, and the AS number.

Surprisingly, the top node belongs to an AS in HK and has a betweenness centrality
which is almost twice as much as the value for the second element in the list. From the
20 nodes, we see that 6 belong to AS174. For 2 of them, the responsible WHOIS server
refused to respond, and thus we could not obtain the country code, though the query for
other nodes revealed that AS174 is located in the US, making it likely that these nodes
are also US-related. Comparing their betweenness values, the top node controls 2.6% of
betweenness centrality, whereas the nodes of AS174, taken together, control 3.7%.

From the remaining list, 3 nodes belong to AS6830, and another 3 belong to AS2914. As
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we see, 12 out of the 20 nodes belong to 3 distinct ASes only. The nodes of these 3 ASes,
together with the top node, achieve a total of 7.05%.

Other than the top node, the prefixes are all located either in Europe or in the US.
Considering that the vantage point is in Europe, this is expected. The US nodes are
most likely exit nodes for traffic that crossed the ocean via undersea cables.

Only 2 out of the 20 top nodes belong to the outbound ISP and have a normalized
betweenness centrality of only 0.196 and 0.1616 respectively. These 2 are part of the
internal routing before a packet reaches the outer internet. Given that none of the other
high-betweenness nodes are in the same country as the ISP (Austria), we find that there
are no Austrian nodes that are central on the shortest path to many targets.

In total, the top 18 nodes (disregarding the 2 unavoidable ISP nodes) hold 12.03% of the
betweenness centrality of the graph from this measurement and belong to only 7 distinct
ASes, with 12 of these nodes belonging to just 3 ASes.

We now analyse the same data for IPv6. Table 4.6 shows the 20 nodes with the highest
betweenness centrality. The first thing we notice is the fact that this time, many more
ISP nodes are present. In fact, 11 out of the 20 nodes belong to the outbound ISP prefix.
This is already indicative of a more distributed routing infrastructure within the ISP
network. It could also simply mean that the routers do not need to “hide” behind a NAT.
It could be possible that for IPv4, multiple of the routers found here were behind one IP
address in order to save addresses.

Nonetheless, even the topmost 2 ISP nodes have a normalized betweenness of 0.67 and
0.4386 respectively, whereas the first provider node for IPv4 was at 0.196. This can result
from the fact that not only the ISP network, but other networks on the global internet
distribute traffic more, making single nodes less important than others. However, this
seems to contradict the findings we made when analysing the plots, where the distribution
seemed to be alike. We therefore deduce that while this might be the case for the most
important nodes and for internal ISP routing (at least in this particular instance), this is
not valid for routing in the global internet.

There are 9 nodes that do not belong to the outbound ISP. These seem to be distributed
broadly, as they belong to 7 different ASes. Due to the ISP nodes, it is not possible to
fully compare the results between IPv4 and IPv6, though we already see that routing
seems to be more distributed for IPv6, as for IPv4, all 20 nodes belonged to just 7 ASes
(with 12 of them belonging to 3 ASes only). Nonetheless, we still find one AS, AS56630,
to be controlling 3.31% of betweenness centrality.

In this list, AS174 appears again, but only one time (as opposed to 6 times for IPv4),
with a control of 0.39%. AS56630 has the 2 topmost non-ISP nodes. AS6939 also appears
twice in this list, though only having 0.55% of the betweenness centrality. Other than
European and US prefixes, this time we have 4 Russian prefixes on the list (among which
we find the top 3 non-ISP nodes), and we are missing the HK location we found for IPv4.
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IP address CC1 Prefix AS number NBC2

2a06:f900:0:300::2:2 RU 2a06:f900::/36 AS56630 1.0
* AT * Outbound ISP 0.67
* AT * Outbound ISP 0.4386

2a0c:f540:0:2::26 RU 2a0c:f540::/29 AS39238 0.4072
* AT * Outbound ISP 0.3263
* AT * Outbound ISP 0.3093

2a06:f900:0:200::2 RU 2a06:f900::/36 AS56630 0.2724
* AT * Outbound ISP 0.2661

2001:1900:5:2:2::1db5 US 2001:1900::/32 AS3356 0.1593
2001:550:0:1000::9a36:3aba US 2001:550::/32 AS174 0.1519

* AT * Outbound ISP 0.1318
2001:470:0:2ef::1 US 2001:470::/32 AS6939 0.1287

* AT * Outbound ISP 0.1277
* AT * Outbound ISP 0.1208

2001:b28::e870:2 RU 2001:b28::/32 AS31500 0.108
* AT * Outbound ISP 0.1033

2001:668:0:3::9000:181 DE 2001:668::/48 AS3257 0.1023
* AT * Outbound ISP 0.0883
* AT * Outbound ISP 0.0846

2001:470:0:54::1 US 2001:470::/32 AS6939 0.0833
1 CC: Country Code (as reported by WHOIS)
2 NBC: Normalized Betweenness Centrality

Table 4.6: Top 20 AS with the highest betweenness centrality (IPv6, Vienna dataset
2022-02)

In total, the top 9 nodes (disregarding the outbound ISP nodes) hold 6.27% of the
betweenness centrality of the graph from this measurement, belonging to 7 distinct ASes.
We observe that on a high level, IPv6 routing seems to be a bit more centralized than
IPv4 routing.

From the top 9 nodes alone we can tell that while the general structure and centrality of
routing remains similar, the actual paths through the internet graph differ with little
overlap to each other.

4.1.5 Betweenness centrality — CAIDA dataset
For another perspective, we examine the betweenness centrality data for the measurements
performed by CAIDA. Figure 4.4 compares the cumulative distribution of betweenness
centrality of the CAIDA v4/v6 scans of 2021-09. It does not include or count nodes with
a betweenness value of 0. Since the CAIDA scans are close to each other in size (IPv4:
464,096, IPv6: 198,370), the graphs can use the same scale, as the relative betweenness
values are similar.
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Figure 4.4: Comparison of Betweenness Centrality CDFs between IPv4 and IPv6 with
normalized log y-axis (CAIDA dataset 2021-09)

In Figure 4.4 with the plots merged and a logarithmic scale, we again observe that the
graphs appear similar in shape. The curves seem to show no abrupt jumps.

As can be seen in the plots, there are not many nodes with a high betweenness centrality.
The CDF is progressing almost horizontally between the x-values 10−3 and 1. 5.06% of
IPv4 nodes and 2.68% of IPv6 nodes have a value that is situated in that range, yet they
control 80.36% and 73.98% of the betweenness centrality, respectively.

As these are measurements conducted from multiple vantage points at once (with combined
results), this is an indicator that there is a certain set of nodes which seems to be central
to the majority of paths. These are most likely central dispatch nodes, as both inbound
and outbound traffic would be routed via these nodes. Furthermore, this kind of node
would be the only kind that would be passed by routes that originate from multiple
monitors.

For the beginning of the graph, we observe that the plots increase smoothly up to about
10−5, after which the plots are moving almost vertically. While the value where it happens
is similar, the proportion of nodes for which the change occurs seems to be different:
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Whereas for IPv4 it happens after roughly 15% of the nodes, for IPv6 it only occurs after
30%.

The vertical incline that follows is larger for IPv4 than IPv6: While for the former it
amounts to roughly 20%, for the latter it is only 14%, though lower, the values are still
close to each other. The central part of the plot is similar for both. 86.64% of IPv4
and 78.73% of IPv6 nodes have a betweenness centrality in the logarithmic middle range
between 10−6 and 10−3.

Finally, we want to analyse the nodes with a betweenness centrality value of below 1. The
normalized value for a betweenness of 1 is about 1−10 (more precisely, 1.11−10 for IPv4
and 1.32−10 for IPv6). From the graph, these seem to be close to each other. In absolute
numbers, they are close, but the proportion from the total differs greatly. For IPv6,
0.22% of nodes are in this range (427 out of 198,369), whereas for IPv4 it is only 0.04%
(203 out of 464,095). IPv4 had less than half as many such nodes as IPv6, while having
a total graph size that is more than twice as much. Again, the addressing capabilities
of IPv6 are most likely the reason for this, as they enable network administrators to
actually install multiple routes via multiple IP addresses, whether for IPv4, such routes
would need to be hidden behind NATs due to the low number of IPv4 addresses available.

4.1.6 Nodes with the highest betweenness centrality — CAIDA
dataset

In this section, we analyse the top 20 nodes with the highest betweenness centrality for
the CAIDA dataset. We again used the whois tool to obtain the prefix, location of the
prefix, and the AS number of the ASes involved.

We start with the data for IPv4 (Table 4.7). In this table, we see that from the top 20
nodes, 6 nodes belong to an AS in the US. Of these, 4 nodes belong to the same AS
(AS6939), among which are also the top 2 nodes of the list. Without regarding any other
nodes in the dataset, these 4 nodes alone hold about 1.43% of the total betweenness
centrality in the graph and are most likely responsible for central routing in the US.

Similarly, there are 5 prefixes located in Europe, all belonging to AS1299. Together, they
hold 1.26% of the betweenness centrality and seem to be the central routing nodes for
Europe.

AS174 appears even more often on this list: There are 6 of its nodes in the list, albeit
with lower betweenness centrality. These nodes are controlling a total of about 1% of the
shortest paths. For some reason, the whois service failed to return data for 4 out of the
5 nodes in the 154.54.0.0/16 prefix. If we extrapolate the data returned on the one node
that was successfully queried, the prefixes would all be located in the US, which would
make 10 out of our 20 top nodes belong to a prefix in the US.

This list contains 15 EU and US nodes in total, though they only belong to 3 ASes. Out
of these, 11 belong to only 2 ASes, which is more than half of the nodes in this list.
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IP address CC1 Prefix AS number NBC2

184.105.223.109 US 184.104.0.0/15 AS6939 1.0
72.52.92.85 US 72.52.64.0/18 AS6939 0.8345

62.115.125.163 EU 62.115.0.0/16 AS1299 0.7292
62.115.123.136 EU 62.115.0.0/16 AS1299 0.5503
202.97.29.166 CN 202.97.0.0/19 AS4134 0.5431
154.54.36.253 ??3 154.48.0.0/12 AS174 0.3266
184.105.65.110 US 184.104.0.0/15 AS6939 0.3114
154.54.59.86 ??3 154.48.0.0/12 AS174 0.2910

62.115.118.168 EU 62.115.0.0/16 AS1299 0.2859
62.115.125.161 EU 62.115.0.0/16 AS1299 0.2775
154.54.59.185 US 154.54.0.0/16 AS174 0.2742
192.168.1.2544 — 192.168.0.0/16 — 0.2612
112.174.66.214 KR 112.160.0.0/11 AS4766 0.2490

154.54.58.5 ??3 154.48.0.0/12 AS174 0.2482
154.54.36.53 ??3 154.48.0.0/12 AS174 0.2388

125.144.30.202 KR 125.128.0.0/11 AS4766 0.2384
62.115.122.159 EU 62.115.0.0/16 AS1299 0.2342
85.132.90.158 AZ 85.132.90.0/24 AS29049 0.2269
130.117.1.117 US 130.117.0.0/16 AS174 0.2181
72.52.92.113 US 72.52.64.0/18 AS6939 0.2174

1 CC: Country Code (as reported by WHOIS)
2 NBC: Normalized Betweenness Centrality
3 WHOIS not responding to this query. Most likely US (due to

AS174, see also row for 154.54.59.185)
4 IP is part of a prefix reserved for network-internal use

Table 4.7: Top 20 AS with the highest betweenness centrality (IPv4, CAIDA dataset
2021-09)

Regarding regions other than US and EU, there is a node in CN (AS4134) with a
normalized betweenness centrality of 0.5431, so about 54% of the topmost node. Since no
other node from CN is on the list, and this single node has a high betweenness centrality,
it might be a strong indicator that high-level routing in China is centralized into one
node, whereas lower-level routing is distributed. We have also found 2 KR nodes and
one in AZ.

One peculiar thing we observe is that this list contains the IP address 192.168.1.254,
which belongs to the 192.168.0.0/16, which is a subnet that is reserved for private use
within a network. There are four possible explanations for this phenomenon:

1. It is possible that one of the monitors sent out more probes than other monitors,
which caused this node to be on many more of the shortest paths than internal
nodes of other monitor networks.
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2. The internal networks of many monitors might simply have a node with this IP,
causing it to appear often in the dataset.

3. The internal nodes of monitor networks might usually be configured to not respond
to traceroute requests of the monitors, yet this one was not configured to behave
like that.

4. A public router is mistakenly reporting its internal IP to the traceroute request,
rather than its public IP.

By analysing the actual paths through the graph that contain this node, we were able
to find paths with length greater than 30 both incoming and outgoing, which would
be an indicator for point 4. There are 7 incoming and 31 outgoing edges, both of
which also contain edges to both internal-reserved and external IPs, ruling out point 3.
Evaluating the whois data for the direct connections to this node, we find that we have
2 inbound connections from KR and one from RW. As for outgoing connections, there
are connections to RW, CA, GB, and US. The wide range of direct connections from
opposite ends of the world is an indicator for point 2. A combination of the points 2 and
4 therefore seems likely.
In total, the top 19 nodes (disregarding the local IP address) hold 4.42% of the betweenness
centrality of the graph from this measurement, belonging to 6 distinct ASes, with 15 of
these nodes belonging to just 3 ASes.
We now analyse the top 20 nodes for IPv6 (Table 4.8). We see that unlike IPv4, the
distribution is uneven: The first 2 nodes have a normalized value of 1.0 and 0.8486
respectively, whereas the third one has a lower value, 0.3781, less than half of the second
one. Evaluating the whois data, we find that both of these top nodes belong to an
AS which is managed by Amazon. The nodes that are assigned to both AS16509 and
AS38895 belong to a Singaporean prefix, whereas those that are only assigned to AS16509
belong to US prefixes. In total, the 6 nodes managed by Amazon control 7.39% of the
betweenness centrality in this IPv6 measurement. For comparison, on IPv4, the AS with
the most influence held 1.43% of the betweenness centrality, which is lower. At the same
time, we find neither AS16509, nor Amazon in general, in the top 20 IPv4 nodes. It is
possible that the monitors are hosted on Amazon Web Services and thus be hit often
with every outbound connection, which would explain their frequent appearance in this
list.
The second most common AS is AS1299 with 4 prefixes in EU, holding 2.16% of the
betweenness centrality. This AS is also a top contender for IPv4, where its nodes amount
to 1.26% of the betweenness centrality. For IPv6, it seems to have a higher degree of
control in the network by about 71% (0.9 percentage points). However, it is just about
29% of the control that AS16509 exhibits over the shortest paths in the graph.
AS6939 also appears 4 times in the list with US prefixes, holding a total of 1.6% of the
betweenness centrality. Finally, we have 3 nodes in CN from 2 different ASes (1.49%)
and one more US node (AS15169, 0.32%).
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IP address CC1 Prefix AS number NBC2

2400:6500:0:2::c SG 2400:6500::/32 AS16509 / AS38895 1.0
2a01:578:0:13::8 US 2a01:578::/29 AS16509 0.8486

2001:438:ffff::407d:1d43 US 2001:438::/32 AS17025 / AS6461 0.3781
2600:9000:fff:ff00::300 US 2600:9000::/28 AS16509 0.37

2001:2034:1:b8::1 EU 2001:2030::/28 AS1299 0.3316
2408:8142:6000:f401:1::1 CN 2408:8000::/20 AS4837 0.2512
2600:9000:fff:ff00::401 US 2600:9000::/28 AS16509 0.2429

2001:2034:1:7a::1 EU 2001:2030::/28 AS1299 0.2337
2400:6500:0:2::2 SG 2400:6500::/32 AS16509 / AS38895 0.2232

2001:438:ffff::407d:1d54 US 2001:438::/32 AS17025 / AS6461 0.2106
2408:8000:9000:10::3 CN 2408:8000::/20 AS4837 0.1740

2001:470:0:4e4::2 US 2001:470::/32 AS6939 0.1721
2001:470:0:2cf::1 US 2001:470::/32 AS6939 0.1531

2409:8080:0:4:2c5:2f5:2:1 CN 2409:8000::/20 AS9808 0.1456
2001:470:0:52d::2 US 2001:470::/32 AS6939 0.1445
2001:470:0:404::1 US 2001:470::/32 AS6939 0.1409

2620:107:4000:9006::12 US 2620:107:4000::/44 AS16509 0.1403
2001:2034:1:73::1 EU 2001:2030::/28 AS1299 0.1315
2001:2034:1:6b::1 EU 2001:2030::/28 AS1299 0.128

2001:4860:1:1::1503 US 2001:4860::/32 AS15169 0.1252
1 CC: Country Code (as reported by WHOIS)
2 NBC: Normalized Betweenness Centrality

Table 4.8: Top 20 AS with the highest betweenness centrality (IPv6, CAIDA dataset
2021-09)

In total, the top 20 nodes hold 14.5% of the betweenness centrality of the graph from this
measurement, belonging to 7 distinct ASes (or 9, if you count the double-AS assignments).
Again, we see that on a high level, IPv6 routing is more centralized than IPv4 routing.

4.2 Comparison of datasets — Vienna and CAIDA dataset
In this section, we compare the data across the different datasets (Vienna datasets and
CAIDA datasets) for the same protocol and time period.

4.2.1 Degrees — IPv4
We begin again by comparing the degree statistics and start with the statistics for IPv4.
Both the Vienna and CAIDA data were collected in 2021-09 to ensure the result being
comparable.

Table 4.9 shows the node counts in the datasets. We see that from the collected nodes,
about 95% were identifiable and 5% unidentifiable. This holds true for both datasets.
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(a) Degree IN (b) Degree OUT

(c) Average Neighbor Degree IN (d) Average Neighbor Degree OUT

(e) Iterated Average Neighbor Degree IN (f) Iterated Average Neighbor Degree OUT

Figure 4.5: Comparison of Degree CDFs between datasets (IPv4 scans 2021-09)
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Vienna Vienna % CAIDA CAIDA %
Total nodes (Degree >0 in+out) 826,513 100% 1,034,262 100%

Identifiable nodes 789,041 95.47% 974,761 94.25%
Unidentifiable nodes 37,472 4.53% 59,501 5.75%

Leaf nodes (degree-OUT 0) 398,268 47.46% 563,456 51.87%

Table 4.9: Node counts and proportions (IPv4 scans 2021-09)

The number of leaf nodes is also comparable: About 50% of nodes in the graph are leaf
nodes in both datasets. We see that in this regard, the datasets differ only slightly. Note
that in the table for the Vienna dataset, we only included the nodes that are connected
to the graph (in- or out-degree of at least 1). We do not list them here, since the CAIDA
dataset does not include them.

Figure 4.5 shows the comparison of the degree statistics for the two datasets. Evaluating
the degrees (first row), we see that they are almost identical in every aspect. For the
Vienna dataset, there are slightly fewer nodes with an in-degree of 1 lower (61.38%,
compared to 63.58% for CAIDA). For out-degree, the situation is reversed (79.34% Vienna
vs. 77.30% CAIDA). In either case, the difference is around 2 percentage points only.

For AND (second row), we observe a larger difference. For in-AND, we see that the
Vienna line starts later than the CAIDA line. Analysing the data, we see that 1.48%
of CAIDA nodes have an in-AND strictly lower than 1, whereas only 0.04% of Vienna
nodes have such a value. In absolute values, this is 153 (CAIDA) and 3 (Vienna). This
is explained by the fact that the CAIDA measurement has 136 root points (in-degree 0),
whereas the Vienna dataset only has a single one. Starting with the in-AND value of 1,
we see that the plots are on the same level and grow at a similar rate.

For out-AND, we see that there are more nodes with low values for CAIDA. The CAIDA
dataset has 75.50% of nodes with an out-AND of strictly lower than 1, while the Vienna
dataset only has 61.80%. However, if we also include the nodes with a value of 1, we
obtain 83.74% and 83.62% respectively, which is virtually the same. From that point
onwards, the plots are similar.

For IAND, the same holds true, except that the in-IAND plots are similar even in the
beginning. The out-IAND data is similar to the out-AND data. This means that the
nodes are similarly well connected, both when considering just one hop or two hops. One
reason for this could be the low maximum values (see Table 4.10), as well as these nodes
being just one of many in the neighborhood of a node. This causes the average to not be
affected as much by considering more nodes.

Table 4.10 furthermore shows the average and maximum values for the degree metrics for
each protocol. For the averages, the datasets do not show a large difference, the values
are close to each other. One notable difference is the fact that for the Vienna dataset, the
average out-IAND is below 1, while for the CAIDA dataset, it is above 1. On average,
considering the two hop neighborhood, a node in the Vienna dataset reaches less than
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Vienna AVG CAIDA AVG Vienna MAX CAIDA MAX
Degree IN 2.0352 2.5718 164 293
Degree OUT 2.0352 2.5718 8,208 3,532
AND IN 5.0396 7.7803 164 293
AND OUT 1.2584 1.8935 772.3333 1,501
IAND IN 6.9272 10.2280 82.5 166.1364
IAND OUT 0.8170 1.1048 376.5 727.5

Table 4.10: Average and max values per dataset (IPv4 scans 2021-09)

one node from each node in this neighborhood, indicating that these neighborhoods often
consist of nodes with an out-degree of 0. For in-IAND, the values are larger, with CAIDA
again having a higher average (10.2280 CAIDA, 6.9272 Vienna).

Evaluating the maximum values, we see that CAIDA has higher values than Vienna
(twice as much as the Vienna values), except for the out-degree. Here, Vienna has a value
2.3 times as high as the CAIDA value. The CAIDA dataset is collected from multiple
starting points all around the world, and this seems to result in a network with nodes
of higher degrees (both on average and in maximum values). The fact that the Vienna
dataset is collected from a single source point, on the other hand, causes routing to
be more centralized towards a few single high-ranking nodes, causing the out-degree
maximum to be higher.

The most common values for in-AND in the Vienna dataset are 1, 2, and 3 (in this
order), making up for a total of 55.28%. All other values are 5% or lower. The same
holds true for the CAIDA dataset, where these 3 values make up for 46.57% of nodes.
For out-AND, the situation is the same: The most common values are 0, 1, and 2 (in
this order), making up for a total of 83.51% (Vienna) and 81.13% (CAIDA), with all
other values having a proportion of below 2% each. We see that the datasets only differ
slightly in this regard.

In summary, we see that for IPv4, the degree data across datasets does not differ much.
The maximum values (other than out-degree) are consistently higher for the CAIDA
dataset. The same goes for the average, though the difference is small. We therefore
conclude that for IPv4 degrees, the vantage point does not make a large difference.

4.2.2 Degrees — IPv6
We now compare the degree statistics for the IPv6 measurements of the Vienna and
CAIDA datasets. The data for both datasets was collected in 2022-02.

Table 4.11 shows the node counts in the datasets. The first thing to note is that the
Vienna dataset is larger than the CAIDA dataset (despite only considering the nodes
with a degree above 0 for at least in or out). We see that the CAIDA dataset amounts
to 0.57% of the size of the Vienna dataset. We also see that the number of unidentifiable
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Vienna Vienna % CAIDA CAIDA %
Total nodes (Degree >0 in+out) 62,125,794 100% 355,399 100%

Identifiable nodes 61,697,494 99.31% 324,275 91.24%
Unidentifiable nodes 428,300 0.69% 31,123 8.76%

Leaf nodes (degree-OUT 0) 5,833,062 9.39% 154,851 43.57%

Table 4.11: Node counts and proportions (IPv6 scans 2022-02)

nodes is different: In the Vienna dataset, 0.69% of nodes were unidentifiable, whereas
for the CAIDA dataset it was 8.76% (12.7 times as much), despite being mandatory
according to the IPv6 specification.

For the number of leaf nodes, we again observe that the CAIDA dataset has a higher
percentage. The proportion of leaf nodes is 9.39% for Vienna and 43.57% for CAIDA.
For Vienna, we see that more of the nodes are involved in routing than for CAIDA.

Analysing the plots in Figure 4.6, we see that the plots are similar to the comparison of
IPv4 and IPv6 for the Vienna dataset (see Figure 4.1). For this reason, the analysis of
these plots will be similar to the comparison above.

We start with the first row, the degree plots. For Vienna, we see that only 10.26% have
an in-degree of 1. However, 89.23% of nodes have an in-degree of 2, which means that
99.49% of nodes have an in-degree of 2 or lower, the maximum being 12,590. The CAIDA
curve is a bit different: We have 36 origin nodes with in-degree 0 (0.01%), and 56.26% of
nodes have an in-degree of 1. While this is more than the Vienna dataset, the amount of
nodes with a degree of 2 or less (71.25%) is smaller than in the Vienna dataset. From
this point onwards, the plot rises smoothly close to the 1.0 mark: 99.87% of nodes have
an in-degree of 70 or less, with the maximum recorded in-degree being 1,275.

Out-degree is similar for CAIDA (albeit a bit shifted to the right) with 43.57% having
an out-degree of 0 and 68.92% having a value of 1 or lower. For Vienna, we see that this
time 99.26% of nodes have an out-degree of 0 or 1.

Going by degree, we see that in the Vienna dataset, the vast majority of nodes in the
Vienna dataset seem to be intermediate routing nodes, whereas that number is smaller for
the CAIDA dataset. It appears that the Vienna scans discover more of these intermediate
nodes than the distributed CAIDA scan.

For both AND and IAND, we see that for the in-direction, the plots grow relatively
smoothly, with the Vienna dataset having higher values than CAIDA (due to the larger
dataset size). For in-AND, we see that while the CAIDA dataset has 22.75% of nodes
with an in-AND of 1 or lower (with 22.72% being exactly on 1), only 1.78% of Vienna
nodes have an in-AND of 1 or lower. On the other end of the spectrum, we see that
26.51% of Vienna nodes have an in-AND above 1,000. For CAIDA, only 0.39% of nodes
have an and-IN of 100 or higher. This does make sense, as the maximum in the Vienna
dataset is higher, which leads to more nodes having this value for in-AND. However,
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4.2. Comparison of datasets — Vienna and CAIDA dataset

(a) Degree IN (b) Degree OUT

(c) Average Neighbor Degree IN (d) Average Neighbor Degree OUT

(e) Iterated Average Neighbor Degree IN (f) Iterated Average Neighbor Degree OUT

Figure 4.6: Comparison of Degree CDFs between datasets (IPv6 scans 2022-02)
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Vienna AVG CAIDA AVG Vienna MAX CAIDA MAX
Degree IN 1.9401 3.3447 12,590 1,275
Degree OUT 1.9401 3.3447 11,311,477 2,543
AND IN 967.5179 9.6715 12,590 1,275
AND OUT 944.8912 4.3051 11,311,477 2,543
IAND IN 157.4636 10.8000 9,209.5 638
IAND OUT 22.0393 2.2213 5,655,739 1,462

Table 4.12: Average and max values per dataset (IPv6 scans 2022-02)

since more than a quarter of Vienna nodes are in this range, it also means that there are
several high-degree nodes which dispatch traffic to a large amount of different successor
nodes.

For the out-direction, we see that AND and IAND appear similar. In the Vienna dataset,
we found 89.30% of nodes with out-IAND of 1 and 9.44% with a value of 0, which is
similar to the 89.39% and 9.44% that we found for out-AND. For CAIDA, we found
73.60% of nodes with an out-AND of 1 or lower and 74.65% for out-IAND. We see that
out-AND is similar to out-IAND per dataset, revealing that the connectivity in the graph
does not change significantly over two hops compared to one hop.

Finally, we analyse the average and maximum values for the statistics in Table 4.12. We
see that for the Vienna dataset, the degree average is 1.9401, which is close to 2. This is
due to the large number of nodes with a degree of 2, which makes the average approach
2. We see that the average degree is higher in the CAIDA dataset, where it is 3.3447.
This is the result of having fewer nodes with degree 0 or 1 (proportionally).

For every other average value, the Vienna dataset has higher averages. This is due to the
larger scale of the graph, allowing for nodes with higher degrees that pull the average
up. In fact, if we analyse the maximum values, we see that in the Vienna dataset, the
maximum in-AND is 10 times as high and the out-AND is 4,448 times as high as the
CAIDA maximum. This does also show in the averages, as they are 100 and 220 times
as much as the CAIDA averages.

For IAND, the averages are lower for Vienna, but roughly the same for CAIDA. Evaluating
the maximums, we see that this is because of Vienna dataset maximums that are lower
for IAND than for AND. For CAIDA, the maximums of IAND are half as much as the
ones for AND, which is not affecting the average much.

4.2.3 Betweenness Centrality — IPv4

In the following part, we examine the betweenness centrality values. Figure 4.7 compares
the cumulative distribution of the betweenness centrality in the IPv4 datasets of 2021-09.
Unreachable nodes of the Vienna dataset are not included in the plot.
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Figure 4.7: Comparison of Betweenness Centrality CDFs between datasets with normal-
ized log y-axis (IPv4 scans 2021-09)

We observe that the two curves are almost identical on the same scales. In the middle
part of the plot, between 0.1 and 0.9, we see that the Vienna values are lower than the
CAIDA values by a small offset, with the curves otherwise running parallel to each other.

We see that on the edges, the curves are relatively flat, whereas in the central part, the
curves are following a steep slope. 88.89% of Vienna nodes and 86.64% of CAIDA nodes
have a normalized betweenness centrality between 10−6 and 10−3. On the logarithmic
scale, this is towards the middle of the observed value range. At the beginning of the
central region of the plot, we see that both datasets exhibit a vertical incline. For Vienna,
this amounts to 21.46% of nodes between 2.33 · 10−6 and 2.34 · 10−6. For the CAIDA
dataset, we have 11.11% in the range between 8.643 · 10−6 and 8.644 · 10−6.

As for the upper end of the values, for Vienna, we see that 3.08% of nodes control 84.22%
of betweenness centrality (normalized value above 10−3.4). The CAIDA dataset seems to
be less centralized: 5.06% of nodes control 80.36% of betweenness centrality (normalized
value above 10−3). Nonetheless, both datasets show a concentration of a large portion of
the shortest routes via a small amount of nodes.
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As for the lower end, 9.65% of Vienna nodes and 11.87% of CAIDA nodes have a
normalized betweenness centrality of below 10−6. As expected, we see few nodes on the
high end of the spectrum. On the other hand, we also see few nodes on the lower end of
the spectrum, indicating that most nodes in the graph have a relatively high importance
with few redundant paths.

Analysing the proportion of nodes with a betweenness centrality of 1 or lower, we see
that 0.11% of Vienna nodes and 0.04% of CAIDA nodes have a value below 1. These
are nodes that are on a shortest path, but for which there are alternative paths of the
same length. As a consequence, these nodes could be removed without disturbing data
flow (as long as one of the alternatives remains). We see that in the Vienna dataset, in
relative terms, they are more than twice as common as in the CAIDA dataset.

For the nodes with a value of exactly 1, we see that Vienna and CAIDA have 0.57%
and 0.25% respectively. For both datasets, the amount of nodes with a value of 1 is
four times as much as the amount of nodes with a value below 1. Removing these nodes
would either cause a disruption in the connectivity, or cause certain paths to be longer. It
appears that for the “simple” routing nodes, for both datasets, more of them are essential
on the path than a mere alternative.

The minimum value in the Vienna dataset is 0.125, which most likely means that this
node is sharing its path with 7 other nodes (as 1/0.125 = 8, assuming that this node is
not part of multiple such paths). For CAIDA, the smallest value is 0.11111, indicating
that the same phenomenon is occurring, but on a fork with 9 nodes. All in all, we see
that the difference between Vienna and CAIDA in this matter is minuscule.

Due to the similar scale of the datasets, we can also compare the maxima — the Vienna
maximum is 5,490,506,466.23519 whereas the CAIDA maximum is 9,036,217,166.37967
(1.65 times as much). The total node counts are 324,467 for Vienna and 464,095 for CAIDA
(1.43 times as much), which demonstrates that the betweenness scaled proportionally to
the dataset size for IPv4.

4.2.4 Nodes with the highest betweenness centrality — IPv4

In this section, we want to compare the nodes with the highest betweenness centrality
across the datasets. We have already analysed the top 20 nodes of the CAIDA dataset of
2021-09 in Table 4.7 of Section 4.1.6. For context, we will provide a short summary of
the analysis results.

From the top 20 nodes, we see that 6 nodes are from the US (with 4 being from the
same AS, controlling 1.26% of betweenness centrality). There are furthermore 5 nodes
belonging to one European AS, holding 1.26% of betweenness centrality. In total, 15 out
of the 20 nodes belong to just 3 AS, with 11 belonging to 2 AS only. In total, the top 19
nodes (disregarding the one node with a local IP address) hold 4.42% of the betweenness
centrality of the graph.
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IP address CC1 Prefix AS number NBC2

192.168.209.1103 — 192.168.0.0/16 — 1.0
80.157.203.93 DE 80.157.0.0/16 AS3320 0.5192
96.110.38.153 US 96.96.0.0/12 AS7922 0.3342
27.68.232.158 VN 27.64.0.0/12 AS7552 0.2978
205.189.32.235 CA 205.189.32.0/23 AS6509 0.2544
96.110.40.42 US 96.96.0.0/12 AS7922 0.2368

113.171.36.186 VN 113.171.32.0/19 AS7643 0.2243
27.68.244.71 VN 27.64.0.0/12 AS7552 0.2225
202.249.2.40 JP 202.249.2.0/24 AS2500 0.2053

123.255.90.195 HK 123.255.88.0/21 unassigned4 0.1967
209.18.43.63 US 209.18.32.0/20 AS7843 0.1942
188.1.144.222 DE 188.1.0.0/16 AS680 0.1911
12.123.159.233 US 12.0.0.0/8 AS7018 0.1756
210.173.145.78 JP 210.173.144.0/21 AS18126 0.1613
213.140.51.59 ES 213.140.32.0/19 AS12956 0.1569
154.54.82.246 ??5 154.54.0.0/16 AS174 0.1445
52.93.251.81 US 52.84.0.0/14 AS16509 / AS14618 0.1436
129.250.3.57 US 129.250.0.0/16 AS2914 0.1410
154.54.41.146 ??5 154.54.0.0/16 AS174 0.1375

180.240.190.237 SG 180.240.128.0/17 AS56308 0.1355
1 CC: Country Code (as reported by WHOIS)
2 NBC: Normalized Betweenness Centrality
3 IP is part of a prefix reserved for network-internal use
4 Prefix got unassigned in the time between the measurement and the

WHOIS query. The IP is not reachable anymore at the time of writing.
5 WHOIS not responding to this query. Most likely US (refer to Table 4.7)

Table 4.13: Top 20 AS with the highest betweenness centrality (IPv4, Vienna dataset
2021-09)

We now proceed with the analysis for the Vienna measurement of 2021-09. The values are
displayed in Table 4.13. In this measurement, the top node has an IP that is reserved for
network-internal use. While it could be a misconfigured node on the internet reporting a
wrong IP, it is most likely an internal routing node of the outbound network.

If we disregard the top node, we see that the values are evenly distributed with no sudden
cuts or jumps except for the first and second node (after the top node): The second node
has a value that is 35.63% smaller than the first node.

Just like in the CAIDA dataset, we see a large range of countries for the prefixes. The
most common countries are US (6 nodes) and Vietnam (3 nodes). There are 2 nodes from
Germany and Japan each, as well as 2 unknown nodes. The data from measurements
above suggests that AS174 is located in the US, resulting in 8 US nodes. Every other
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country appears just once.

The same is true for the AS: While for the CAIDA dataset, we have seen that 3 ASes
owned 15 of the nodes, in this dataset, we have a more diversified picture. Only 3 of
the AS hold 2 nodes, every other AS has just one node in this listing. This could be
due to the fact that if the monitors for the CAIDA dataset seem to encounter many
nodes from certain ASes, this is an indicator that they are hosted with a certain provider.
This explains why many of the top nodes belong to the same few ASes. For the Vienna
dataset, it is always the same provider nodes that are traversed, so there are not many of
them in the list (in this case, none).

Even though the top nodes are spread broadly both in terms of AS relation as well as
location, they do still control the majority of the shortest paths in the graph. In total,
the top 19 nodes, ignoring the internal node, control 10.54% of betweenness centrality in
the graph (13.13% if we consider the internal node). This is similar to the 12.03% of the
CAIDA dataset.

It appears that for betweenness centrality on IPv4, the vantage point does make a
difference. The distributed measurement technique of the CAIDA dataset has resulted
in a more centralized routing, as the encountered nodes belonged to fewer ASes as they
did for the Vienna measurement. At the same time, we also see a broader geographical
distribution of these top nodes.

4.2.5 Betweenness Centrality — IPv6

In this section, we compare the betweenness centrality between the Vienna and CAIDA
datasets collected on 2022-02. Figure 4.8 compares the cumulative distribution of the
betweenness centrality in the IPv6 datasets of 2022-02. Unreachable nodes of the Vienna
dataset are not included in the plot.

Analysing the shapes of the plots, we see that the CAIDA curve is going more smoothly,
while the Vienna curve has two sharp vertical inclines in the first half of the curve. The
tendency on both curves, however, is the same: Most nodes are present in the middle
value range (logarithmically) with outliers on either side.

On the upper end of the range, for the Vienna dataset, we see that 3.01% of nodes control
95.45% of betweenness centrality (normalized value above 10−5). Compared to that,
the CAIDA dataset is less centralized: 5.13% of nodes control 82.82% of betweenness
centrality. While this is significantly less than the Vienna dataset, it is nonetheless a
small minority controlling more than four fifths of the shortest path in the graph.

As we have already discussed in Section 4.1.3, the Vienna curve has 2 significant vertical
inclines: One is for the betweenness value of 1 (normalized value 2.19 · 10−14) with 3.98%
of all nodes having that value. In the CAIDA dataset, only 0.39% of nodes have a value
of 1. Regarding values below 1, we see a similar result for both datasets (0.24% Vienna,
0.19% CAIDA).
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Figure 4.8: Comparison of Betweenness Centrality CDFs between datasets with normal-
ized log y-axis (IPv6 scans 2022-02)

The larger incline is between 10−8.1 and 10−8: 31.88% of nodes are within this small value
range. The CAIDA dataset does not display any such inclines and progresses smoothly.

We already mentioned that the middle value range contains the most nodes. In numbers,
85.93% of Vienna nodes are within 10−9 and 10−5. For CAIDA, we observe that 69.41%
are within 10−6 and 10−4. On the lower end of the graph, the CAIDA data shows a
smoother incline, demonstrating that on the lower end, the betweenness values are more
distributed.

Lastly, we analyse the smallest betweenness value per dataset. In the Vienna dataset,
the smallest value is 0.0147 (more precisely, 1/68), whereas for the CAIDA dataset it is
0.067 (1/15), which is 4.53 times as much. This is most likely due to the difference in
datasize. Nonetheless, this is an indicator of strong redundancy in certain areas of the
graph in both datasets, more so in the Vienna dataset.
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IP address CC1 Prefix AS number NBC2

2600:9000:fff:ff00::300 US 2600:9000::/28 AS16509 1.0
2620:107:4000:b010::f001:6406 US 2620:107:4000::/44 AS16509 0.8055

2600:9000:fff:ff00::401 US 2600:9000::/28 AS16509 0.6761
2a01:578:0:8005::146 US 2a01:578::/29 AS16509 0.3429

2001:798:cc::1a GB 2001:798::/40 AS20965 / AS21320 0.3375
2001:468:0:1::ef US 2001:468::/32 AS11537 0.2630

2620:107:4000:cfff::f200:a811 US 2620:107:4000::/44 AS16509 0.1902
2409:8080:0:4:2c5:2f5:2:1 CN 2409:8000::/20 AS9808 0.1531

2001:2034:1:73::1 EU 2001:2030::/28 AS1299 0.1466
2001:2034:1:6c::1 EU 2001:2030::/28 AS1299 0.1341
2001:2034:1:b8::1 EU 2001:2030::/28 AS1299 0.1303

2409:8080:0:4:2c6:2f6:2:1 CN 2409:8000::/20 AS9808 0.1238
2001:2034:0:16f::1 EU 2001:2030::/28 AS1299 0.1215

2620:107:4000:c5e0::f3fd:c02 US 2620:107:4000::/44 AS16509 0.1176
2620:107:4000:c5e0::f3fd:c03 US 2620:107:4000::/44 AS16509 0.1135

2001:470:0:52d::2 US 2001:470::/32 AS6939 0.1074
2408:8001:3011:a00::3 CN 2408:8000::/20 AS4837 0.1029

2001:798:99:1::29 GB 2001:798::/40 AS20965 / AS21320 0.0987
2001:470:0:4b7::1 US 2001:470::/32 AS6939 0.0963

2620:107:4000:c5e0::f3fd:c00 US 2620:107:4000::/44 AS16509 0.0938
1 CC: Country Code (as reported by WHOIS)
2 NBC: Normalized Betweenness Centrality

Table 4.14: Top 20 AS with the highest betweenness centrality (IPv6, CAIDA dataset
2022-02)

4.2.6 Nodes with the highest betweenness centrality — IPv6
In this section, we want to compare the top 20 nodes for betweenness centrality. The
Vienna IPv6 dataset of 2022-02 has already been analysed in Table 4.6 of Section 4.1.4.
We therefore only provide a short summary of the results for context.

From the top 20 nodes, 11 belong to the outbound ISP. The remaining 9 nodes are
distributed among 7 ASes, with one AS (AS56630) controlling 3.31% of betweenness
centrality. The top 9 non-ISP nodes hold 6.27% of betweenness centrality in the graph.

We continue with the analysis of the CAIDA measurement of 2022-02. The values are
displayed in Table 4.14. We see that 8 of the top 20 nodes, including the top 4, belong to
the same AS (AS16509, US). According to the WHOIS data, this AS number is assigned
to Amazon AWS. It is therefore highly likely that the monitors are hosted with Amazon
AWS, which would make it an inevitable routing hop for many outbound paths from the
different monitors. These 8 nodes alone control 12.09% of the betweenness centrality
in the graph, which means that they are most likely more important than “just” for
outbound routing.
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The second most common AS is AS1299 (EU), appearing 4 times in total and controlling
1.93% of betweenness centrality in total. All other nodes have 2 or fewer nodes in the
top 20 list.

Geographically, we see that more than half, 11 nodes, belong to a US prefix, 4 to EU, 3
to CN and 2 to GB. In the Vienna dataset, we discovered a completely different list: We
found RU nodes, which are missing here. There is furthermore no AS overlap except for
AS6939, which appears twice in both datasets (with the same prefix for all 4 occurrences).

Counting by AS, we see that 12 of the nodes belong to just 2 ASes (8 times AS16509 and
4 times AS1299). The remaining 8 nodes are divided among 5 ASes. We therefore see a
higher concentration of traffic with fewer ASes than for the Vienna dataset, even though
for the Vienna dataset, 11 nodes belong to the (single) outbound ISP. The 12 mentioned
nodes control 14.02% of betweenness centrality, with the entire 20 nodes amounting for
18.67%.

We conclude that for IPv6, the vantage point makes a difference just like for IPv4. We see
concentration on different geographical regions, more centralization on a smaller number
of ASes, and a higher degree of control for the top nodes in the CAIDA dataset.

4.3 Comparison over time

In the previous sections, we analysed the difference across protocols and across datasets,
while using measurements of the same time to ensure comparability. In this section, we
compare the data over time on the same dataset. Since we have done detailed comparisons
in the previous sections, we will now compare the time difference all the datasets available
for a single datasource on one protocol. The relevant datasets are the Vienna IPv4
measurements of 2021-09 and 2022-02 as well as the CAIDA IPv6 measurements of
2021-09, 2022-02, and 2022-09.

4.3.1 Degrees — IPv4 over time

We now analyse the change in IPv4 routing by evaluating the Vienna measurements of
2021-09 and 2022-02.

Table 4.15 shows the amount of recorded nodes per measurement. The total amount of
nodes is similar: In both measurements, more than 12 million nodes were recorded. The
2022-02 measurement has 4.02% fewer nodes than the 2021-09 measurement. As for the
proportion of unidentifiable nodes, in both measurements we find that 0.3% of nodes did
not report their IP. From the total nodes, we furthermore see that while 93.48% of nodes
from the earlier measurement are entirely isolated from the graph (no edges in or out),
for the later measurement, the proportion is 99.34%. However, analysing the number
of nodes that are connected to the graph, we see that the numbers are close. The later
measurement has 1.93% fewer connected nodes than the earlier measurement.
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2021-09 2021-09 % 2022-02 2022-02 %
Total nodes 12,671,145 100% 12,161,720 100%

Identifiable nodes 12,633,673 99.7% 12,125,128 99.7%
Unidentifiable nodes 37,472 0.3% 36,592 0.3%

Degree 0 in+out 11,844,632 93.48% 11,351,154 99.34%

2021-09 2021-09 % 2022-02 2022-02 %
Degree >0 in+out 826,513 100% 810,566 100%

Identifiable nodes 789,041 95.47% 773,974 95.49%
Unidentifiable nodes 37,472 4.53% 36,592 4.51%

Leaf nodes (degree-OUT 0) 398,268 47.46% 390,720 48.2%

Table 4.15: Node counts and proportions (IPv4 Vienna dataset)

2021-09 AVG 2022-02 AVG 2021-09 MAX 2022-02 MAX
Degree IN 2.0352 2.0288 164 164
Degree OUT 2.0352 2.0288 8,208 8,180
AND IN 5.0396 5.0202 164 164
AND OUT 1.2584 1.2534 772.3333 763.6667
IAND IN 6.9272 6.8827 82.5 82.5
IAND OUT 0.8170 0.8126 376.5 353.7538

Table 4.16: Average and max values per dataset (IPv4 Vienna dataset)

For the connected nodes, we see that for both measurements, the proportion of unidentifi-
able nodes amounts to about 4.5%. About half of the connected nodes are leaf nodes, with
the later measurement again having 1.9% fewer such nodes than the earlier measurement,
however, for the later measurement, the proportion relative to the connected nodes is
higher.

In any case, all observed changes are minor and can thus be explained by usual infras-
tructure changes, changing networks, and maintenance work.

Figure 4.9 shows the CDFs for the datasets for the collected degree statistics. There is no
discernible difference between the two plots, one of them covers the other. If we analyse
the average and maximum values in Table 4.16, we see that the average and maximum
values are almost the same. A tendency for lower values on the later measurement can
be seen, both in average and maximum, for every metric (the total number of nodes is
slightly lower as well, as seen in Table 4.15). The differences, however, are too insignificant
to be linked to any impactful event or cause.

A detailed analysis of the 2021-09 dataset, along with a comparison with the CAIDA
dataset of the same time period, has been done in Section 4.2.1. A detailed comparison
between the two datasets here would be pointless, as the statistics are essentially the
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2021-09 2022-02 2022-09
Total nodes 356,146 100% 355,399 100% 386,743 100%

Identifiable nodes 312,659 87.79% 324,276 91.24% 354,225 91.59%
Unidentifiable nodes 43,487 12.21% 31,123 8.76% 32,518 8.41%

Leaf nodes 151,050 42.41% 154,821 43.56% 167,640 43.35%

Table 4.17: Node counts and proportions (CAIDA IPv6 dataset)

AVG MAX
2021-09 2022-02 2022-09 2021-09 2022-02 2022-09

Degree IN 3.2790 3.3447 3.4355 1,338 1,275 1,422
Degree OUT 3.2790 3.3447 3.4355 2,431 2,543 2,060
AND IN 8.9673 9.6715 9.4585 1,338 1,275 1,422
AND OUT 3.6763 4.3051 3.9543 2,431 2,543 2,060
IAND IN 9.5980 10.8000 10.4549 669.5 638 711.5
IAND OUT 1.9833 2.2213 2.0131 1,216 1,462 906.8

Table 4.18: Average and max values per dataset (CAIDA IPv6 dataset)

same. Nonetheless, the conclusion we draw here is that for IPv4, we see that the node
counts and degree statistics have not changed significantly.

4.3.2 Degrees — IPv6 over time
In this section, we analyse the change in IPv6 routing by comparing the CAIDA mea-
surements of 2021-09, 2022-02, and 2022-09.

Table 4.17 shows the node count for each measurement. The first and second measurement
show little difference; the third measurement has 8.6% more nodes than the first one. The
proportion of unidentifiable nodes decreases over time, starting with 12.21% and ending
with 8.41%. In absolute numbers, the difference between the first and last measurement is
10,969, which amounts to 25.22% of the value of first measurement. In absolute numbers,
the number of leaf nodes increased, though proportionally, it only grew a little: The first
measurement has 42.41% leaf nodes, and the latest has 43.35%. The middle one has
43.56%, which is the highest value of the 3, however, the absolute number is in the middle.
All in all, the only significant change is the relative and absolute drop in unidentifiable
nodes.

Figure 4.10 shows the CDFs for the degree statistics for all 3 CAIDA IPv6 datasets. The
lines in the degree plots are aligned and virtually the same. For the other stats, the
different lines are not exactly aligned, though they progress in a similar pattern with just
small offsets. These offsets occur at the beginning, in the low values range. The largest
observable difference is for out-AND (and out-IAND). The first measurement has 61.79%
of nodes with an out-AND of below 1, whereas the last measurement has 64.21% such
nodes. In general, we see a tendency for the CDF to shift right for later measurements,
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(a) Degree IN (b) Degree OUT

(c) Average Neighbor Degree IN (d) Average Neighbor Degree OUT

(e) Iterated Average Neighbor Degree IN (f) Iterated Average Neighbor Degree OUT

Figure 4.9: Comparison of Degree CDFs by time (Vienna IPv4 scans)
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(a) Degree IN (b) Degree OUT

(c) Average Neighbor Degree IN (d) Average Neighbor Degree OUT

(e) Iterated Average Neighbor Degree IN (f) Iterated Average Neighbor Degree OUT

Figure 4.10: Comparison of Degree CDFs by time (CAIDA IPv6 scans)
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indicating an increase in simple routing nodes (i.e., nodes with little degree). However,
the shift is small, so we would need more data to confirm this.
Evaluating the average and maximum values in Table 4.18, we observe the same develop-
ment as for the table and graph. The values do not change significantly over time. For the
degree averages, we see a slight tendency towards higher values with later measurements,
though the difference remains minuscule. For AND and IAND, we see that the second
measurement has higher values than the first and third. This indicates that nodes in the
middle measurement have a larger reach on average. The reach decreases in the third
measurement, though it is still closer to the second measurement than to the first.
For the maximum values, the second measurement has the highest values of all 3 for all
out-statistics and the lowest values of all 3 for all in-statistics. The third measurement
has the highest values of all 3 for all in-statistics and the lowest values of all 3 for all
out-statistics. The first measurement has maximum values which are always situated in
the middle between the values from the other 2 measurements. Between the first and the
second measurement, the values for the in-statistics are going down and for out-statistics
they are going up. Comparing the first and the third measurement, the exact opposite is
the case. We can therefore not make out a clear trend here.
In conclusion, we see a slight trend towards more centralization with higher-degree nodes
and more nodes with low degrees, evidenced by the increasing averages between 2021-09
and 2022-09, the CDFs showing more low-degree nodes, and the proportion of leaf nodes
being higher. Nonetheless, we see a decrease in the out-statistics maximum. The 2022-02
measurement, which lies in between these 2 measurements, exhibits higher average for
AND and IAND than 2022-09. We cannot confidently draw a conclusion here.

4.3.3 Betweenness centrality — IPv4 over time
We now compare the betweenness centrality between the 2021-09 and the 2022-02 Vienna
measurements of the IPv4 range. Unreachable nodes are not included in the plot.
Inspecting Figure 4.11, we notice that both lines are identical. There is not a single spot
where one line deviates from the other. Calculating the sum of all betweenness centrality
values over all nodes, the later measurement has a sum that is lower by 4.03%. At the
same time, the measurement has 4.02% fewer nodes than the earlier measurement, which
lines up.
We have already analysed this dataset in detail in Section 4.1.3. For reference, we give
a quick summary of the results here. We found that 3.1% of nodes have a normalized
betweenness higher than 10−3.4, though 84.33% of betweenness centrality in the graph is
held by these nodes. Most node values are situated in the middle range (logarithmically)
of the plot: We found that 82.64% of nodes have a normalized betweenness value between
10−6 and 10−4.
As the plots are exactly alike, a detailed comparison makes no sense here, as this has
been done in other sections already. In conclusion, we see that the betweenness centrality
only differs marginally from one measurement to another.
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Figure 4.11: Comparison of Betweenness Centrality CDFs over time with normalized log
y-axis (Vienna IPv4 scans)

4.3.4 Nodes with the highest betweenness centrality — IPv4 over time
In this section, we compare the top 20 nodes with the highest betweenness centrality
for the 2021-09 and the 2022-02 Vienna IPv4 measurements. The 2021-09 data has
already been displayed in Table 4.13 of Section 4.2.4, and the 2022-02 data in Table 4.5
of Chapter 4.1.4.

In the 2021-09 dataset, we have found that the topmost node was an internal network
node. The third node has a value (0.3342) that is 35.63% lower than the value of the
second node (0.5192), the rest of the values are distributed evenly, with the node at
position 20 having a relative value of 0.1355. Geographically, the nodes are distributed
widely: We have 8 US nodes, however, the other 11 nodes are situated in 7 different
regions. In total, only 3 ASes hold 2 nodes, the rest of the discovered ASes only hold
1 node each. We found that the top 19 nodes (disregarding the interal node) control
10.54% of betweenness centrality.

In the 2022-09 dataset, we find no network-internal nodes, though we found two nodes
belonging to the ISP where the monitor is located. The topmost node is located in HK
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and has a value of almost twice as much as the second one (Normalized values: 1.0 vs.
0.5267). After the first three nodes, the values are distributed evenly down to the node on
position 20, which has a normalized value of 0.1343. Unlike the previous dataset, we find
that this one is more centralized: The top 18 nodes (disregarding the ISP nodes) hold
12.03% of betweenness centrality, yet they belong to only 7 different ASes. Furthermore,
12 of these 18 nodes belong to just 3 ASes. These 12 nodes, together with the top node,
hold 7.05% of the betweenness centrality.

Despite both measurement having been undertaken from the same location, we see that
while the 2021-09 measurement was more spread out in terms of ASes and geography,
the 2022-02 measurement shows a more centralized picture. We have fewer ASes from
fewer locations, which are part of a large amount of the shortest paths in the graph.

4.3.5 Betweenness centrality — IPv6 over time

We now compare the betweenness centrality between the 2021-09, the 2022-02, and the
2022-09 CAIDA measurements of the IPv6 range. Figure 4.12 shows the CDFs of all
three datasets on the same scale. The lines are all showing the same shape. There is a
smooth incline until 0.3, where the incline speed decreases for all three lines. At about
0.9, the incline speed increases again until the lines all meet again at 1.0.

From the graph, it is evident that the largest difference can be seen in the incline until 0.3.
From there onwards, the lines run in parallel until they meet again at the end. Until 0.3,
however, the lines grow at different speeds. At the 0.3 mark, the earliest measurement
has the highest normalized value (6.26 · 10−6), followed by the second measurement
(4.27 · 10−6) The last measurement has the lowest value (1.02 · 10−6).

We have gathered the sum of the betweenness centrality values, as well as the average
and maximum, into Table 4.19. Here we see that the absolute values increase over time,
yet the normalized values decrease. The 2022-09 measurement has a sum which is 1.78
times as much, an average of 1.66 times as much and a maximum of 6.3 times as much as
the corresponding 2021-09 value. With the normalized sum and average, the opposite is
happening: The 2022-09 measurement has a normalized sum of 0.28 times as much and
a normalized average of 0.26 times as much as the corresponding 2021-09 value. In the
previous section, we found that the 2022-09 measurement only has 1.09 times as many
nodes as the 2021-09 measurement. We therefore observe two things: For one, the sum
of centrality has increased largely, causing the average to also be higher. At the same
time, we see a decrease in normalized values, indicating that the “additional” centrality
was taken up by a few top nodes.

This is also visible in the maximum, which is 6.3 times higher than in the initial
measurement. This tendency is only slightly visible in the middle measurement, despite
the three measurements being 5 and 7 months apart. However, the second measurement
has 0.21% fewer nodes than the first, which is a strong indicator for this centralization
tendency already being present in the middle measurement.
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2021-09 2022-02 2022-09
Sum 289,461,095,318.4920 328,355,052,616.7510 516,127,430,459.9280
Sum (norm.) 38.2313 27.6160 10.8121
Avg 1,459,205.2958 1,680,812.1247 2,420,497.0664
Avg (norm.) 0.00019 0.00014 0.00005
Max 7,571,303,950.3481 11,890,021,027.1549 47,736,243,830.7072

Table 4.19: Sum, average and max betweenness centrality values per dataset (CAIDA
IPv6 scans)

Figure 4.12: Comparison of Betweenness Centrality CDFs over time with normalized log
y-axis (CAIDA IPv6 scans)

We conclude from this that as more paths are added to the graph (either through new
targets or increased redundancies), they have to pass the same central routing nodes,
making them even more central than they already were. While we have not been able to
discover this for the IPv4 Vienna measurements, we were able to observe this for the
CAIDA datasets.
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4.3.6 Nodes with the highest betweenness centrality — IPv6 over time
We now want to analyse the development of the top 20 nodes with the highest betweenness
centrality over time for IPv6 by comparing the results of the 2021-09, 2022-02, and 2022-09
datasets. The 2021-09 data has already been displayed in Table 4.8 of Section 4.1.6, and
the 2022-02 data in Table 4.14 of Chapter 4.2.6. We will first provide a short summary
of these results, after which we will analyse the results of 2022-09 in detail (Table 4.20).

In the 2021-09 measurement, the top 20 nodes hold 14.5% of the betweenness centrality.
The first two nodes have a normalized value of 1.0 and 0.8486, the third one has a lower
value, 0.3781. The rest is evenly distributed down to the node on position 20 with a
value of 0.1252. Of these 20 nodes, 14 belong to just 3 ASes (with 2 of these nodes being
assigned to 2 ASes at once).

In the 2022-02 measurement, we see a slightly more centralized distribution. The top
20 nodes hold 18.67% of betweenness centrality, with 12 of the nodes belonging to just
2 ASes, controlling 14.02% of it. The remaining 8 nodes are split among 5 other ASes.
The first 3 nodes are at 1.0, 0.8055 and 0.6761, the third node has a lower value, 0.3429.
From there onwards, the values are evenly distributed down to the node at position 20
with a value of 0.0938.

We now analyse the values of the 2022-09 measurement in Table 4.20. We see that 12 out
of the 20 nodes belong to AS16509 (Amazon). AS6939 and AS6453 have 2 nodes each,
three more ASes have 1 node each. Out of these 12 nodes, 11 belong to the prefix. Given
that per prefix only two IP addresses are scanned, this is either routing in the outbound
networks, or routing to a large array of hosts behind the network of this AS.

In this measurement, we have an unknown node in the top 20 (Node #7), which has
not occurred in any of the other datasets. While this node has, by definition, just one
predecessor, we found that it does happen to also only have one successor. This unknown
node is situated between Node #1 and Node #6. Node #1 belongs to AS16509 and
Node #6 belongs to AS6453, which makes an assignment to either of them difficult. We
consider it more likely for this node to be an exit node of AS16509 rather than an entry
node of AS6453, because entry nodes need to be “more public” in order to be found and
used correctly. It could also be an entirely different AS, though again, this seems unlikely
for the same reason. What is certain, however, is that this is a US node. This is because
both the predecessor and successor nodes are US nodes, and a deviation via a different
country would make no sense.

In this measurement, we see a high number of US nodes. Out of the top 20 nodes, 17 are
US nodes. There are furthermore 2 CN nodes and 1 EU node. The top 20 nodes control
30.33% of betweenness centrality in total. The US nodes alone control 29.19%, whereas
AS16509 (including the unknown Node #7) holds 27.55%.

Considering these numbers, we see that between the first two measurements, the graph
slightly shifted to be more central. Between the second and third measurement, however,
we see a significant shift towards a more centralized graph. Going by the relative control
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# IP address CC1 Prefix AS number NBC2

1 2620:107:4000:cfff::f201:468d US 2620:107:4000::/44 AS16509 1.0
2 2620:107:4000:c5e0::f3fd:c04 US 2620:107:4000::/44 AS16509 0.6749
3 2620:107:4000:c5e0::f3fd:c06 US 2620:107:4000::/44 AS16509 0.4619
4 2620:107:4000:c5e0::f3fd:c07 US 2620:107:4000::/44 AS16509 0.2605
5 2620:107:4000:c5e0::f3fd:c05 US 2620:107:4000::/44 AS16509 0.2585
6 2001:5a0:fff0::1 US 2001:5a0::/32 AS6453 0.0778
7 unknown US3 unknown AS165093 0.0770
8 2408:8001:3011:5b::1 CN 2408:8000::/20 AS4837 0.0559
9 2600:9000:fff:ff00::300 US 2600:9000::/28 AS16509 0.0422

10 2620:107:4000:cfff::f203:56fd US 2620:107:4000::/44 AS16509 0.0388
11 2620:107:4000:9004::58 US 2620:107:4000::/44 AS16509 0.0350
12 2620:107:4000:c5e0::f3fd:c01 US 2620:107:4000::/44 AS16509 0.0346
13 2001:2034:1:b8::1 EU 2001:2030::/28 AS1299 0.0344
14 2001:470:0:72::2 US 2001:470::/32 AS6939 0.0343
15 2001:470:0:6f0::1 US 2001:470::/32 AS6939 0.0334
16 2409:8080:0:4:2c5:2f5:2:1 CN 2409:8000::/20 AS9808 0.0333
17 2620:107:4000:cfff::f203:56a1 US 2620:107:4000::/44 AS16509 0.0322
18 2620:107:4000:9004::59 US 2620:107:4000::/44 AS16509 0.0322
19 2620:107:4000:cfff::f203:56ad US 2620:107:4000::/44 AS16509 0.0314
20 2001:5a0:300:500::2e US 2001:5a0::/32 AS6453 0.0311
1 CC: Country Code (as reported by WHOIS)
2 NBC: Normalized Betweenness Centrality
3 Extrapolated from path information

Table 4.20: Top 20 AS with the highest betweenness centrality (IPv6, CAIDA dataset
2022-09)

of betweenness centrality in the graph, we see that it more than doubles compared to the
first measurement (2021-09: 14.02%, 2022-09: 30.33%). With each measurement, we also
see fewer ASes involved and more concentration in certain regions. This matches with
the observations from Section 4.3.5, where we detected a small tendency in the second
measurement and a significant development in the third measurement.

4.4 Measuring Decentralization
In this final evaluation section, we want to quantify the degree of decentralization (or
centralization) in the graph. For this purpose, we will make use of the Gini coefficient.

Mainly used in the domain of economy, the Gini coefficient or Gini index [BL06] is a
measure that compares the distribution of values to the perfect distribution. In our
context, we want to compare the distribution of metrics to the ideal (i.e., completely
decentral) distribution, where every node has the same degree and betweenness centrality.
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Degree IN Degree OUT AND IN AND OUT
Vienna IPv4 2021-09 0.4123 0.8234 0.5762 0.8442
Vienna IPv4 2022-02 0.4111 0.8229 0.5759 0.8445
Vienna IPv6 2022-02 0.0694 0.5768 0.7339 0.9989
CAIDA IPv4 2021-09 0.5192 0.8665 0.6325 0.9247
CAIDA IPv6 2021-09 0.5659 0.8241 0.6061 0.8979
CAIDA IPv6 2022-02 0.5766 0.8294 0.6387 0.9139
CAIDA IPv6 2022-09 0.5880 0.8357 0.6488 0.9124

IAND IN IAND OUT Betweenness
Vienna IPv4 2021-09 0.5572 0.7835 0.9454
Vienna IPv4 2022-02 0.5569 0.7839 0.9986
Vienna IPv6 2022-02 0.7880 0.9623 0.9897
CAIDA IPv4 2021-09 0.6022 0.9129 0.9162
CAIDA IPv6 2021-09 0.4843 0.8614 0.9245
CAIDA IPv6 2022-02 0.5306 0.8795 0.9256
CAIDA IPv6 2022-09 0.5367 0.8797 0.9504

Table 4.21: Gini Coefficient Values per dataset and metric

A value of 0 would mean perfect equality, whereas a value of 1 would mean perfect
inequality.

If we create a plot of the cumulative sum of the values, we see what proportion of
the elements (x-value) holds what proportion of the total sum of values (y-value). For
example, if at x = 0.8 we get y = 0.2, we know that 80% of the elements hold 20% of
the sum of all the values. A perfectly equal distribution would be a straight line from
(0,0) to (1,1) and is equivalent to a Gini index of 0. The more the line deviates from
the straight line, the higher the inequality, and the higher the index. Such a plot is
called a Lorenz curve. The Gini index is a quantification of the deviation from perfect
equality. The Lorenz curves for the degree statistics can be seen in Figure 4.13, and for
betweenness centrality in Figure 4.14. All graphs contain a red line, which represents the
perfect equality, for reference. The numerical Gini index for all degree statistics and the
betweenness centrality can be seen in Table 4.21.

The metric with the lowest values overall is in-degree. It appears that for the Vienna
datasets, the value is significantly lower than for the CAIDA datasets, meaning that
in-degree is more equally distributed in the Vienna dataset. Most notably, the Vienna
IPv6 measurement is displaying a value of 0.0694, which is by far the lowest Gini index
of all the measured values. We see that the corresponding line in Figure 4.13a is close
to the red equality line. Due to the in-degree values being confined to a smaller range
(with a smaller maximum), the values inside that range are more equally distributed
than other values with a larger range.
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(a) Degree IN (b) Degree OUT

(c) Average Neighbor Degree IN (d) Average Neighbor Degree OUT

(e) Iterated Average Neighbor Degree IN (f) Iterated Average Neighbor Degree OUT

Figure 4.13: Comparison of the Lorenz curves for each Degree statistic with the theoretical
ideal distribution for all datasets
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Figure 4.14: Comparison of the Lorenz curves for Betweenness Centrality with the ideal
distribution for all datasets

For out-degree, we see that the values are higher and the lines in the plot further away
from the equality line. This time, Vienna and CAIDA values match, except for the
Vienna IPv6 dataset. It is again significantly lower than the other values, albeit higher
than the in-degree value. For out-degree, there are high values held by few nodes and
many nodes with 0 or 1, which contributes to the higher inequality.

We move on to in-AND and out-AND. We again see that for the out-direction, the values
are more centralized than for the in-direction. For both directions, we see that the values
are more centralized than the plain in and out degrees. The most striking difference,
however, is the fact that for the Vienna IPv6 measurement, the values are now higher
than the values for the other datasets. For out-AND, this value is close to 1, meaning
that the out-AND values are highly concentrated among a few nodes.

With IAND, we see the same thing as for AND. The values are higher than plain degree
and similar to AND. Just like for AND, the Vienna IPv6 measurement has a higher value
than the other datasets. It seems that while the plain degree is more decentralized in
the Vienna IPv6 dataset, the AND and IAND is more centralized compared to the other
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datasets.

At the same time, for both AND and IAND, we see a tendency for the CAIDA data to
have higher values (disregarding the Vienna IPv6 measurement, which is always highest).
The only exception is the in-IAND CAIDA IPv6 values, which are below both the CAIDA
IPv4 measurement and the Vienna measurements, even if only slightly.

Finally, we consider the distribution of betweenness centrality. In the previous sections,
we have already determined that most of the betweenness centrality in the graphs is
concentrated among a few nodes. The Gini coefficients confirm this discovery: For every
dataset, the value is above 0.9. Moreover, we see that the Vienna datasets show higher
centralization than the CAIDA datasets. While the CAIDA results are similar across
protocols and time, for Vienna, we see that the 2022-02 measurement shows a high degree
of centralization. Both the IPv4 and IPv6 measurement of 2022-02 are close to 1, whereas
the IPv4 2021-09 measurement is only at 0.9454.

To sum up, we see that for values related to incoming edges (in-degree, in-AND, in-
AND), the level of centralization is lower than for the rest of metrics. The Vienna IPv6
measurement shows a smaller degree of centralization when considering the plain degree,
yet a higher degree of centralization for AND and IAND. The Gini index for betweenness
centrality is high for all datasets (> 0.9), with the Vienna 2022-02 measurement showing
values close to 1 for both IPv4 and IPv6.
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CHAPTER 5
Conclusion

In our ambition to understand routing in today’s internet better, we have collected
traceroute data from two sources (Vienna and CAIDA) at different points in time for
both protocols, IPv4 and IPv6. We created a framework to process the data and generate
statistics for each dataset for further analysis.

For each node in every dataset, we have gathered six degree statistics (Degree, Average
Neighbor Degree, Iterated Average Neighbor Degree, each for both in and out) as well
as the betweenness centrality. We have then compared the outputs across the three
dimensions protocol, dataset, and time.

From the data comparison, we have obtained the following conclusions:

• Comparison between protocols
We have found that IPv6 appears to be more centralized than IPv4. Considering
the degree statistics, we see a slight increase in centralization for the Vienna dataset,
yet we see a decrease in the CAIDA dataset. For betweenness centrality, however,
both datasets show an increase, as more of the shortest paths go through fewer
nodes, despite the larger addressing space. For IPv6, we also detected an increase
in redundant nodes (i.e., most likely load balancers), which is possible due to the
larger address space. The CAIDA set furthermore revealed a large proportion of
nodes not behaving according to the IPv6 specification.

• Comparison between datasets / vantage points
We have found that for IPv4, the difference between the single vantage point of the
Vienna measurement and the distributed measurement performed by the CAIDA
monitors is small, and the collected statistics are similar across the datasets. We
did find a higher proportion of the shortest paths going through the most important
nodes for the CAIDA dataset, though. For IPv6, we see a difference towards
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higher centralization in the Vienna dataset, yet again, the top nodes hold a higher
proportion of the shortest paths in the CAIDA dataset. Notably, we see that the
CAIDA dataset has a higher proportion of leaf nodes, indicating that it generally
found shorter routes with fewer intermediate nodes.

• Comparison between different points in time
For the IPv4 Vienna measurements, we found almost no change at all. Both the
degree statistics and the betweenness centrality statistics are almost identical. For
the IPv6 CAIDA measurements, which we did for 3 measurements across a time
span of one year, we do see a shift towards more centralization as time passes, yet
no significant changes are to be found here either.

Finally, we quantified the degree of centralization using the Gini coefficient. We found
high values for outgoing statistics, yet medium to low values for incoming statistics.
We see that while there is not a high concentration in incoming connections, outgoing
connections are more concentrated to certain hotspots or hubs. The same is valid
for betweenness centrality, where we found that all values are above 0.9, indicating
that all collected measurements show a tendency for the shortest paths to go certain
predetermined ways.

Summarized in one short sentence, we tend to see a higher degree of centralization for
IPv6 compared to IPv4, for distributed CAIDA measurements compared to single-point
Vienna measurements, later measurements compared to earlier measurements, as well as
outgoing connections compared to incoming connections.
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