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Kurzfassung

Die Kryptowährung Bitcoin besteht aus einer Menge von Minern, die zu einem Peer-
to-Peer-Netzwerk verbunden sind. Innerhalb dieses Netzwerkes werden Nachrichten
mithilfe eines Gossip-Protokolls effizient zwischen Clients weitergeleitet. Die genaue
Topologie dieses Netzwerks soll dabei geheim gehalten werden; jeder Miner kennt nur die
Verbindungen zu seinen Nachbarn sowie eine Auswahl an möglichen Adressen potenzieller
Verbindungspartner. Eine Kenntnis der Topologie würde es Angreifern ermöglichen,
bestimmte Arten von Angriffen durchzuführen, und die Anonymität der Nutzer gefährden.
Allerdings erlaubt die Messung der Topologie Forschern auch, die Eigenschaften des
Netzes zu analysieren.

Wir schlagen eine Methode vor, die die Weiterleitung von Adressnachrichten im Peer-to-
Peer-Netzwerk ausnutzt, um dessen Topologie zu ermitteln. Zu diesem Zweck kombinieren
wir eine Schätzung des Knotengrades mit einer Inferenz von potenziellen Verbindungen.
Insbesondere zeigen wir, dass Eigenheiten bei der Weitergabe von ADDR-Nachrichten
im Rahmen des Gossip-Protokolls diese Messmethoden ermöglichen. Dies gilt, obwohl die
Grundidee der beiden Angriffe bereits bekannt ist und die Gegenmaßnahmen Trickling
und Ratenbegrenzung bereits in der Referenzimplementierung umgesetzt sind. Wir zeigen,
dass diese Schutzmechanismen die Messungen nicht verhindern und, dass beide Arten
von Messungen gemeinsam ausgeführt werden können, um eine umfassende Messung der
Topologie mit erheblicher Genauigkeit durchzuführen.

Dabei vergleichen wir auch Schätzungsmethoden, welche auf idiosynkratischem Bitcoin-
spezifischem Verhalten basieren, mit einer statistischen Timing-Analyse von Flooding-
inhärenten Zeitverzögerungen. Wir validieren unsere Methode an einem Testbed-Knoten
und stellen fest, dass vor allem der zeitbasierte Schätzer die Topologie trotz künstlich
eingeführter Weiterleitungsverzögerungen mit signifikanter Präzision schätzen kann.
Der relative Fehler der Gradabschätzung ist kleiner als 10 % und die Genauigkeit und
Trefferquote der Verbindungsinferenz liegen jeweils bei etwa 40 %.

Des Weiteren führten wir eine aktive Messung im offenen Bitcoin-Mainnet durch und
analysierten die graphentheoretischen Eigenschaften der gefundenen Topologie. Unser
Angriff kann mit wenigen, leistungsschwachen Systemen sowie in kurzer Zeit durchge-
führt werden. Die Analyse zeigt, dass das Netzwerk nicht-zufällige Eigenschaften in
seiner Struktur aufweist, vor allem in der Verteilung der Knotengrade und der lokalen
Clusterkoeffizienten.
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Abstract

The cryptocurrency Bitcoin consists of a set of miners that are connected to a peer-to-peer
network. Within said network, messages are efficiently forwarded between clients using
a gossip protocol. The exact topology of this network is supposed to be kept secret;
each miner only knows the connections to their neighbours, as well as a set of potential
peers’ addresses. Knowledge of the topology would enable attackers to launch certain
attacks and compromise the anonymity of clients. In contrast, measuring the topology
also allows researchers to analyse the properties of the network.

We propose a method to exploit the relaying of address messages in the network to
measure the topology of the network. To do this, we combine a node degree estimation
with an inference of potential connections. In particular, we show that peculiarities in
the propagation of ADDR-messages in the context of the gossip protocol enable these
attacks. This holds true despite the basic idea behind both attacks being known already
and the countermeasures trickling and rate-limiting having been implemented by the
reference client. We show that said countermeasures do not prevent these measurement
methods and that both methods can be executed together to perform a comprehensive
topology discovery with considerable accuracy.

In doing so, we also compare estimation methods based on idiosyncratic Bitcoin-specific
behaviour with a statistical timing analysis of flooding inherent time delays. We validate
our method on a testbed node and find that, in particular, the time-based estimator can
estimate the topology with significant accuracy despite artificially introduced forwarding
delays. The relative error of the degree estimation is less than 10 %, and the connection
inference’s precision and recall are approximately 40 % each.

We performed an active measurement on the open Bitcoin mainnet and analysed the
graph-theoretic properties of the topology we found. Our attack can be performed with
low hardware expenses as well as in a short time. The analysis shows that the network
exhibits non-random properties in its structure, especially in the distribution of node
degrees and local clustering coefficients.
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CHAPTER 1
Introduction

Bitcoin is a prime example of a cryptocurrency with a strong focus on pseudonymity
and decentrality, two merits which have been its focus ever since its introduction in
2008 [Nak08]. It is based on a peer-to-peer network specifically designed to be robust so
that even in the presence of attackers, the transaction data essential for the currency
can still be exchanged between peers. In this sense, the network ought to be resistant to
disruptions, while being able to provide the service it offers with high throughput [XCW05].
The network should also function with as little central authority as possible in order to
avoid single points of failure and remain true to the ideal of a decentralised currency
with no controlling authorities [Nak08]. In particular, regarding the exchange of network
participants’ addresses, this means that individual nodes should not be used to inform
nodes about the presence of other nodes, as it is the case in a conventional hierarchical
network; if possible, individual DNS-like services should not have to be relied on to
maintain the network. For this purpose, Bitcoin uses a so-called gossip protocol [NAH16].

The aim of this procedure is to exchange addresses between network participants in
a coordinated manner such that, in the end, everyone knows everyone else without a
central authority keeping record. Analogous to gossip between people, in a gossip protocol
between computers, information is passed on between hierarchically equal neighbours until
the desired information has permeated the network and reached every participant [Wei19].
A number of different protocol message types are subject to the gossip protocol in Bitcoin,
one of them being the so-called ADDR-messages. These contain information about IP
addresses through which other Bitcoin clients can be reached. Such messages are flooded
throughout the entire network, which means that everyone shares them with their direct
neighbours according to certain rules. When these neighbours receive the messages, they
pass them on to their own neighbours. This then leads to a series of forwardings such that
the original message — for example, about the presence of a new network participant —
reaches every other node in the connected network [Prob]. For this procedure, it is not
necessary for a participant to know the topology of the network at any time, i.e., which
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1. Introduction

peer is connected to whom; to flood the messages, it is sufficient for each node to know
its own neighbours, with the gossip protocol providing the message distribution necessary
for network operation without central servers.
In recent years, Bitcoin has grown in size, and with it has the need for security analyses
of the currency. After all, a well-founded and comprehensive security analysis is essential,
especially in the field of cryptocurrencies, to strengthen trust in the currency. Naturally,
in the case of cryptocurrencies, the focus often lies on the analysis of weaknesses in the
cryptographic part of the blockchain layer of the currency. Less attention has been paid
to the network part of the protocol in previous works [HKZG15]. However, a securely
functioning network layer is equally important for the orderly operation of Bitcoin. This
is due to the fact that attacks on vulnerabilities of network aspects can cause a wide
range of undesirable, disruptive effects. Attacks such as an eclipse attack, for example,
can specifically exclude participants from currency operations and thus cause serious
financial damage to users or groups of users. Such attacks are partly prevented by the
fact that Bitcoin’s peer-to-peer network protocol attempts to hide the topology of the
network in order to impede the execution of these kinds of attacks [DSBPS+19].
Therefore, one way of looking at Bitcoin’s network security is through the lens of topology
discovery. This is an attempt to measure the structure of the network as accurately as
possible, in spite of the mechanisms Bitcoin employs to prevent exactly that. If, even
in theory, knowledge of the topology enables attacks, then it is of utmost interest to
the Bitcoin community to close any loopholes so as to keep the currency secure. A
demonstration that such a measurement is possible would, therefore, be of relevance for
the community [DSBPS+19].
In addition to the Bitcoin community’s interest in keeping the currency secure by
hardening the network protocol, there is also academic interest in analysing the network.
The fact that the network tries to make itself non-transparent also means that it is difficult
for researchers to make statements about its structure. However, it would be interesting
to monitor whether the network’s characteristics are suitable for a peer-to-peer network
designed for robustness [DBG18, EPJ20]. Metrics that can be calculated for a network
graph can provide information about whether Bitcoin exhibits appropriate properties in
this regard. These metrics can only be calculated if the topology is known [CLA16]. In
this respect, the deliberate lack of transparency in the network prevents further analysis
of the network. However, topological security assessments are a desirable way of assessing
whether the structure of the network is fundamentally appropriate to fulfil defined security
goals, or if further adjustments to the protocol are necessary. Therefore, there is a vested
academic interest in utilising this chance to demonstrate the possibility of a topology
measurement as a means of analysing the network structure. From a scientific perspective,
the existence of a topology discovery vulnerability would thus be an occasion to study
the network in terms of these properties [DSBPS+19].
A promising approach to topology discovery that was presented in related works in the
past is the so-called timing analysis. This involves sending specially crafted messages
from researchers to participants in the Bitcoin peer-to-peer network. The recurrence of
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these messages elsewhere in the network can then be observed, and the time it took to do
so is measured. Afterwards, the measured time delay is used to make statements about
topological properties of the network along the message’s path, such as the approximate
length of the path. If this process is repeated often enough and evaluated statistically,
it can be used for finding connections within the network. This provides a way to
measure the graph based solely on time delay characteristics inherent to any computer
network: messages are always time-delayed to some extent when they are passed between
communication partners [NAH16].
This is contrasted by a topology discovery based on behavioural properties that are not
inherent to the network, but rather due to peculiarities in the implementation of the
protocol. Such an approach takes advantage of the fact that the behaviour of network
participants in the Bitcoin protocol is predictable. After all, the source code for the
most wide-spread client software, the Bitcoin Core client, is open source. This means,
in particular, that the Bitcoin network protocol specification is public. However, the
prerequisite for this type of topology discovery is that the manner in which a network
node handles a packet during flooding is sufficiently characteristic. Therefore, the
observable behaviour of the client must be clear and idiosyncratic enough to allow for
conclusions to be drawn about connection properties [Wei19]. In past work, examples
of such idiosyncratic behaviour were for example the way clients internally assigned
timestamps to connections [MLP+15], or how some data packets are not forwarded via
certain connections under specific conditions [GNH18]. After identifying sufficiently
characteristic protocol behaviour, the observation of packets can generally be used to
infer connections between clients.
In this thesis, we address whether topology discovery is possible in Bitcoin in one of the
following two ways: by statistical timing analysis or by using predictable idiosyncratic
behaviour alone. More specifically, we focus on the way ADDR-messages are forwarded
in Bitcoin’s peer-to-peer network protocol for both approaches. As described above,
these messages are flooded through the network following a gossip procedure. This is
done for each node according to well-defined rules, which provide reasonably predictable
behaviour as we show in this thesis. Thus, ADDR-message flooding exhibits both of the
properties we wish to analyse. We compare the two types of analyses in regard to the
degree to which topology discovery in Bitcoin through ADDR-message flooding analysis
is possible through either method.
Here, the topology discovery attack we perform takes place in two steps. First, a degree
estimation is performed on nodes. In this process, the node degree of all network
participants is estimated based on the measured behaviour. Then, in a second step,
connection inference is performed. This involves determining the probability of a given
connection’s existence in the measured network for all possible node links. We show that
it is possible to perform both of these procedures — degree estimation and connection
inference — on the basis of the same measured behavioural data. This allows both partial
estimates to be conducted in the same experiment run while using the same setup.
A behaviour-based method for degree estimation was presented by Biryukov et al. in
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1. Introduction

2014 [BKP14] and carried out network-wide by Grundmann et al. in 2021 [GBH21]. The
researchers assume that a rate-limiting for address messages introduced since then now
prevents this kind of attack [GBH21]. We make use of the same basic idea for degree
estimation in this thesis. This allows us to test the extent to which this countermeasure
does indeed work.

We also examine the effectiveness of countermeasures already implemented explicitly for
this purpose by performing connection inference. To do this, we use a method presented
by Neudecker et al. in 2016. The researchers performed a timing analysis of messages
forwarded in Bitcoins gossip protocol to detect connections. For this, they focused on
block announcement message (INV ) relay. Furthermore, they presented the possibility of
artificially added time delays, so-called trickling, to prevent attacks of this type [NAH16].
This trickling has since been implemented for the Bitcoin protocol [Prob]. We therefore
apply connection inference following this idea to verify the effectiveness of this measure.
To better link connection inference with degree estimation, we use the observation of
the Bitcoin message type ADDR instead of INV for this purpose. We find that both
message types are flooded in a similar manner and thus exhibit comparable vulnerability
to timing analysis.

The goal of this thesis is to implement a framework for topology discovery. This framework
implements the Bitcoin network protocol, which allows the framework to connect to clients
on the network and send and receive messages. Using this framework, we performed
an active network measurement of a subnet of the reachable Bitcoin network. This was
done by injecting ADDR-messages and measuring the time delay until their eventual
reoccurrence. We show how this time difference data can be passed to an estimator to
make classification decisions about node degrees and the existence of connections between
nodes. In this thesis, the classifier is operated in two modes: First, the estimation is
performed only on the basis of the forwarding frequency of the ADDR-messages. As
described above, a sufficiently characteristic property in the relay algorithm is used to
estimate node degrees and connections. In the second mode, time delay information
is added to obtain additional information about possible connections according to a
timing analysis. We subsequently use the connection data estimated in these ways
to form a network graph. Using this model, we examine and discuss graph-theoretic
properties employing network metrics relevant to peer-to-peer networks. In short, we
apply topology discovery based on ADDR-message relay to assess the network design in
terms of robustness and throughput.

To validate the results, we determine the performance of the framework in a qualitative
evaluation. For this purpose, a testbed is set up in which a local victim node under
our control is measured. The framework’s estimate of the node’s neighbours is then
compared with the actual known neighbours to calculate the precision and recall of the
estimator. In particular, the performance of the two estimation modes is benchmarked
and compared to conclude whether the addition of timings in the estimation provides an
advantage over estimation based on reoccurrence rates alone. Subsequently, we compare
the accuracy metrics of the estimators and the network metrics to values from similar
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experimental setups from related works.

Fundamentally, this master thesis is dedicated to whether topology discovery using
time delay or behavioural analysis is possible in the gossip protocol of Bitcoin’s address
transmission. The research questions are therefore:

• RQ1: Does the implementation of rate-limiting for ADDR-message relay in Bitcoin
prevent the conduction of degree estimation?

• RQ2: Does the implementation of trickling for ADDR-message forwarding in
Bitcoin prevent the conduction of timing analysis?

• RQ3: Are the topological properties of the Bitcoin network appropriate for a network
designed for resilience and information distribution?

For reasons that are discussed further in the "Discussion" section, the framework only
covers nodes that can be reached via IP and explicitly does not cover Onion-nodes.
Thus, this thesis is to be understood as an analysis of a subnetwork of the entire
Bitcoin network. Furthermore, this thesis was written at the same time as the thesis
of Jakob Rosenblattl [Ros] about the theoretical aspects of the topology discovery
attack using timing analysis. Rosenblattl’s thesis also provides the time-based estimator
implementation. The development of this estimation mode is therefore not part of this
thesis. Additionally, a code basis from which to build the measurement framework was
also kindly provided by Rosenblattl. For reference, an overview of his work can be found
at https://gitlab.sba-research.org/jrosenblattl/diplomarbeit.

The remainder of this thesis is structured as follows: Chapter 2 summarises the required
basics of mathematics, network technology, and the Bitcoin protocol. These are neces-
sary to understand the main body of this thesis. In Chapter 3, the general idea and
methodology of the measurement are described in detail and justified on the basis of
additional small-scale measurements on the Bitcoin network. In Chapter 4, the results of
the experiment are analysed in detail, discussed, and their relevance validated using a
testbed evaluation. Finally, we give a summary and an outlook on possible further work
in Chapter 5.
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CHAPTER 2
Background

In this chapter, we cover the basics of the topics that are referenced in the following
chapters. This includes mathematical fundamentals such as graph theory and classification
problems, network theory and metrics, and an introduction to the Bitcoin peer-to-peer
network protocol with its most important message types and associated behaviour. An
understanding of this is presumed from Chapter 3 onward.

Particularly, Section 2.1 gives an introduction to graph theory and random graphs. This
is necessary for the discussion of the Bitcoin network and topology discovery. Section 2.2
provides an overview of classification problems, as topology discovery itself is one, and
related concepts from statistics. In Section 2.3, a detailed summary of Bitcoin nodes’
behaviour is given. This includes protocol messages and, in particular, ADDR-message
relay behaviour, which is the basis of the attack we present in Section 3.1. Section 2.4
presents general concepts of peer-to-peer networks. This includes, in particular, metrics
for robustness and performance, as we explore later in this thesis for the Bitcoin network.
A subsequent description of attacks on such networks highlights security considerations
and the influence of topology discoveries.

Readers who are already familiar with these topics are invited to skip to Section 2.5,
where we give an overview of related work and discuss how we expand on it in this thesis.

2.1 Graph Theory
Graphs mathematically formalize networks like computer networks and allow to use a clear
mathematical language with well-defined terms to describe networks. We therefore use
this notation to describe the Bitcoin network. To this end, we first give an introduction
to the most important concepts and definitions from the mathematical field of graph
theory. The definitions are based on standard works by West [W+01], Wilson [Wil79],
and Diestel [Die00]. Afterwards, we briefly expand on the concepts of random graphs.

7



2. Background

v1 v2

v3v4

(a) Simple, undirected graph
v1 v2

v3v4

(b) Complex, directed graph with loops and mul-
tiple edges

Figure 2.1: Examples for a simple and a complex graph

2.1.1 Graphs
A graph is a pair G = (V, E) where V is a set of vertices and E ⊆ {{x, y}|x, y ∈ V } is a
set of edges [BW10]. Graphs are commonly drawn by placing a circle for every vertex
and lines from one vertex to another along the edges, see Figure 2.1a and Figure 2.1b.

The following terms are used for graphs [BW10, JD16, Die00]:

• For an edge e = {x, y}, the two vertices it connects are called endpoints.

• An edge e = {x, x} is called a loop if its endpoints are the exact same vertex.

• When two vertices are endpoints of an edge, they are adjacent and neighbours.

• The degree deg(v) of a vertex v is the number of edges in G that have v as an
endpoint, i.e. the number of neighbours of v.

• Degree distribution is the function giving the probability that an arbitrary node
has exactly k neighbours [JD16].

• A walk is a sequence of edges that lead from one vertex to another.

• If a walk does not contain a vertex multiple times, it is called a path.

• A walk that leads from a vertex v to the same vertex v is called a circle or cycle.

• If a graph contains no cycles, it is acyclic.

• For some graphs it is possible to contain so-called multiple edges, i.e. separate edges
e1, e2 = {v1, v2} connecting the same vertices.

8



2.1. Graph Theory

• A graph for which neither multiple edges nor loops exist is called a simple graph,
see Figure 2.1a.

• Connected graphs are graphs where for all pairs of vertices there is a path connecting
the two.

• A graph consisting of multiple connected pieces is called disconnected graph.

• If for the edges of a graph G the edges are defined as ordered pairs instead of an
unordered set, G is called a directed graph or digraph instead of a undirected graph.
In this case, the edges are then drawn with arrows to indicate the direction, see
Figure 2.1b.

• For edges e = (v1, v2) of a directed graph, v1 is called the tail and v2 is the head.
Furthermore, v1 is then the predecessor of v2, and v2 is the successor of v1.

• A subgraph of a graph G is a graph H for that V (H) ⊆ V (G) and E(H) ⊆ E(G).
We say that G contains H.

• The distance distance(v1, v2) between two nodes v1 and v2 is defined as the number
of edges on the shortest path between the two nodes.

• Network diameter is the maximum distance between any two nodes [JD16].

• For a node v, the local clustering coefficient is given by dividing the number of
actual links between the nodes in the neighbourhood of v by the maximum number
of links that could exist there if the nodes of this neighbourhood formed a fully
connected graph [HLY04].

• The global clustering coefficient is defined as the arithmetic average local clustering
coefficient of all nodes. It measures the degree of compactness for a graph [HLY04].

• If for two subsets A and B of the vertices V all A − B paths contain edge or vertex
x from a set X, we say that X separates A and B in G, or X separates G.

• A vertex separating two vertices is called a cutvertex, and an edge separating two
vertices is called a bridge.

• The graph G is k-connected if no two vertices in G are separated by fewer than k
other vertices.

• The connectivity of a graph G is defined as the greatest integer k such that G is
k-connected.

• An acyclic graph is called a forest and a connected forest is a tree.

• The bisection width is defined as the minimum number of edges between any two
partitions of the graph of equal size [LKRG03].

• For a node, the betweenness centrality denotes how many shortest paths between
all other pairs of nodes traverse that node [ZFDS22].
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2.1.2 Erdös-Rényi Random-Graphs
For graphs of unknown structure, we can either assume that they follow a certain
probability distribution or are the result of a random process. The latter are called
random graphs. The theory of random graphs combines graph theory with probability
theory [ER+60], and is useful to both 1) model complex graphs and 2) to derive and
discuss their properties [DSBPS+19, CLA16].
A common formalization of random graphs is that of Erdös and Rényi [ER+60]. Here, a
random graph is defined as a random undirected graph G = (V, E) with fixed number of
vertices n = |V | and fixed number of edges N = |E|. It has no multiple edges and no
loops. The total number of possible graphs is thus

�(n
2)
N

�
and a random graph can be

formed in one of the following two ways:

1. One element of the set of all possible graphs is chosen randomly, so that each
element has the same probability 1

((
n
2)
N

)
.

2. The forming of the random graph is considered as a stochastic process: iteratively,
one of the possible edges connecting the vertices V1, . . . , VN is chosen in turns, one
at a time, and added to the graph. Since each edge can be chosen only once, at
time t = k + 1 there are exactly

�n
2
� − k edges left to choose from, all of which can

be chosen with the same probability 1
(n

2)−k
.

From a mathematical point of view, these two ways of defining a random graph are
identical [ER+60].

2.2 Classification Problems
The goal of this thesis is to decide whether an actual edge is present or not based
on observations of the Bitcoin network. From a mathematical point of view, this is
a classification problem: there are two possible distinct values for an edge (present or
absent) and the task is to define a classifier that can decide, based on observed behaviour,
which one of these two values a given edge should be correctly assigned. Even though
classification of multiple labels is possible simultaneously, for the sake of simplicity, only
binary classification in the single label setting is considered in the following. This means
that each entity has only one label at a time, i.e. only the membership or non-membership
to one set is predicted.
Given is training data of the form {(x1, y1), . . . , (xn, yn)} where each xi is a feature vector
of dimension d, and each yi is a correct binary label. A probabilistic classifier then outputs
a model that gives, for a feature vector, the conditional probability that its label belongs
to a particular class. In the single-label setting, the model thus outputs a column vector
C with probabilities [LEN14].
The following definitions apply [LEN14]:
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• A decision rule D(C) : Rn → {0, 1}n transforms a vector C of probabilities into
binary decisions P .

• Gold standard G ∈ Rn is the vector containing all true labels of the data.

• A performance metric M(P |G) : {0, 1}n × {0, 1}n → R ∈ [0, 1] assigns a score to a
prediction given the gold standard.

• True positives tp denotes the number of all elements, which were correctly assigned
to a set.

• False positives fp gives the number of all elements that were incorrectly assigned
to a set.

• True negatives tn counts the number of all elements that were correctly not assigned
to a set.

• False negatives fn is defined as the number of all elements that were incorrectly
not assigned to a set.

• Precision p = tp
(tp+fp) measures the fraction of correct assignments within all

assignments of the model.

• Recall r = tp
(tp+fn) is the fraction of correctly made assignments out of all possible

assignments that would be correct for the estimator 1.

• The F1 score is defined as F1 = 2�
1
r

+ 1
p

� = 2tp
2tp+fp+fn and combines precision and

recall into a single scalar value

Three similar and mutually related concepts in classification problems are those of Binary
Classification, Bipartite Ranking, and Binary Class Probability Estimation.

1. For Binary Classification, the goal of the classification model is to predict a label
by assigning one of the binary values true or false

2. For Bipartite Ranking, the goal is to learn a ranking model that can rank new
objects so that those of one class are ranked strictly higher than those of another
class.

3. In the case of binary class probability estimation (CPE) a probability shall be given
that an object belongs to a class.

1In literature, recall is sometimes referred to as sensitivity or true positive rate [Wei19]. However, in
papers dealing specifically with topology discovery in Bitcoin, we encounter the term recall most often.
Therefore, we will use this term in this thesis.
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These three concepts and their relationships between each other are discussed in detail
by Narasimhan and Agarwal [NA13]. The researchers show that a Binary CPE model
can be transformed into both a Bipartite Ranking and a Binary Classification Model.
Furthermore, there is a weak transform relationship between Bipartite Ranking models
and both Binary CPE and Binary Classification models. In the context of this thesis, a
Binary CPE is used for edge estimation. This means that a model is used to predict the
probability that an edge is present between two given nodes of the Bitcoin Network. The
probability is then turned into a Binary Classification by applying a threshold value, as
we discuss in Section 3.2.

The application of classifiers often involves the trade-off of different error types. In some
application scenarios, a false positive is much worse than a false negative, while in other
cases it may be the other way around. We argue that for our application false positives
are acceptable up to a certain point: If an attacker wants to find a connected subset of
nodes in the network for an attack, a false positive in the edge set means that the set
of targets and thus the cost of the attack would increase. On the other hand, a false
negative means that an edge is not detected and not the whole desired subset is found,
which could then jeopardize the attack. This conclusion is also hinted at by Neudecker
et al. [NAH16], as discussed by Weinstock [Wei19].

2.2.1 Precision-Recall Graph

Non-binary classifiers output a score for classifications. This can be converted into binary
classifications by applying a threshold in a decision rule. For example, a binary decision
can be made by labeling each possible classification with a score below the threshold as
false and each with a score above it as true. Depending on how this threshold is chosen,
the resulting classification has different precision and recall. The values for precision and
recall are inherently inversely related to each other as the threshold rises: as precision
increases, recall generally decreases, and vice versa. The exact ratio of these two values
per threshold can then be displayed in a Precision-Recall (PR) graph. To build such a
graph, the performance of the estimator is determined for each possible threshold and
entered into the PR graph as a step function. Thus, it visualizes the tradeoff between
precision and recall for an estimator [BG94]. An example of how a PR graph may look
like can be seen in Figure 2.2.

2.2.2 Receiver Operating Characteristic

Similar to the PR graph, the Receiver Operating Characteristic (ROC) graph also visually
represents the performance of an estimator. The ROC graph plots the True Positive
rate on the y-axis against the False Positive rate on the x-axis. While a discrete binary
classifier again only produces one point in the ROC space, a curve can be formed for
non-binary classifiers over all threshold values, just as with the PR graph. An example
of how such a ROC graph may look like is shown in Figure 2.3.
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Figure 2.2: Example of a PR graph. The
x-axis shows the recall, and the y-axis the
precision of a non-binary classifier for vari-
ous thresholds

Figure 2.3: Example ROC graph. It shows
the true positive rate against the false posi-
tive rate of a non-binary classifier for various
thresholds

Here, points on the diagonal represent a random guess. Each classifier below the diagonal
performs worse than a random guess, but can be turned into a better classifier above
the diagonal by inverting it. The upper left corner represents a perfect classifier and
entries to the upper left of others tend to be better. Entries on the left side of the graph
are considered conservative in the sense that they only classify with high confidence.
Classifiers with entries in the upper right corner, on the other hand, tend to be liberal
and make many positive decisions at low certainty.

An inherent property of ROC graphs is that they are not susceptible to changes in class
distribution. This means that the ROC curve does not change when the distribution of
positive to negative entries in the test set changes. PR curves can differ significantly in
such a scenario. Thus, depending on the expected class distribution deviation in the data
set, ROC graphs are better suited to represent properties of the classifier in a comparable
way.

To compare classifiers, it may also be desirable to reduce ROC performance to a single
scalar value. This can be done by calculating the area under the ROC graph (AUC). The
resulting area is a value between 0 and 1, where 0.5 is the worst realistic value and 1 is the
best. Also, this AUC-value is equivalent to the probability that a given classifier scores a
random given positive instance higher than a random given negative instance [Faw04].

The concept of the AUC is closely related to the so-called Gini coefficient. In just
the same way, this coefficient can also be used as a scalar value quality measure for
classifiers. It is defined as twice the area between the ROC curve and the diagonal. Thus,
Gini + 1 = 2 × AUC [HT01].
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2.3 Bitcoin

Bitcoin is the most well-known cryptocurrency. Its goal is to create a decentralised means
of payment. To this end, the currency is based on a decentralised blockchain that acts
as a publicly disclosed and distributed transaction ledger. This blockchain is operated
by individual network nodes that are joined into a peer-to-peer network to organize and
document transactions according to the rules of a consensus procedure [ECP21, Nak08].

In this section, we describe and explain the most important characteristics and the
behaviour of the peer-to-peer network on which the blockchain is based. Aspects of
Bitcoin that are not directly related to the operation of the peer-to-peer network are not
considered. In particular, this includes transactions, mining and verification of blocks, the
blockchain, consensus procedures and block acceptance, and all those network messages
that are related to requesting or responding to data related to transactions and blocks.
Instead, the remainder of this section focuses on the network aspects of Bitcoin and
the associated message types, particularly those used to control network connections
between two nodes or to exchange information about other nodes in the network. An
understanding of these features is necessary to understand the topology discovery method
presented in this thesis.

The source of the following information is the community documentation [Wika], network
reference [Proc] and the developer guide [Prod] of the Bitcoin developer site. Since these
are not official documentations, we have compared and verified the information with the
source code [Proa] of the Bitcoin Core client. Thus, the information mainly refers to
the behaviour of nodes using the Bitcoin Core standard client. While it is possible that
nodes run client software that does not in every detail conform to the protocol described
in this section, we assume that alternative clients behave similarly and exhibit the same
basic behaviour on the network.

2.3.1 Network Structure and Node Behaviour

The Bitcoin network is operated as an unencrypted overlay network based on TCP/IP.
Individual independent nodes use the protocol to exchange information and establish
Bitcoin connections. Since the nodes are on the same hierarchical level and act in a
fundamentally similar way, the network is a peer-to-peer network.

There are two different types of nodes: full nodes and lightweight nodes. A full node
downloads all blocks and transactions and verifies that they meet the consensus rules.
Whereas lightweight nodes do not perform this verification completely but only on the
basis of the block headers and therefore have to trust the full nodes in the network.
Within the network protocol, full nodes can be requested to filter and distribute historical
block and transaction data to other nodes for this purpose [Prod]. For the remainder
of this thesis, it is sufficient to group these two types of nodes under the common term
"node".
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From a node’s point of view, a peer is an outbound peer if the node itself has established
the connection to this peer. Similarly, a peer is called an inbound peer if it initiated the
connection to the node. Outbound and inbound peers are treated the same except for
minor differences. It is possible that a network node only allows outbound peers due to
its configuration. The default value for the number of outbound peers to which a node
attempts to connect is eight. The default maximum number of inbound connections is
117 [BKP14].

Another type of connection is the so-called block-relay-only connection. As the name
suggests, these connections are only used to forward blocks. In particular, no addresses
are forwarded over this type of network link. The purpose of these connections is to
protect the node against topology discovery attacks. The fact that no addresses are
relayed over the connections makes them more difficult to detect. In the presence of an
attack, these links can thus continue to be used to exchange blocks in an undetected way.
By default, a node establishes two such connections [Cmm].

In the context of Bitcoin, the term address is used for two different things. On the one
hand, address is a string of characters that represents the destination for transactions on
the blockchain. This type of address can be used to make payments on the blockchain
layer of the currency. On the other hand, address also refers to the network addresses
of computers on the network layer of the currency. This type of address can be used to
establish connections between Bitcoin nodes and to reach the computers that operate
the clients. Since Bitcoin’s peer-to-peer network is an overlay network on TCP, these
addresses generally correspond to the IP addresses of the nodes. In this way, an address
can take the form of one of three address types: IPv4 addresses, IPv6 addresses and
Onion-addresses, which belong to the TOR network. The latter can be further subdivided
into V3 Onion-addresses and the deprecated V2 Onion-addresses. In this thesis, we use
the term address exclusively to refer to network addresses in the sense of one of the three
address types.

A node connects to the network by establishing outgoing connections to known peers.
If a node wants other peers to connect to it, it advertises its own network address on
the network. To do so, it simply sends unsolicited address messages containing its own
address to its neighbours. These nodes then forward this address in the network. By
default, a client does so once every 24 hours [Proc].

The distribution of information in the Bitcoin peer-to-peer network follows a so-called
gossip protocol. Analogously to gossip in groups of people, the gossip protocol passes
information between network participants in order to distribute it in the network. This
means that a Bitcoin node forwards network messages to its neighbours according to
certain rules. This ensures that the knowledge spreads throughout the network. This
mechanism is used to distribute transaction data, but also address data in the Bitcoin
network [ECP21, NAH16].

The first time a node wants to connect to the network it does not yet know addresses of
other nodes to connect to. This is because it has not yet had a chance to receive such
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Length Field
4 Bytes start string magic bytes

12 Bytes command name + null padding
4 Bytes payload size
4 Bytes checksum

Table 2.1: Bitcoin message header fields and structure

addresses, as it would have to be connected to the network for that. For this reason, it is
necessary to resort to the use of a ground truth. In Bitcoin, this problem is solved by
the fact that a node has a list of hardcoded DNS seeds. These DNS seeds are services
maintained by community members that scan the network for addresses and maintain
a list of available nodes. A node that wants to learn about addresses sends a DNS
request. The DNS service makes a random selection from their internal list and sends
the addresses to the node. The node then has everything it needs to establish an initial
connection to the network [Prod].

Once a node has established a connection to other nodes, it asks them for known addresses
or waits for unsolicited address messages via the gossip protocol. This allows a node to
accumulate knowledge about addresses of other participants in the network. This node
discovery for the network is therefore possible both actively and passively. For address
storage, nodes operate an internal list called address manager or addrman. In subsequent
attempts to connect to the network, the node falls back on previously accumulated
addresses and doesn’t have to rely on DNS-seed services [Prod].

In addition to the main Bitcoin network mainnet, there are other alternative networks.
For example, the so-called testnet. This testnet represents an alternative blockchain,
where it was agreed that the currency on it should have no monetary value. The goal
of the testnet is to provide developers and researchers with an environment in which
aspects of Bitcoin can be tested without fear of having a distorting influence on the real
blockchain [Wikb].

2.3.2 Message Structure
All peer-to-peer communication takes place via TCP. Messages of the Bitcoin protocol
are therefore located in the payload area of a TCP packet. This Bitcoin message part of
a data packet consists of a mandatory header and an optional payload depending on the
type of Bitcoin message. The Bitcoin header thereby is made up of multiple fields and is
structured as shown in Table 2.1.

Here the magic bytes at the beginning of the header differ based on whether the message
refers to the testnet or mainnet. The maximum payload size is 32 MiB, and the checksum
is obtained by using the first 4 bytes of the SHA256 hash of the SHA256 hash of the
payload [Proc].
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While the Bitcoin protocol knows a variety of different message types, the most important
control messages for the operation of the network are VERSION, VERACK, PING,
PONG, GETADDR and ADDR.

It is noteworthy that none of these messages are authenticated while being handled.
As a result, these messages may contain false, harmful or maliciously falsified informa-
tion [Proc].

VERSION: To establish a connection to a peer, a node sends a VERSION message
to a peer. It contains useful information for communication, such as the version number
of the protocol supported by the sender, as well as the system time, offered services, and
the current state of the block information. The remote peer responds to a VERSION
message by sending a VERSION message with information about itself. The handshake
is completed by both communication partners each sending a VERACK message without
payload. This establishes the connection, and sending of other message types. A
connection is closed if no message is received from the peer for more than 90 minutes [Proc,
Prod].

PING: For latency probing and keeping alive the connection, a node sends PING
messages at a standard interval of 2 minutes. These contain an 8 byte random value
called nonce [Prob]. If a TCP error occurs during the delivery of the PING message or if
no PING message is answered correctly for 20 minutes, it is assumed that the peer is no
longer connected. The communication partner properly responds to a PING message
with a PONG message. This contains the same nonce value, which confirms that the
peer has received the corresponding PING [Proc].

GETADDR: With a GETADDR-message, a node asks a communication partner for
addresses of other network participants. This allows filling its address memory without
having to passively wait for incoming addresses. Such a GETADDR-message has no
payload. The proper response to a GETADDR-message is either an ADDR or ADDRV2
message [Proc]. Notably, a Bitcoin Core client is generally unwilling to return more than
23 % of addresses stored in its address manager in response to a GETADDR request,
presumably to avoid information leaks.

ADDR: An ADDR-message is used to transport information about addresses of network
participants. Such a message contains between one and a thousand such address entries
at once. For this purpose, the payload of an ADDR-message consists of a flexible number
of fields: first a counter of the number of address entries to follow, and then the address
entries one after the other. Each of these address entries consists of:

• A 4-Byte timestamp indicating when the node behind this address was last seen.

• 8 Bytes of information about what services this node provides
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• 16 Bytes network address

• 2 Bytes port number

Since the 32 byte addresses of Bitcoin nodes behind Tor v3 hidden services do not fit
into the 16 byte network address field of ADDR-messages, ADDRV2-messages were
introduced as an advanced version of the ADDR-message type. The only difference to
ADDR-messages is that they have fields for the address entries that specify the length of
the address and the type of network. A node can inform its communication partners that
it supports ADDRV2-messages by sending them a SENDADDRV2-message. It has no
payload and requests a node to send only ADDRV2-messages instead of ADDR-messages.
This request has to happen before the connection is fully established with a VERACK
message [Proc, Prob].

2.3.3 Address Relay Theory
A gossip protocol is used to distribute information about network participants throughout
the network. This ensures the spreading of ADDR and ADDRV2 messages to all network
participants. Individual nodes send these messages to their neighbours according to
certain rules. Since this behaviour does not differ for ADDR and ADDRV2, these two
message types are combined under the term "ADDR" for the remainder of this thesis.

First, all ADDR-messages from block-relay-only nodes and those containing more than
1000 address entries are ignored. Then, the individual address entries within the ADDR-
message are processed in random order, and for each of them, the following procedure is
applied:

1. Rate-limiting is applied to ensure that on average only one address entry is processed
every 10 seconds. Any further addresses are skipped. This form of rate-limiting
cannot be circumvented by sending more address entries in fewer ADDR-messages.
However, due to the usage of so-called rate limiting buckets, address entries can be
sent faster than average for a short period of time after time spans with equivalently
lower than average throughput.

2. Addresses that offer neither a useful address directory nor all desired services are
ignored. To fulfill this condition, the service flags of the advertised node must
either point to a full node, a node that claims to be able to provide data for at least
the past 2 days of the blockchain, or all of the service flags that the forwarding
node has defined as interesting for itself. Any other address is skipped. Therefore,
address entries should contain at least the service flag NODE_NETWORK or
NODE_NETWORK_LIMITED. In particular, this means that only addresses to
full-nodes are stored.

3. Timestamps that are either more than 10 minutes in the future or unrealistically
far in the past are adjusted so that their timestamp equals the current time minus
5 days.
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4. The node remembers that the sending peer knows this address. This ensures that
the same peer does not receive the addresses it already knows.

5. Addresses banned under the reputation system are not handled beyond this point,
except that the node remembers that they were received.

6. The address is forwarded if it was not part of an ADDR-message with more than
10 entries, was not a response to a GETADDR request, its associated lastseen
timestamp is less than 10 minutes old, and the address is generally routable.

7. The address is stored in the AddressManager if it is in principle a network address
that can be reached by the node.

The forwarding in step 6) works as follows:

• The address is not forwarded to the node from which the ADDR-message comes.

• Among all other peers to which the receiving node is connected, the number of
forwarding destinations to be selected is either 2 if the address is reachable for the
node, or otherwise equally distributed randomly either 1 or 2. The reachability is
not checked by probing, but decided on the basis of which network the address is
part of.

• The random selection is based on hash values and is therefore deterministic. Thus,
the choice falls on the same selection of peers within a 24-hour timeframe, if the
list of peers connected to the node does not change.

• While it does not influence the selection, the actual sending off the address is
skipped for a peer if we know that this peer already knows the address.

Next, the message is sent to the selected peers. However, to be precise, the message is
not relayed immediately. To make timing analysis more difficult, a random time delay
is built into the sending of ADDR-messages. For this purpose, the addresses to be sent
are first appended to a queue for the corresponding peer. A node has one such queue
for each of its communication partners. The queue for a connection to a peer is then
emptied at irregular intervals by sending all pending addresses in it at that point in time
in a single ADDR-message. The delay between each ADDR-message transmissions for a
peer is randomly sampled from an exponential distribution with an average of 30 seconds.
To be precise, the function that is used to get the random delay calculates each delay
amount as

− ln(1 − x) × 30s + 0.5µs

where x is a uniform random value of 0 ≤ x < 1. Due to this, the probability of the
message queue being emptied after time t is

1 − e−( t
30s )
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[Prob]. This artificial time delay is called trickling and is deliberately introduced to
hinder timing analyses [NAH16].

In order to avoid redundant address forwarding, a client keeps a list for each connected
peer, in which a record is kept of which addresses this peer already knows. This list is
cleared every 24 hours on average. Addresses are added to the local internal list when
they are to be sent to or received from the peer. Before sending, the system checks
whether a node already knows this address and if this is the case, sending is skipped.
This has the effect of preventing unnecessary bandwidth wastage during relay, which
would otherwise occur without immediate benefit [Prob].

We argue that this means that two mechanisms are built into the system that ensure that
flooding ends over time. Since the time stamp for forwarding may not lie more than 10
minutes in the future or past, a given address entry is normally forwarded for 10 minutes,
but not more than 20 minutes. In this sense, the timestamp for the address flooding
defines a kind of time to live of the message, and after this time, the forwarding of this
address ends abruptly. During this time period, multiplying the number of addresses
by 2 in each forwarding step increases the total volume of addresses in circulation. The
effect is slowed down by the fact that, as described above, the address is not forwarded to
peers who know that they already know the address. This slows down the forwarding as
soon as a high saturation is reached, in the sense that the address has already been sent
to many network participants. In particular, as mentioned above, the random selection of
peers for forwarding always selects the same neighbours within each 24-hour time frame if
the peer list remains constant. Because a node remembers which addresses its neighbours
knows and then may not forward an address to them, a node generally only handles the
relay of a given address once. This is another reason why the chain of forwarding an
address in the network ends in the context of flooding.

In regard to the properties of every handled address, there is a mechanism in place to
prevent attackers from misusing the Bitcoin network to overload services on the Internet
with unwanted network traffic. To do this, nodes running the Bitcoin Core client try to
avoid connecting to addresses that do not use the default port 8333 [Proc]. However,
this port preference does not affect the forwarding behaviour of the addresses. For the
address relay procedure, the port specified in the address is therefore irrelevant.

2.3.4 Reputation System and Misbehaving Peers

To protect network participants from misbehaving peers, Bitcoin relies on a reputation
system. A node assigns an internal behaviour score to each peer connected to it. This
score is increased if the node detects misbehaviour on the part of this communication
partner. If a certain threshold value, which is set to 100 by default, is exceeded, this
communication partner is considered harmful. The connection is then terminated, and
future connection attempts are aborted. This does not apply to explicitly whitelisted
peers, manually established connections, and local peers [Prob].
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Behaviour Score
providing invalid block data 100
outbound peer being on an invalid chain 100
previous block in the chain is invalid 100
previous block in the chain is missing 10
providing invalid transaction data 100
sending a getblocktxn with out-of-bounds transaction indices 100
sending 10 headers that don’t connect in a row 20
sending an invalid header 10
sending a non-continuous header sequence 20
sending more than 1000 addresses in a single ADDR-message 20
sending an INV message with more than 50000 entries 20
sending a GETDATA message with more than 50000 entries 20
invalid filter constraints in FILTERLOAD message 100
send a data item of more than 520 bytes in a FILTERADD message 100

Table 2.2: Behaviour punished in the reputation system in Bitcoin and the corresponding
punishment scores

The behaviours that are penalized by the Bitcoin client and their assigned penalty score
are listed in Table 2.2. We note that almost all of these penalized forms of misbehaviour
relate to block and transaction verification. The only restriction regarding Bitcoin
connections is that ADDR-messages must contain at most 1000 addresses. It is also
worth noting that penalty scores are only stored internally; they are never sent through
the network to warn other nodes about misbehaving nodes [Prob].

2.4 Networks
2.4.1 Peer-to-Peer Networks
Conventional computer networks often follow a client/server structure. This means that
network participants have different roles: A single server is a central unit and provides
content or a service. Several clients are connected to the server and access the resources
or services without sharing their own resources. The server is often a higher performance
system than the clients. In this sense, there is a hierarchical imbalance between the
network participants [Sch01].

Outside of client/server networks, in which participants always assume exactly one of
these two roles, a third role is also possible: the Servent. This participant simultaneously
fulfills the roles of server and client in the sense that it can provide resources and make
requests at the same time. A network of peers that share resources without hierarchical
differences to jointly provide the service or content of the network is called a peer-to-peer
network [Sch01].
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A further distinction is made between hybrid peer-to-peer networks and pure peer-to-
peer networks. A pure peer-to-peer network is characterized by the fact that it is a
peer-to-peer network that may only consist of servents. This means that there is no
central entity in the network, and it is possible to remove individual, randomly selected
network participants without any loss of network service. On the other hand, hybrid
peer-to-peer networks are those that also allow central entities to provide parts of the
service or resource offered by the network. These differ from client/server networks in
that the other network participants also still share resources [Sch01].

2.4.2 Network Metrics
Certain definitions given in Section 2.1.1 can be used as metrics to judge properties of
the network from a graph theoretical point of view. Some metrics provide insights into
the properties of individual nodes, while others are applicable to the entire network:

• Node degree reflects the importance of a node within the network.

• Average shortest path length expresses the degree of separation between nodes
in the network. A low average path length implies a low latency for resource
lookup [HLY04]. Loguinov et al. argue that this average path length is a better
representation of what the user can expect from the actual performance of the
network than the diameter, as the latter only gives an upper bound and not
a balanced metric. Additionally, they refer to the unintuitive fact that it is
possible to increase the average routing distance while reducing the diameter of the
graph [LKRG03].

• High values of Global Clustering Coefficient imply robustness in object lookup even
under heavy load [HLY04], while simultaneously hinting towards weaker networks
because of its implications on edge expansion [LKRG03].

• Edge Expansion measures how robust the graph is in the presence of edge failures.
It is defined as the minimal fraction of all edges of a graph that connect any subset
of nodes with the corresponding rest of the graph. As a higher clustering index
leads to fewer connections between the neighbourhood and the rest of the graph,
the edge expansion is contrasting the clustering coefficient [LKRG03].

• Node Expansion measures how robust a graph is against node failures. It is defined
as the minimal fraction of all vertices of a graph that connect any subset of vertices
with the corresponding rest of the graph. Loguinov et al. argue that node failure is
more present in peer-to-peer networks than edge failure is, making node expansion
of a graph a better indicator for resilience [LKRG03].

• Bisection Width offers a metric on how difficult it is to split the graph into two large
components by splitting individual edges. While this is a metric for the resilience
of the graph on the one hand, a low value can also indicate congestion problems
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under the assumption that both halves produce the same amount of traffic. This
is because that traffic would then need to pass through a possible throughput
bottleneck [LKRG03].

• Betweenness Centrality shows for a node how high its control over the graph is.
This is because it can be assumed that for high values of betweenness centrality,
proportionally more traffic passes through the node [ZFDS22].

We argue that it is to be expected that a truly random graph according to the Erdös-
Rényi-Model would have both a low average path length and a low global clustering
coefficient, which would in turn speak for a high node- and edge expansion.

Zabka et al. [ZFDS22] apply the Gini coefficient, which is used in economics to express
unequal distribution as a scalar value, to network metrics. To this end, they calculate the
coefficient for distributions of node metrics to determine how equally they are distributed
within the network. Specifically, they calculate the Gini coefficient for betweenness
centrality to determine an uneven distribution of high centrality values among a few
nodes. First, they form the Lorenz curve, which indicates what proportion of nodes
has what proportion of the sum of the metric across all nodes. A perfect uniform
distribution would thus form a diagonal line. The Gini coefficient is then calculated as
the area between this diagonal and the Lorenz curve, divided by the total area under
the diagonal. Following this calculation, a Gini coefficient of 0 corresponds to a perfect
uniform distribution, and a value of 1 corresponds to a maximally unequal distribution.
This principle can thus be applied to express the distribution of node properties within
the network as a scalar value. We use the Gini coefficient to derive a network metric
from a node metric. This approach has been used in previous work related to graph
theoretic metrics in computer networks [CLA16, DSBPS+19].

2.4.3 Security and Attacks

The security relevance of individual network aspects also depends on the purpose of
the network. For example, unstructured peer-to-peer networks such as those underlying
permissionless blockchain systems sometimes have different requirements than anonymity-
providing networks such as TOR. In the case of permissionless blockchain systems, Bitcoin
is a widely considered prototype. However, the security requirements imposed on Bitcoin
are in principle transferable to many other such networks. Functional requirements for
this kind of peer-to-peer network are: 1) Openness of the network, i.e. the possibility for
any peers to connect to it. This requirement presupposes a sufficiently large proportion
of accessible peers. 2) Dissemination of information, i.e. the distribution of relevant
information to all network participants, is ensured by flooding or broadcast/gossip
protocols [NH18].

Non-functional requirements that can also be placed on this kind of network include: 1)
low cost of participation, i.e., there should not be too great a hurdle to setting up a node.
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This includes the necessary memory, bandwidth and computation. 2) performance, i.e.
the speed of dissemination of information [NH18, BMS01].

Mechanisms that are supposed to ensure these requirements are often the focus of
attacks on this type of network. Attacks frequently discussed in the context of security
considerations for such peer-to-peer networks include sybil attacks, eclipse attacks and
denial of service attacks.

Sybil Attack: A sybil attack is an identity attack in which a single entity impersonates
multiple simultaneous identities. This kind of attack is a fundamental problem for systems
that assume that each participant controls only one identity [LSM06]. In the case of the
Bitcoin peer-to-peer network, such an attack occurs when a single attacker connects a
number of malicious nodes to the network. Since, according to the requirements listed
above, the cost of participating in the network should be low, an attacker can easily
create and connect many such nodes. The number of such sybil nodes may well exceed
the number of honest nodes in a network [NH18].

Eclipse Attack: In an eclipse attack, an attacker is positioned within the network
to control all connections to a victim node. This gives the attacker full control over
all information received by the victim node, and thus over the victim node’s view
of the information shared on the network. This disrupts the assumption of perfect
information exchange in the network, which is necessary for many peer-to-peer networks.
In particular, an attacker can force a target node to waste computing power on false
chain-state information in case of Bitcoin or have them use said power in favor of the
attacker. By deliberately withholding blocks from the rest of the network from the
attacked node, the node’s participation in the service is fundamentally disrupted. This
can lead to scenarios in which the attacker illegally transfers funds multiple times, once
to the victim node and secondly to the rest of the network (so-called double spending).
If a substantial number of nodes are simultaneously targeted in a coordinated eclipse
attack on a larger scale, this can favor mining attacks such as the 51 %-attack [HKZG15]

DoS: Denial-of-service (DOS) attacks generally refer to attacks that result in a given
system no longer being able to provide the services it would offer under regular circum-
stances. In the context of computer networks, this can mean that individual network
participants can no longer take part in the distribution of information. In practice, such
an attack can take different forms. On the one hand, the attacker could, for example,
make specific faulty requests with the aim of causing the target system to crash. On the
other hand, one possibility is to make valid requests to a system, but so many at once that
the victim either crashes under the load or no longer has the capacity to handle legitimate
requests made by the other network participants as part of the operation [Rou11].
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Topology Discovery

A special position among attacks on peer-to-peer networks is held by the so-called
topology discovery attack. Although there are various invasive methods in practice, the
primary objective of this attack is not to disrupt operations. Instead, the attacker aims
to gain information. Specifically, the goal of this attack is to find out the topology of the
network, that is, the graph G = (V, E) that maps the network [Wei19].

An obvious problem here is the privacy of the users. An attacker who can trace the
topology may be able to de-anonymize users [DSBPS+19, BKP14, NAH16]. For privacy-
oriented network services such as Bitcoin, this may be in direct conflict with the defined
security objectives of the service.

Topology discovery also enables analysis of the network topology. From the perspective
of benevolent network participants and researchers, this can thus be a good means
of verifying, for example, compliance with decentralization goals and understanding
the actual interactions between clients. As a result, this process is a key to detecting
vulnerabilities or attacks and disruptions already in progress in the network [DSBPS+19,
BKP14, NAH16]. However, malicious attackers can also use this knowledge to target
attacks on the network’s topology. For example, knowledge of the network structure can
be used to find a minimal cut of the graph, which can then be carried out in practice via
targeted attacks on individual connections to split the network in half [NAH16, BKP14].

A more subtle approach by which an attacker can take advantage of topology discovery
is to deliberately and strategically choose a position within the network. For example,
well-chosen connection to selected peers can be used to optimize the speed at which
information reaches a node. In particular, advantages in mining can be drawn from
advantages in positioning within the topology [MLP+15].

All in all, we argue that topology discovery gains strategic value for attackers, especially in
combination with other attacks. For example, detailed knowledge of network construction
can facilitate eclipse attacks, as an attacker may be able to gain control over nodes more
easily when knowing their legitimate neighbours. In this sense, a basic knowledge of
the topology is also useful for targeting DoS attacks. All in all, we therefore assume
that topology discovery can provide a useful foundation for more advanced attacks with
higher damage potential.

2.5 Related Work
Biryukov et al. [BKP14] proposed the first paper on general de-anonymization through
topology discovery in Bitcoin in 2014. The researchers show that the pseudonyms of
Bitcoin users can be mapped to IP addresses with a success rate of up to 60 percent
if the set of entry nodes for a non-listening peer is known. They suggest a method to
find the number of neighbours of a node by exploiting address propagation. The basic
idea is that a node v, which connects freshly to the network, sends its own address
via ADDR-messages to all connection partners P . Then, these ADDR-messages are
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forwarded to random neighbours of these peers P . If an attacker has established enough
connections to the nodes P , they receive with some probability the ADDR-message
containing the address of v. The attacker has then identified a subset of the network
that is connected to the victim node. The advantage of this approach is that it can also
be used to determine the connection partners of those nodes that are behind NATs or
firewalls and do not allow any incoming connections from the attacker. In addition, the
researchers present an alternative method for degree estimation and connection inference.
For the former, they inject a series of addresses into a node and observe how many of
them are directly forwarded to listening connections of monitors. The node degree can
be estimated by the ratio of observed relays to the originally injected number. The
researchers validated the average relative error rate of this experiment to be between 3 %
and 10 %. In this thesis, we reproduce the degree estimation following the same idea.
Additionally, the researchers also present a connection inference method. For this, the
addresses are first injected into a node. Afterwards, GETADDR queries are used to check,
which other nodes in the network have these addresses in their address memory. Using
this method, connections to network nodes could be determined with 100 % precision
and recall. However, since the way in which GETADDR queries are answered by Bitcoin
nodes has been changed afterwards, this procedure is no longer feasible [BKP14].

Directly building on this work is the 2015 paper of Miller et al. [MLP+15]. Their
AddressProbe framework uses the way in which nodes use timestamps in their internal
address memory to determine the recency of addresses. This timing information is then
used to determine connections between nodes. More specifically, the researchers exploit
the fact that nodes keep the "lastseen" timestamp up to date for outgoing connections,
but not for incoming connections. By querying the address memory of nodes through
GETADDR-messages, connections between pairs of nodes are detected. Furthermore,
artificially added "ageings" of the timestamp by exactly two hours in the ADDR-message
relay allow reconstruction of the relay path through the network by detecting discrete
steps of exactly 2h in these timestamps. Thus, this topology discovery is based on
the address manager’s handling of timestamps at the ADDR-message relay and not on
actually measured time delay. Unlike Biryukov et al., this method only works for nodes
that allow incoming connections. The vulnerability enabling this attack was patched
shortly thereafter by the Bitcoin developer community. The researchers conclude their
paper by examining network properties such as node degree and randomness. They find
that a small number of nodes have an exceptionally high node degree, and that the
network graph, even without the high node degree outliers, falls statistically significantly
below the expected level of randomness [MLP+15].

The first work to explore the topology not based on client implementation peculiarities
but by exploiting packet flooding properties was proposed by Neudecker et al. [NAH16]
in 2016. The researchers present a model that allows measuring time delays in the
forwarding of data packets, and then to statistically estimate a path length. This model
is generally applicable for all peer-to-peer networks that use flooding, as well as for all
floodable packet types. As a proof of work, the researchers then apply this model to the
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Bitcoin network. For this purpose, time delays in the forwarding of block announcement
messages (INV ) are measured and analysed using the model. In practice, the framework
achieves precision and recall values of about 40 %. The main difference between their work
and this thesis is that they measure a different type of message with INV messages instead
of ADDR messages. Apart from this, the time-based estimator we use in this thesis is
directly based on the statistical model of Neudecker et al. As the researchers also discuss
the now implemented artificial forwarding time delays (trickling) as a countermeasure, our
work further investigates the effectiveness of this countermeasure in practice [NAH16].
In 2018, Grundmann et al. [GNH18] proposed two additional ways to measure Bitcoin
topology. The first exploits the way pending transaction messages are artificially held
in queues before being sent as part of the trickling process. This attack is theoretically
possible but of little practical relevance, since its execution has high monetary costs
and even then it only has 10 % recall. The second attack uses conflicting transactions.
Here, contradictory transactions are sent to nodes. Target nodes that receive these
transactions drop all but one of the conflicting transactions and forward it. By then
matching which transactions were injected and received back from where, they determined
who is connected to whom using a set of observations. In this way, they were able to
determine connections with a recall of 87 % and a precision of 71 %, costing a total of 99
transaction fees to perform [GNH18].
A similar topology discovery attack was presented in 2019 by Delgado-Segura et al. [DSBPS+19].
Here, peculiarities of Bitcoin clients in the way they handle mis-ordered incoming trans-
action data are exploited. However, since this attack is exceedingly invasive and could
paralyse large parts of the network, the researchers tested their framework only on the
testnet. They were able to determine precision and recall values of over 90 %. The
researchers use this approach to identify the connections of the Bitcoin testnet. They
then apply graph-theoretic metrics to compare the resulting topology with random
graphs [DSBPS+19].
Finally, there is the 2021 paper by Grundmann et al. [GBH21]. The researchers describe
how numerous injections of ADDR-messages with spoofed addresses by an unknown
actor were observed in the network. They hypothesize that these could potentially be
used to perform a degree estimation attack. Therefore, the paper presents a method of
degree estimation by address injection. The idea of the presented method is the same
as that of Biryukov et al. However, they do not inject the ADDR-messages themselves.
Instead, they observe an unknown actor injecting a known number of addresses into
all nodes on the network. This way, they were able to perform the degree estimation
with a relative error of 4.1 %. The researchers also mention that since the incident, a
rate-limiting system has been implemented to prevent such attacks [GBH21].
The diploma thesis of Jakob Rosenblattl [Ros] is particularly worth mentioning at this
point. His thesis is being written at the same time as this thesis, in close collaboration.
The thesis deals in detail with the theoretical foundations of topology discovery using
ADDR-relay and provides the time-based estimator. In this respect, it was developed
to build on the work of Neudecker et al. in terms of timing-analysis. In particular,
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Rosenblattl’s work describes the methodology by which the time delay data is collected.
It also derives the formulas by which degree estimation and connection inference can
be performed using the statistical methods of timing analysis. The project furthermore
provides a basic code base for performing the estimation on individual accounts [Ros].
This thesis builds on Rosenblattl’s work by validating the procedure and comparing it to
an alternative behaviour-based estimation procedure. We further adapt the method for
scaling it up to the entire network. For this purpose, the code-base is heavily expanded.
In this sense, the product of this thesis is the practical implementation and verification
of Rosenblattl’s work.
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CHAPTER 3
Methodology

In this chapter, the topology measurement experiment is presented in detail. Section 3.1
first describes the idea for the procedure, justifies model assumptions, and defines
terms. Both the technical approach for collecting the data and the general way in
which information can be deduced based on this data are presented. Section 3.2 will
explain in detail how the time-based estimation and the relay-based estimation are
conducted, respectively. In Section 3.3, a series of smaller complementary measurements
are presented. These were performed before the main experiment to determine details
of the behaviour found in Bitcoin client nodes and the network as a whole. In essence,
these additional experiments test the boundary conditions of the main experiment by
determining the availability and stability of nodes and their connections to each other and
to the probing system. Afterwards, the outline and workflow of the main measurement is
presented in Section 3.4. This also includes considerations of experiment scalability, and
the selection of the peers to be measured.

3.1 Idea

As described in Section 2.3, address messages are flooded through the Bitcoin network
using a gossip protocol. A properly implemented Bitcoin client forwards an ADDR-
message at random to two of its currently connected neighbours, which in turn forward
the message further. The goal is address spread so that eventually every participant in
the network has knowledge of a sufficiently large number of client addresses.

The way in which this propagation takes place allows two types of information to be
gained: Node Degree Estimation and Connection Inference.
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3.1.1 Definition of Terms
To ease the description of the measurement framework, we define a series of terms related
to individual components and actors of the setup and measurement procedure:

• Injection: The act of sending specially crafted ADDR-messages to a Bitcoin client
on the network.

• Monitor : An endpoint of the framework that implements part of the Bitcoin
network protocol to perform the measurement. In a way, it is a fake sybil peer
for communication with other clients in the network. Monitor nodes connect to
regular nodes, without suspicion, to inject ADDR-messages as well as receive
forwarded Bitcoin messages from the client. Monitors that inject messages are
called injectors, and those that listen are called receptors. The role that a monitor
takes might change over the course of the experiment. In fact, any monitor that
is technologically capable of receiving and sending messages can fulfill both roles
simultaneously.

• Victim: A node in the network that is under active measurement, i.e., connected
to a Monitor that injects messages to determine node degree and neighbours.

• Client: A node on the network, which is connected to one or more monitors, but
into which no messages are injected. Clients are primarily used to retrieve forwarded
messages in the connection inference. In the same way that a monitor node can
act as an injector and a receptor at the same time, a network node can also have
different roles depending on the perspective. For example, if several measurements
are performed simultaneously on different nodes, a victim of one measurement can
simultaneously assume the role of a client in another measurement.

• Conductor : The framework component that coordinates the experiment workflow.
The Conductor connects the monitors to victims and clients and orchestrates the
injection of messages.

• Bullet: ADDR-messages created and used specifically for injection into victims. In
a way, they are "weaponized" for the attack and are "fired" at the victims.

• Estimator : Standalone module into which the measured time delay data is fed. It
provides estimates of victim node degrees as well as victim neighbours.

An overview of the general layout and interaction between these components is depicted
in Figure 3.1.

3.1.2 Node Degree Estimation
Upon receipt of an ADDR-message, the node forwards it to two randomly selected
neighbours. Since it makes no sense to relay an ADDR-message back to its origin, the
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Figure 3.1: Overview of the general layout of the experiment components and their
interactions between each other

sender is excluded from the forwarding. Apart from that, the number of neighbours to
which it is forwarded is fixed and does not change with the node degree. Intuitively,
this means that the probability of receiving a forwarded ADDR-message from a node
v decreases with node degree deg(v); if a node v has many connected neighbours, the
probability that a given neighbour v� receives the message is lower than with fewer
neighbours. This change in probability is exploited to estimate the node degree.

For this purpose, nodes from a node set M = {m1, m2, . . . , mn} of size |M | ≥ 2 connect to
the victim node v, taking the role of the attacker. One of the attacker nodes, for example
m1, sends a sequence of ADDR-messages to node v. The remaining attacker nodes, m2
through mn, pay attention to which addresses they receive from v. In normal operation,
the eavesdropping attacker nodes are expected to receive some of the previously injected
addresses as well as addresses that were randomly passed to them and are unrelated to
the experiment. Since the injected addresses are known, it is easy to filter them. All
other addresses are neither relevant for the degree estimation nor for the connection
inference. The proportion of addresses recovered after injection then gives an indication
of the ratio of attacker nodes M and non-attacker nodes C = {c1, . . . , cn} connected to
v. Since the number of connected attacker nodes is known, this can be used to estimate
the node degree deg(v).
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Figure 3.2: Sketch of the parties involved in degree estimation

A figure showcasing the parties involved in the process of degree estimation, and their
connections is shown in Figure 3.2.

In practice, the node sizes for Bitcoin clients can become rather large; 125 to several
hundreds are possible [GBH21]. Since a given receiver node’s share of relayed addresses
decreases substantially for such nodes, it may make sense for practical reasons to keep
the number of connected attacker nodes as large as possible to increase the total number
of relays observed by the conductor.

The idea of being able to actively measure node degrees using this experiment setup
was already presented in 2014 by Biryukov et al. [BKP14]. For this thesis, we use their
setup to conduct our experiment. However, as opposed to their paper, we acknowledge
that the minimum number of connected nodes for this measurement is two: one injector
node to send ADDR-messages to the victim and one receiver node to listen out for any
ADDR-messages being passed on by the victim. As the injector node never receives its
own address messages back by the victim, a single node cannot fulfill both of these roles
at once.

3.1.3 Connection Inference
After a node forwards a received ADDR-message to its peers, these peers also start
forwarding this message according to the same forwarding rules. If a monitor node of
the attacker receives a previously injected address from a client, it means that there
is a path between the injecting monitor and receiving monitor. This path necessarily
includes the victim node and an unknown number of client nodes and corresponds to
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Figure 3.3: Sketch of the parties involved in connection inference

the path through which the address message was forwarded. The exact number of client
nodes through which the injected address was forwarded after the victim and before
the receiving monitor is unknown and may be difficult to determine. However, a large
quantity of observed address recurrences can be used to determine with a certain degree
of certainty whether two nodes are adjacent.

In this method of connection inference, an ADDR-message is therefore inserted at one
point in the network, and the time delay δ until its reappearance at another point is
measured. For this purpose, an attacker node m1 connects to the victim node v that is
to be measured. Simultaneously, another attacker node m2 connects to as many nodes
V � = {v�

1, . . . , v�
n} from the network as possible. A large number of uniquely identifiable

ADDR-messages are then passed from m1 to v, and the timestamp of each of these
injections is noted. If the messages are then forwarded from one of the nodes v� ∈ V � to
the receiving node m2, the time of reception of the message is noted. This allows the
attacker to obtain a total delay δ(v,v�) of the respective message for the transit between v
and v�.

As seen in Figure 3.3, it is not known to the attacker, to which of the nodes of V �

v is connected. Whether a connection (v, v�) exists is then estimated on the basis of
the measured time delays and message reoccurrences. The idea is to find nodes that
frequently forward messages injected into victim v to monitors with as little delay as
possible. These are then most likely to be direct neighbours of v.

Similar to degree estimation, a large number of monitors connected to the clients is
helpful to increase the probability of injected addresses being rediscovered. However, the
technical minimum number of monitors is 1 per observed node. This is because, unlike in
the degree estimation, registering immediate returns from the victim to a second monitor
is not necessary for the connection inference.
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3.1.4 Possibility of Combined Conduction
We propose a procedure that allows degree estimation and connection inference to be
performed simultaneously. This exploits an inherent synergy between the methods in
several aspects.

With respect to the active measurement, we note that the setups of the two measurements
overlap when they are performed for multiple nodes simultaneously. For example, let
there be a situation where address set B1 is injected by monitors M1 into victim node
v1. At the same time, address set B2 is injected into another node v2 by monitors M2.
In this sense, two separate degree estimation experiments take place at nodes v1 and
v2. But because addresses from B2 can also travel through the network to monitors M1,
connection inference takes place simultaneously. Thus, over the same injections that were
intended for degree estimations, exactly the same observations are made that would also
be made in a connection inference of the connection (v1, v2). When performing degree
estimation measurements for all nodes of a node set V , this means that a connection
inference of all connections between nodes of V is also performed. In practice, this means
that only one measurement needs to be performed to apply both methods to the network.
A separate measurement is therefore not necessary.

However, the simultaneous execution of both procedures for a node is only possible
if more than two monitor connections can be established to it. If only one monitor
can connect, connection inference alone is still possible. Alternatively, injections can be
omitted in this case, and an injectionless deduction of the connections from information of
the neighbouring nodes conducted: since in Bitcoin connections are always bidirectional,
a node always has connections to the nodes that have a connection to it. For example,
a network-wide connection inference can determine that a set N of nodes each has a
connection to victim v. A connection inference of v itself would then no longer be
necessary to be sure that the set of neighbours of v is exactly N .

The simultaneous execution is furthermore not associated with an increased number of
monitor nodes. Since a monitor node can connect to all victim nodes that are to be
measured at the same time, a total number of two monitors is sufficient for the complete
measurement.

A second point of synergy between the two methods is the estimation that is performed
after the measurement. This is because a node with a high node degree is inherently
more likely to be connected to a random node than a node with a low node degree would
be. In this sense, the node degree can be incorporated into the connection inference in
the form of an a priori probability [Ros]. Therefore, it can be useful to pass the results
of the degree estimation to the estimation of the connection inference.

Finally, the result of the degree estimation can also be used to translate the non-binary
probability score results of the connection inference estimation into a binary classification.
As we saw in Section 3.2, the determined node degree is the basis for applying a threshold.
This exploits the property of nodes that the number of connections is equal to the
estimated node degree.
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All in all, both methods can be carried out in measurement at the same time using
the same setup, and furthermore support each other in estimation. According to this
approach, we also perform degree estimation and connection inference simultaneously in
this thesis. In the context of this thesis, the joint execution of both of these methods
constitutes a topology discovery attack.

3.1.5 Model Assumptions

In order to be able to carry out the measurement in the manner presented, four basic
model assumptions are made about the Bitcoin network

1. The ADDR-messages are flooded through the network as part of a gossip protocol.

2. The ADDR-messages used as bullets are uniquely identifiable.

3. The network is open, i.e. we can connect to any node to send and receive messages.

4. All network connections are fixed during the duration of the experiment.

We note that these assumptions are consistent with those made by Neudecker et
al. [NAH16]. Assumption 1) is satisfied by Bitcoin’s network protocol as described
in Section 2.3. Assumption 2) is ensured by the choice of bullet addresses as discussed
in Section 3.4.2. The extent to which assumptions 3) and 4) hold is determined in
complementary measurements conducted in Section 3.3.

As for the attacker model, the assumptions are that the attacker can:

1. create at least two sybil nodes

2. send messages from sybil nodes to network participants

3. monitor traffic between network participants and sybil nodes

In particular, it is explicitly not a requirement that the attacker can observe or modify
message traffic between network participants (man-in-the-middle). The fulfillment of all
three of these assumptions is a direct consequence of the openness of the network, as well
as the open source nature of the network protocol. Therefore, no further vulnerabilities
are needed to provide the attacker with the necessary capabilities to carry out this attack.
We argue that this attacker model is not particularly strong, which means that any
sufficiently motivated adversary should be able to conduct the attack without significant
operational difficulties.
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3.1.6 Vulnerable Design Decisions
Our attack relies on the way messages are relayed in the Bitcoin protocol ADDR as
part of the gossip protocol. As described in Section 2.3.3, a node always forwards a
received address to two neighbours. This design decision enables degree estimation
using Equation 3.2.2 we presented in Section 3.2.2. Likewise, connection inference in
the relay-based mode also builds on the gossip mechanism. Through this, as shown
in Section 3.2.2, inferences about a node’s neighbours might be possible by means of
observable return probabilities. The behaviour described in Section 2.3.3 thus provides
the sole core of this attack.

This is especially true for the idiosyncratic way messages relay is handled for the relay-
based estimator. Although time-based estimation by its nature is not based on behavioural
characteristics [NAH16, Wei19], we nevertheless locate an enabling circumstance in design
decisions of the relay, i.e., in the implementation of the trickling.

Furthermore, we argue that the choice of the value for the rate-limiting of ADDR-
messages, 10 seconds per address, also enables the attack. We assume that this parameter
is low enough to allow the attack to be performed with a few sybil nodes in a reasonable
amount of time.

We would like to point out that none of these points represent a vulnerability or a bug in
the conventional sense. Rather, this attack is enabled by deliberate design decisions of
the developer community. Countermeasures against the topology discovery presented in
this thesis can therefore not be bug fixes, but must be done by rethinking the trickling
mechanism and rate-limiting parameters.

3.2 Estimations
In the context of the experiment, the estimation is separate from the measurement. The
injections and receptions of ADDR-messages with their corresponding timestamps are
first measured and saved, before they are passed as input to a standalone estimator.

In this thesis, we have the estimator produce estimations based on two different approaches:
time-based estimations and relay-based estimations.

3.2.1 Time-Based Estimation
For the time-based estimation approach, it is necessary to measure time delays of the
injected addresses. For this purpose, the two procedures are executed as described in
Section 3.1. When an injection is made into a victim v, an internal record is kept of
the time at which the injection occurred. If any node v� forwards the same address to
a monitor some time later, the total transit time of the address δ(v,v�) between the two
nodes is recorded. Across all injections, this procedure results in a set Δ of time delays
measured across all nodes of the network. Based on this set of measured time delays, a
timing analysis is performed.
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The estimation with the help of these timings is carried out in this thesis by applying
statistical methods according to the procedure presented by Rosenblattl in his work [Ros].
To enable a comparison with the alternative estimation method, we would like to give a
brief, superficial overview of the underlying idea as presented in his thesis, but without
going into too much detail.

Degree Estimation

In the degree estimation only the number of direct relays is important. That is, the
number of delays where the input node and the output node are identical so K :=
|{δ(v,v�) ∈ Δ | v = v�}|. Also, let k be the number of addresses recovered after a single
injection. By the fact that node v selects exactly two peers without duplications for
relaying, we know that 0 ≤ k ≤ min(2, degmon(v) − 1) where degmon(v) is the number
of monitor nodes simultaneously connected to v. We also know that k follows the
hypergeometric distribution of H(deg(v), degmon(v) − 1, 2), where deg(v) is the node
degree including monitor nodes. With the associated probability mass function h, it then
follows for the likelihood function L

L(deg(v) = d | K) =
�

k∈K

P (k | deg(v) = d) =
�

k∈K

h(k | d − 1, degmon(v) − 1, n),

The estimated node degree can then be derived from this using maximum likelihood esti-
mation, as dMLE = argmaxdL(deg(v) = d | K). Alternatively, an expected node degree
distribution can also be included in the estimation as an a priori probability. This expected
distribution could be the result of another research work. Then a maximum a posteriori es-
timation can be performed with dMAP = argmaxdL(deg(v) = d | K)P (deg(v) = d) [Ros].

For this thesis, the time-based estimator produces degree estimation results using the max-
imum a posteriori estimation. The node degree distribution for the a priori probabilities
is taken from Grundmann et al. [GBH21].

Connection Inference

When an ADDR-message is forwarded from one node to the next, there is a time delay in
each step through the network. This is due to processing overhead and network delay, but
in the case of Bitcoin mainly due to intentional delays (so-called trickling, see Section 2.3).
This means that for individual messages the delay over several steps is the sum of the
individual delays. The expected amount of time delay can at best be estimated, but
in general it can be assumed that the delay increases with the number of steps in the
network.

The general idea of connection inference through timing analysis is now to measure the
times needed to transfer data from one peer in the network to another. Based on these
measurements, the topology of the network can be identified by drawing conclusions about
the distances and connections between the peers. Basically, Timing Analysis exploits the
fact that the transmission speed of data in a network depends on the distance between
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peers. The farther apart the peers are, the longer it takes to transmit the data. By
measuring the transmission times required, one can draw conclusions about the topology
of the network. For example, if one finds that it takes longer to transfer data from peer
A to peer C than from peer A to peer B, one can conclude that peer C is farther away
from peer A than peer B.

In this way, we can estimate the connections and distances between peers in the network
based on the delay set Δ. The delays used in this procedure are exactly those where
the input node and the output node are not identical, i.e. K := |{δ(v,v�) ∈ Δ | v �= v�}|.
For the purpose of this estimation, we add expiries to the set of observed deltas, i.e.
δ = ∞ for all bullets that were injected into a victim but not returned by another client.
The following a priori probabilities are then included in the probability estimate of the
existence of a direct connection (v, v�) ∈ E:

• the probability p(r | c) that a delta between a directly connected pair of nodes is a
recurrence

• the probability p(e | c) that a delta between a directly connected pair of nodes is
an expiry

• the probability p(r | ¬c) that a delta between a pair of nodes not directly connected
is a recurrence

• the probability p(r | ¬c) that a delta between a pair of nodes not directly connected
is an expiry

These probabilities are initially unknown for the Bitcoin network. Rosenblattl, however,
presents a method of approximating them for the network. To do this, the injection and
forwarding of address messages, as would take place in the context of the experiment, is
simulated. A large number of messages is used in a simulated network, which in terms of
size, node degree distribution and connectivity can be taken to be as similar as possible
to the real network to be measured. The a priori probabilities given above can then
be observed in the simulation and used to estimate the real measurement data. This is
therefore done under the assumption that the network to be measured behaves similarly
to the simulated network in this respect.

In addition, the node degrees of both nodes are included in the estimation of a direct
connection between v and v� as another a priori probability p((v, v�) ∈ E). This is
because in a random given network, nodes with large node degrees inherently have a
larger probability of being connected, since a larger proportion of all edges lead to the
nodes, respectively. For the time-based estimator, node degrees previously estimated in
the degree estimation can be used here.

The connection inference is a special case of a path length estimation for the case
that the length of the path is l = 2, i.e. only the partial delays of the edges (v, v�)
and (v�, m�) are included in the total delay. Since trickling is only added to outgoing
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messages and injecting monitor m refrains from doing so, we assume that the delay of
(m, v) is negligible here. Moreover, based on the Bitcoin Core reference client delay
equation presented in Section 2.3.3, we know that the individual partial delays follow an
exponential distribution with average λ = 1

30s . Therefore, the sum of the partial delays
across l = 2 trickling processes follows an Erlang distribution Erl(λ, 2). Let f be the
associated probability density function, the probability of a given time delay δ assuming
direct connection is therefore P (δ | v → v�) = f (δ | λ) Using the observed recurrences
Δr

(v,v�) and expiries Δe
(v,v�) relevant for node pair (v, v�), we can summarise that the

posterior probability P ((v, v�) ∈ E | Δ(v,v�)) of a connection (v, v�) can be estimated using
likelihood L((v, v�) ∈ E | Δr

(v,v�),Δ
e
(v,v�)) of the same [Ros].

It is worth noting that connection inference based on timings is not based on characteristic
behaviour of Bitcoin clients. Instead, the observed time delays are inherent to all networks
that distribute information through flooding. The timing analysis used in this thesis is
based on the method presented by Neudecker et al., who conducted a comparable timing
analysis based on another flooded address type [NAH16]. For this thesis, the time-based
estimator is taken from the work of Jakob Rosenblattl, who developed it based on the work
of Neudecker et al. Their estimator works by training a model based on data generated
by a simulated network, and then statistically comparing the measured experiment data
to this trained model. To change the results, the model can be tweaked by providing
different training data generated by simulated networks generated with different network
parameters. In the end, the time-based estimator produces a degree estimation based
on maximum a posteriori estimation (MAP) together with the corresponding posterior
probability. The connection inference of this estimation method results in a posterior
probability for every possible pair of two peers. A decision whether a connection should
be assumed between two peers can then be made based on this posterior value.

Intuitively, one can simply apply a threshold value t for the decision rule D(x):

D(x) =
�

True, if x ≥ t

False, otherwise

for all possible connections between two nodes for which a posterior probability above
this threshold is estimated, it is then be assumed that a connection exists. As a threshold
value, one can use a value that is known to produce good results. However, we propose
an alternative method with a flexible threshold for the estimation. Instead of the decision
depending only on the threshold, the node degree previously estimated in the degree
estimation is also taken into account. If the estimator has estimated a node degree of n
for a node, then exactly n links with the highest assigned posterior value are assumed as
connections to possible neighbouring nodes for this node. This method has the advantage
that the degree estimated by the degree estimation is better reflected in a network
graph created by connection inference. Alternatively, the flexible threshold can be based
on ground truth node degree knowledge if the attacker wants to apply the connection
inference independently of the degree estimation.
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3.2.2 Relay-Based Estimation
The relay-based estimator produces the estimation based on the number of messages
that reappear after injection. In contrast to the time-based estimator, the measurement
of exact timing data is therefore not strictly necessary. We note that the timing data
required for the timing analysis can simply be reduced to occurrence counts for this
estimation method.

Degree Estimation

For an estimation of the node degree, the attacker exploits the fact that the mechanism
for ADDR-message flooding is to some extent predictable.

As described in Section 2.3, we know that for every injected message m ∈ M , the victim
node v randomly selects exactly two of its peers for message forwarding. As no peer is
selected twice, and the injecting monitor is not selected [Prob], every neighbour of v that
was not the originator of the message, has a chance of

p = 2
deg(v) − 1 (3.1)

of being passed the message 1.

We can derive this equation as follows: Node v selects exactly two of its neighbours. Since
the injector is not considered, the set of all considered nodes has the size k := deg(v) − 1.
Because the order of nodes in the selection does not matter, there are

�k
2
�

possible choices
of pairs of nodes to forward to. At the same time, there are exactly k − 1 pairs of nodes
for a given neighbour node of v in which it is contained, since the order of the pair is
also indifferent here. Thus, the chance to choose one of these relevant pairs from the set
of all possible pairs is exactly as follows:

k − 1�k
2
� = k − 1

k!
2!(k−2)!

= 2!(k − 1)(k − 2)!
k! = 2!(k − 1)!

k! = 2!
k

= 2
k

= 2
deg(v) − 1 .

q.e.d.

More specifically, this equation can be rearranged to get the victim degree given the
proportion of injected messages that were observed to be passed to monitor nodes. Since
this fraction is well observable experimentally, we can rearrange the equation to obtain
the node degree. Because the node degree is briefly increased during the measurement
by the monitor nodes, but in the end only the node degree without monitor nodes is
of interest, it makes sense to distinguish between these two types of connection in the
formula. For this, let n be the victim degree without monitor nodes, nmon the number

1Of course, this is only true under the assumption that the node degree is not unrealistically small,
i.e. deg(n) > 2. For the edge case of deg(v) = 2 we have p = 1 and for deg(v) = 1 there are no peers that
were not originators
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of connected monitor nodes including the injector and all receptors, and pobserved the
observed recurrence rate as the total number of observed immediate message recurrences
across all monitor nodes divided by the total number of injected messages. For the set of
observed immediate message recurrences, only those that come directly from the victim
node are to be counted. Bullets that are passed on from another peer back to the monitor
through a longer route are not relevant for this experiment.

We then know that each of the nmon − 1 receiving monitor nodes had an equal chance of

p = 2
n + nmon − 1

for receiving any of the messages. Solving this equation for n yields

p = 2
n + nmon − 1 (3.2)

p × (n + nmon − 1) = 2 (3.3)

n + nmon − 1 = 2
p

(3.4)

n = −nmon × p + p + 2
p

(3.5)

By entering the observed probability pobserved for p and the known number of monitors
into the equation, we get the estimated degree of the node. However, when using more
than the minimum of two monitor nodes for the measurement, we must also take into
account that the final result must be adjusted to the number of monitor nodes. This is
done by simply dividing by the number of simultaneously connected receiving monitors
(i.e. nmon − 1). In this way, it is compensated that the total number of observed returns
was previously summed over all monitors. Combining the sets of receptions and injections
each over all monitors does not influence the degree estimation in any other way.

All in all, we get

n = −nmon × pobserved + pobserved + 2
pobserved × (nmon − 1) (3.6)

This equation can then be used to estimate the node degree of any Bitcoin client based
on the message relay count alone, without any timings. Should p be particularly small,
as might be the case for nodes with a large degree, then many injections are required to
acquire a small number of rediscoveries. This means that a small variation in absolute
terms in the number of messages recovered can have a large impact on the estimated
node degree, as can be seen from Equation 3.2.2. This fact leads to the assumption that
there is an intrinsic benefit in conducting as many injections as possible with as large a
number of connected monitor nodes as possible to obtain accurate results.

We also point out that injected bullets forwarded from the victim to a monitor do
not necessarily have to be part of these immediate message recurrences. Theoretically,
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they could also have, with a certain probability, taken a path of the form monitor →
victim → peer1 → peer2 → victim → monitor. For degree estimation these bullets
would then not be relevant, but difficult to detect. Possible ways to filter out these bullets
would be: 1) set a maximum value for the time delay to filter out all unusually long paths.
2) ensure that the receiving monitor does not receive any other ADDR-messages between
injection and receipt. In the case of direct forwarding, these should have included the
bullet in question. 3) ensure that the receiving monitor is not equal to the injecting
monitor. This could happen with such false message recurrences, but never with a true
immediate relay.

This idea to use observed address return rates to estimate the degree was first presented
by Biryukov et al. [BKP14]. In their paper, they presented Equation 3.1 and described
how they used this information to deduct node degrees. We use this idea to build the
degree estimation part of our relay-based estimator for this thesis.

Connection Inference

For a path between the injecting and receiving monitor across a number of Bitcoin
nodes, the probability that an address message is forwarded along this path decreases
proportionally with the length. The final probability is calculated as the product of
the individual probabilities p(c) for all nodes c along the path. For a path monitor →
victim → client → monitor, for example, this means that each address message used
follows this path with probability

p(total) = p(c1) × p(c2) (3.7)

= 2
deg(c1) − 1 × 2

deg(c2) − 1 (3.8)

as can be derived from individual probabilities according to Equation 3.1. Because the
degree of a given node can be expected to be much greater than three, the probability
for a given step is correspondingly much smaller than 1. Even if the node degree is
only slightly larger than 3, it is easy to see from the equation that the probability of an
address occurring decreases with distance, since p(c) < 1 can be assumed for all nodes c.
With realistic node degrees, which in practice can be many times larger, an amplification
of this effect is to be expected.

However, we can only assume this effect for short path lengths. For long path lengths, we
expect the opposite effect: Since the address is forwarded twice in each step on the path,
the number of multiples of each address in circulation increases exponentially. In this
way, the flooding protocol ensures that the address reaches all network participants via a
sufficiently large number of forwardings. We expect that through this effect, network
nodes far away from the victim node also return the bullet addresses in large quantities.
To filter out these returnees, we can filter returning bullets according to how long they
were in transit ahead of the relay-based connection inference. In this way, the influence
of this interference factor decreases, and we can assume more returning bullets for less
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distant nodes. We argue that this filtering by return times below a fixed threshold does
not constitute a timing analysis as with the time-based estimation. This is because the
application of statistical methods, as done in Neudecker et al. and Rosenblattl’s work,
is missing. In addition, the estimation here is still based on idiosyncratic behaviour-
based observations, and not on inherent flooding delays as is usual in timing analysis.
Nevertheless, the consideration of timings in this naïve estimation approach can be seen
as a kind of informal, naïve timing analysis. Through this, the influence of this time
limit highlights the general influence of timings on the estimation, and thus reflects the
relationship between relay-based and time-based estimation.

We suspect that clients that forward many messages previously injected into v to monitors
may then have a higher probability of being adjacent to v. Should this theory hold true,
the relay-based estimation can be performed by sorting all remaining clients c for each
victim v according to the forwarding rate of relevant messages. Again, only messages
that were previously injected into v are relevant here. The certainty score assigned to
the possible connection (v, c) by the estimator is then the number of addresses injected
in v that came back to the monitor through c divided by the sum of all addresses that
came back through any client c� �= v after being injected into v.

For measurements outside artificially optimizable testbed environments, a practical
problem is the variable number of connections from monitor nodes to individual peers. To
account for the fact that some nodes have more connections to monitors than others, the
average number of connected monitors per total connection time can also be calculated
for the respective node. Then either the certainty score or the number of bullet returns
counted is divided by this number of monitors. This compensates for the fact that a peer
that is connected to many monitors is more likely to be the source of a bullet return.

After that, similar to the flexible threshold of the connection inference in the time-based
estimator, it can be useful to use a previously determined node degree from the degree
estimation. The estimator then again estimates a connection between the victim and the
given number of nodes ranked best by this method.

3.3 Complementary Measurements

Before the main experiment, we conducted a series of smaller measurements. The goal is
to investigate general aspects of the Bitcoin network and the node addresses. Above all,
the experiments include the gathering and validation of node address datasets, but also
general node reachability and connectivity.

The technical execution of these experiments was done with the help of functionality
implemented for the framework of the main experiment. Fundamentally, there is an
inherent similarity of these experiments to the main measurement in the sense that
Bitcoin connections are established and the response to certain message types is observed.
This made it possible to use large parts of the framework for this purpose with only
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minor adaptations. Therefore, it was possible to carry out these experiments with only
little additional effort after the framework had been programmed.

The results of these experiments are also partially incorporated into the design decisions
and parameter choices of the main experiment. Hence, these complementary measure-
ments are an important first step for the realization of this thesis’ main experiment.

The experiments we conducted in the process are:

1. GETADDR and address gathering: We collect lists of active nodes by GETADDR
requests and by Bitnodes.io to have a basis for the further experiments. We receive
over 200, 000 addresses of which about 15, 000 can be considered currently active.

2. Address type statistics: Examining the distribution of the different address types
in the two collected datasets, as well as the respective service flags and age of the
address entries, we get a first basic overview of the expected structure of the bitcoin
network. We find a considerable percentage of Onion-addresses. Almost all nodes
indicate in their service flags that they support the network services required for
the experiment.

3. Node fluctuation rate: We examine the churn rate that the network addresses
exhibit over time. This has an influence on how long the topology measured by our
attack remains valid. The churn we observe is 30 % in 24h, differing greatly from
values reported in related work.

4. Monitor connection duration: The average time a monitor node is able to maintain
connections to network nodes is an indicator of how long the measurement can last
without being distorted. We find that our monitor nodes can maintain connections
to the network for an average of more than seven hours, longer than the expected
measurement duration.

5. Node neighbourhood stability: How long the topology identified by our attack
remains valid is reflected by the average time a network node maintains connections
to its neighbours. At the testbed node, we observe that more than 80 % of the
connections remain stable for more than an hour. This allows us to assume that
the network connections between nodes are stable enough to be measured.

These experiments are presented in detail below.

3.3.1 Testing Environment
To test the basic functionality of the developed framework and to perform the tests from
this section, as well as Section 4.1.2, a test setup was built. This primarily includes
a filter proxy to prevent ADDR-messages from leaving the local network of the test
device. The reason for this being that, for moral reasons, we do not want to disturb
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the Bitcoin network more than necessary. In order not to disrupt Bitcoin’s operations,
ADDR-messages should only reach the network as part of the main measurement.

However, a simple firewall cannot be used to filter the packets: the packet type distinction
is within the TCP payload and not in the TCP header. A regular firewall usually only
looks at the TCP header and would therefore not necessarily recognize the Bitcoin packets
correctly. To make matters worse, we do not want to filter all Bitcoin packets, as the
victim node should be able to connect to nodes outside the local network. Consequently,
one requirement of the filter is that the exact type of Bitcoin packet should be detected,
and "harmless" packets such as PING or VERSION should be forwarded. For this reason,
we decided to use a filter proxy: this can perform deep packet inspection, i.e. look inside
the packet payload and thus detect the packet type. We verified the functionality of the
filter-proxy in console outputs and packet captures.

3.3.2 GETADDR and Address Gathering

For all experiments, it is necessary to connect to a number of different active nodes. One
prerequisite is therefore to know the addresses of as many currently operational nodes as
possible. A possible way to gather a list of active nodes is to connect to all the nodes that
are already known and send GETADDR-requests to ask for more addresses. This short
payloadless Bitcoin-message serves exactly this purpose in the protocol: to enable nodes
to inform themselves about other nodes without having to wait passively for incoming
ADDR-messages [Proc].

To this extent, we used GETADDR-requests to gather the addresses needed for our
experiments. We tried to connect a single monitor with a total of 7000 nodes known
initially from previous test runs. Roughly 3700 of these connection attempts were
successful. The monitor then sent GETADDR-messages to each of the connected peers.

In response to this inquiry, a total of 3, 202, 410 addresses were returned across all
peers. After taking into account double entries, the returned dataset consists of 212, 660
individual addresses.

Popular Nodes: It is clear that individual addresses can occur multiple times across
all GETADDR responses of all nodes. In fact, taking into account duplications, the
number of addresses received decreases from 3, 202, 410 to 212, 660 by 93.36 %. This
reveals a large overlap between the addresses provided by the individual nodes. Within
this overlap, certain addresses may, on average, be mentioned more frequently by different
nodes than others. If this difference becomes significant, there may be a single node, or a
group of nodes, that are particularly popular in the network. We suspect that this level
of popularity could have several reasons: 1) the node advertises itself aggressively 2) the
node connects to many nodes at the same time or in close succession 3) the address of
the node does not change for a long time because it has a static IP or Onion-address 4)
the node is a reliable connection partner and is therefore advertised more often.
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Figure 3.4: Number of occurrences of
a node’s IP address in the GETADDR-
responses gathered

Figure 3.5: Number of occurrences of
a node’s IP address in the GETADDR-
responses gathered, as presented by Eisen-
barth et al. [ECP21]

Knowledge of particularly popular nodes is also of academic interest. This is because it
may enable certain attacks, as these nodes could be a target of choice for attackers [ECP21].
To provide an understanding of potential popular nodes, we therefore also examine the
results of our measurement for such nodes.

A histogram of the mention rates can be found in Figure 3.4. We see that this curve follows
the same general shape as the one measured by Eisenbarth et al. [ECP21]. However, we
note that in our graph the relative distribution of popular, average and unpopular nodes
is shifted towards nodes being generally less frequently mentioned. This means that the
fraction of identified popular nodes was smaller in our dataset compared to Eisenbarth
et al. In our measurement, the total number of occurrences was significantly lower for
the given addresses, weakening the conclusiveness of the results. Still, we argue that our
measurement confirms the finding that there is a group of popular nodes.

Bitnodes.io: A public service whose goal is also to map as many current addresses of
the Bitcoin network as possible is Bitnodes.io. This service provides a public API that
we can also use to obtain current addresses as an alternative to our own measurement.
The address gathering procedure of Bitnodes is similar to ours: according to information
given on their website, Bitnodes has one or more crawlers set up, which try to get a
picture of the current nodes by means of GETADDR queries. In contrast to us, the
crawler here works recursively: by further trying to connect to any node found to be
advertised by GETADDR responses, it is supposed to be ensured that only reachable
addresses are collected. A successful connection then serves as both a proof of the validity
of the returned address, and a new target to send further GETADDR to [Bitb].

In fact, it is likely that nodes respond to a GETADDR request with addresses that are no

46



3.3. Complementary Measurements

longer available or outdated. This is because the default Bitcoin client, when prompted
with a GETADDR-request, takes addresses out of its address memory that are up to 30
days old since the time they were last seen online [Prob]. If some of these addresses went
down or changed their IP address in this time, these addresses would then be irrelevant
for our purposes.

Our previously presented workflow lacks a procedure for filtering out such unreachable
nodes. It is therefore to be expected that Bitnodes reports significantly fewer addresses. In
fact, a query of the API via the URL „https://bitnodes.io/api/v1/snapshots/
latest/“ returns only about 15, 000 addresses. We find that our dataset is missing only
100 addresses that are present in the list returned from Bitnodes, while, on the other
hand, having more than 200, 000 addresses more. It is therefore roughly a superset of
the Bitnodes dataset.

While we certainly have many outdated addresses, we argue that Bitnodes may in turn
not list all accessible addresses; if a node rejects only some requests it might be considered
unreachable for Bitnodes, while it could be reachable again for our attempts. This would
then constitute a false negative in the measurement of Bitnodes. Nevertheless, for the
following experiments and the main experiment, we use the list of Bitnodes to limit the
set of addresses in a meaningful way.

3.3.3 Address Type Statistics
After receiving a list of accessible node addresses from Bitnodes, another potentially
interesting statistic is the one about the address type and possible fluctuations over
time. There are three different address types for Bitcoin nodes: 1) IPv4 2) IPv6 3)
Onion, where Onion-nodes are only accessible as a hidden service on the TOR network
and are represented by an ".onion"-address instead of an IP address, similar to other
hidden services on the TOR network. Onion-addresses can be further subdivided into
the old V2 and the new V3 ones, whereby the old ones are 16, and the new ones are 56
characters long [TB]. Since these Onion-nodes cannot be reached directly by IP addresses,
in practice a connection must usually be established over a proxy that feeds incoming
traffic into the TOR network.

We suspect that such a connection through proxies and Onion-routing could prove
problematic in practice for our experiment. This is because in the main experiment we
carry out an analysis of time measurements with as much precision as possible. We
suspect that these could become inaccurate over several forwardings. This would then
in turn influence the timing analysis. Because of this, we have decided to carry out the
measurement only for IPv4 and IPv6 nodes for the course of this thesis. The measurement
therefore explicitly only concerns a subnetwork of the entire Bitcoin network. Performing
the experiment for Onion-nodes and possibly solving the timing problem is a subject for
future work. It is therefore all the more important to find out how the address types are
distributed in practice and, in particular, what proportion of addresses are allocated to
the TOR network.
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Figure 3.6: Comparison of address type percentages between our dataset and the one
returned by Bitnodes.io

IPv4 IPv6 Onion V2 Onion V3
Own Dataset 69.01 % 25.39 % 0.31 % 5.16 %
Bitnodes.io dataset 39.29 % 7.72 % 2.49 % 50.51 %

Table 3.1: Address type percentages between our dataset and the one returned by
Bitnodes.io

Figure 3.6 and Table 3.1 show the rounded percentage distribution of addresses obtained
from Bitnodes in the individual address types. This distribution is consistent with the
statistics provided by Bitnodes on their node statistics webpage [Bita]. It is compared
with the percentage distribution within the data set we determined in the previous side
experiment.

We note that the two distributions significantly differ in the number of Onion-addresses
present. While our dataset consists of only 5.47 % Onion-addresses, the dataset from
Bitnodes is made up of 53.00 % Onion-addresses. Our decision to use the Bitnodes
dataset for the main experiment and exclude Onion-addresses as previously discussed
therefore results in the effective size of network measured being halved.

It is also striking that this address type distribution differs significantly from that found
by Deshpande et al. The researchers had been able to find on average 83.83 % IPv4
nodes, 13.49 % IPv6 nodes and 2.69 % Onion-nodes across 6 months in 2018 [DBG18].
Thus, the difference from our datasets suggests a shift toward IPv6 and Onion-addresses
in recent years.

Service Flags: As described in Section 2.3.2, each address entry is assigned a series of
service flags. This is a single integer number whose equivalent binary notation indicates
which services the respective Bitcoin client offers. The 64 individual bits are interpreted

48



3.3. Complementary Measurements

our bitnodes.io
all flags 5.0965 % 0.0000 %
no flags 0.0009 % 0.0207 %
NODE_NONE 18.4557 % 10.3236 %
NODE_NETWORK 81.5443 % 89.6764 %
NODE_BLOOM 31.4144 % 32.3994 %
NODE_WITNESS 98.2778 % 99.5100 %
NODE_COMPACT_FILTERS 10.6198 % 5.3481 %
NODE_NETWORK_LIMITED 97.7804 % 98.3162 %
at least one experimental flag 11.6166 % 2.0910 %
no experimental flag 88.3834 % 97.9090 %
conflicting flag information 10.5450 % N/A

Table 3.2: Percentage of addresses in the datasets, where specific service flags were set

as flags, each of which stands for a possible service. Five of these bits are defined as
services in the Bitcoin Core source code. These represent the basic functionality of a
Bitcoin client. All other bits can be used for experimental services that may be offered
by alternative clients. Only the flag NODE_NONE is a special case, as it is considered
active exactly when the NODE_NETWORK flag is not set. It should be noted that
each client is free to choose the service flags it wants to advertise, without having to
actually provide the services. An overview of the services advertised by addresses in the
Bitnodes dataset as well as in the dataset we collected can be seen in Table 3.2.

Address Age: Similar to service flags, timestamps are also assigned to the received
addresses. These represent the time when the respective peer was last observed as active.
These service flags can thus give us an indication of how up-to-date the data in the two
datasets is.

As expected, both datasets show an accumulation of entries younger than one week.
For the Bitnodes dataset, this part is 84.67325 %, in the collected with GETADDR
37.3225 %. After that, the occurrence of ages in the getaddr-dataset is evenly distributed
up to an age of just over 30 days. The Bitnodes dataset has few entries in this age
range, indicating that the way the dataset was collected does indeed reflect current nodes.
Both datasets have only a small proportion of addresses older than that. All in all,
the timestamps support our assumption that the Bitnodes dataset generally has more
up-to-date addresses.

3.3.4 Node Fluctuation Rate
Another interesting data point is how the addresses fluctuate over time. This means that
while some addresses are stable within the datasets and still accessible after a certain
amount of time, other nodes may leave the network or join it. A reason for this can be
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that the physical node is switched off, i.e. has actually left the network. Particularly
with dynamic IP addresses, another reason is that the address of the node has simply
changed, and the same node can now be reached at a different address. A low fluctuation
rate suggests a stable network, which is possibly also reflected in the topology measured
in the main experiment.
The determination of the fluctuation rate only makes sense if the data set is sufficiently
up-to-date. We know that the dataset collected by us using GETADDR is not filtered by
its up-to-dateness and therefore contains many outdated addresses. However, the dataset
provided by Bitnodes is well filtered for actuality. Thus, we argue that the fluctuation
rate measured for this dataset may better reflect the actual rate of the network.
Therefore, we determine the fluctuation of addresses only in the dataset obtained from
Bitnodes. This is done by directly comparing which addresses were added or dropped
after a set amount of time. We calculate the fluctuation rate as 1 − (nstable)

ntotal
where nstable

is the number of addresses that are in both datasets and ntotal the number of addresses
that are present in any of the two sets. This metric is sometimes also referred to as churn
rate [ECP21, ISTY19].
We find that within 24h, the network had a total churn of 30.65287 % with 4620 out of
15072 addresses changing over time. This value is composed of 15.80474 % of the old
nodes leaving and 20.27460 % of the new nodes having recently joined. Meanwhile, the
total number of reported active addresses changes by only 5.30892 %. We also note that
the churn rate differs between the different address types: while IPv4 and IPv6 addresses
have a fluctuation rate of only 11.71185 % and 18.90145 %, respectively, Onion-addresses
have a rate of 49.19366 %.
It is worth noting that our results therefore differ greatly from those of Eisenbarth et al.,
who found the rate of both leaving and joining nodes across 24 hours to be stable between
5 % and 6 % [ECP21]. These results can also generally represent a factor that limits the
validity period of the main experiment’s results. This is because a topology that has
been found is no longer valid for new nodes that have joined the network or for those
that have left it. The node fluctuation rate thus plays an important role in justifying the
results of the main experiment, in addition to the average connection duration between
persistent nodes.

3.3.5 Monitor Connection Duration
To tune the duration of the experiment for the best possible success, it is good to know
how long connections between monitors and nodes of the network last. This then makes
it possible to select the parameters of the injections so that the total runtime remains as
far as possible below a value adapted to the average connection duration. This prevents
too many nodes from losing their connection during the experiment and thus disturbing
the measurement.
For this purpose, we performed the following measurement: simultaneously connecting
to all IPv4 and IPv6 nodes and maintaining the connection for up to 24 hours. The time
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Figure 3.7: Time after which the connection of the monitor to a node is broken. Limited
to 24h. Normalized and on a logarithmic scale.

of successful connection establishment is measured, as well as the time of connection
termination. Nodes to which no connection could be established are not included.

The results of this measurement are shown in a histogram in Figure 3.7. It can be seen
that a large number of connections break off within the first few minutes. Connections
that last longer are rather stable. 45.26 % of all connections last until the end, and
34.63 % of connections that last longer than the first 60 seconds break off prematurely.
The average connection duration for nodes that last longer than 60 seconds but not
until the end is 7.8 hours. The median connection duration for the same set of nodes is
8.27 hours.

In principle, in addition to network problems, the reason for a disconnection can also be
that the remote node wants to drop the connection, possibly in order to connect to other
nodes.

For our main experiment, a disconnection to a node would have the following impact,
depending on the role of the peer in the measurement: If the connection to a client is
lost, the connection between victim nodes and this client can only be inferred with a
low certainty. In case of a connection loss to a victim, the accuracy of both connection
inference and degree estimation of this node decreases. In either case, if the connection
is lost, the estimator can at least use the data that was collected up to that point.

Since we have observed in this experiment that the connections of the monitors are rather
stable, we can assume that the measurement can be conducted without major disruptive
factors. We can set the experiment parameters to a relatively long measurement period
of more than one hour without having to worry that the proportion of nodes that can be
measured well continues to drop rapidly compared to shorter measurement periods. The
results of this measurement indicate that connections breaking off during the running
experiment should not be a major disturbance factor for an experimental time of less
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Figure 3.8: Time after which connections of a node to its peers are broken. Limited to
24 h. Normalized and on a logarithmic scale.

than a few hours.

3.3.6 Node Neighbour Stability
Similar to the node connection duration experiment, it is also interesting to know how
long a client of the Bitcoin network keeps the connections to its peers. This refers to the
average duration of the connection between the victim and a client. This information is
good to know to be able to estimate how large the accuracy of the connection inference
can be. A long connection duration here would indicate that the results of the main
experiment are valid for longer. The average connection duration thus also represents a
further limiting factor for the measurement duration of the main experiment: Since the
estimator assumes that the connections in the network are stable, a suitable measurement
can only be made if the measurement duration is set to a suitably low value in relation
to the average connection duration.

For this reason, we prepared the following experiment: 1) A victim node under our
control connects to the network as widely as possible. 2) Using RPC calls, the list of all
peers connected to the victim node is queried at regular intervals. 3) The duration of
each connection is calculated.

As a victim node, we run a Bitcoin Core version 22.0 client without any modifications.
We can assume that this node behaves in a way that is typical for the Bitcoin network,
especially when it comes to actively disconnecting and reconnecting to other nodes.

The measurement is performed for 24 hours, and the sampling interval is 30 seconds.
Initially, the node is connected to 109 peers, at the end of the experiment to 81. During
the experiment, 94 connections were broken and 66 were established. 7 connections are
resumed later after their termination, after an average of 10.6 h with a standard deviation
of 7.2 h.
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A histogram of connection durations is given in Figure 3.8. As expected, we see that
the histogram follows the general shape of the node connection duration histogram in
Figure 3.7: Many connections last only a short time and just as many last a long time.
Interestingly, this histogram also shows a spike of connections being dropped after roughly
10 minutes. The average connection duration in this experiment is 11.7 h, the median is
3.9 h with a standard deviation of 11.7 h.

We argue that the large number of short-lived links is of little importance for our main
experiment: What is important for us is not so much the average connection time, but
the fraction of stable connections at a given moment. In the data we collected in this
experiment, we see that at each sample time, between 83.9 % and 100 % of the connections
persist for more than one more hour before breaking. The average percentage of such
connections at any one time is 98.8 % with a standard deviation of 3.0 %. For long-lived
connections of more than 20h remaining time, this average value is 83.0 % with a standard
deviation of 7.8 %.

In summary, the connections between nodes in the Bitcoin network appear to be stable.
We expect that this means for the main experiment that the measurement can be carried
out over a longer period of time without significantly distorting the results.

3.4 Main Experiment
In this section, we describe how the main experiment is performed after the preliminary
measurements were carried out. To this end, we first describe decisions regarding the
main parameters of the measurement, such as the selection of the network participants
to be measured and the bullet addresses used for injection. We then discuss and justify
the scaling mechanisms of the experiment. Finally, the technical experimental setup is
described.

The results of the experiment are interpreted, evaluated, and discussed in Chapter 4.

3.4.1 Peer Selection
Deciding which participants of the Bitcoin peer-to-peer network will be measured, we
have defined requirements for the addresses:

1. Only current addresses. Outdated addresses are more likely to be unreachable.

2. Only reachable peers. This is technically necessary to establish connections from
monitors to peers. In particular, peers that do not accept incoming connections,
for example because they are behind a NAT, are not measured.

3. IPv4 and IPv6 only. Onion-addresses are not measured to simplify the experiment.

As described in Section 3.3.3, we can use the address dataset provided by bitnodes.io
to obtain addresses with little effort. Due to the pre-filtering by the provider, 1) and 2)
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are already ensured. The addresses for the test are obtained from Bitnodes immediately
before the test is carried out. About 14000 addresses were acquired.

A pre-filtering of the addresses to a ".onion" ending is then also easily possible. This left
about 7000 addresses for the measurement. In this respect, the experiment in this thesis
represents a measurement of only a subnetwork by this selection of peers. In this setup,
this subnetwork thus comprises about 50 % of the entire reachable network.

3.4.2 Bullet Choice

It is particularly noteworthy that before forwarding an ADDR-message for flooding, it
is not verified by the nodes if there is a Bitcoin service reachable at this address. This
means that random addresses with no real node behind them are forwarded with the
same probability as those that register an actual client. The reachability of the bullet
address is not checked by the relaying node, but only decided on the basis of the network
the address is part of. This makes it much easier to choose addresses for injection, as
there does not need to be a service responding to requests behind bullet addresses. The
exception is addresses in ADDR-messages that the victim node knows it cannot route
to, like IPv6 addresses to a node that only supports the IPv4 protocol or IP addresses
that are associated with local networks. These are randomly forwarded to either one
or two neighbours, which can distort the estimation. This must therefore be taken into
account when choosing which addresses to inject: they must be chosen in such a way
that no node considers them to be non-routable. In particular, this means not using
Onion-addresses as it can be assumed that a large portion of nodes cannot connect to
Tor hidden services. Furthermore, it is important to note that this restriction does not
only apply to the immediate target of an injection: one could assume that it is safe
to send IPv6 addresses as bullets to those nodes that are themselves operating under
an IPv6 address. However, in this case, it cannot be ensured that this bullet address
is only forwarded by the immediate victim to those nodes that also operate the IPv6
protocol. We argue that this circumstance can mean that forwardings from possible IPv4
neighbours of the victim to the monitor nodes only happen with reduced probability,
which could possibly falsify the results of the connection inference. IPv4 addresses are a
safe choice here, as it can be assumed that every node regards them as routable.

Another helpful fact is that the port portion of a Bitcoin address does not affect forwarding.
An address with the default Bitcoin port 8333 is forwarded just like an address with any
other port. This circumstance allows us to use each IP address as a bullet many times,
simply by using different ports. Together with the fact that there are over 65000 usable
port numbers per IP address, this means that the number of possible bullets per address
range increases dramatically.

Since the main goal of the measurement is to track individual bullets on their way through
the Bitcoin network, it is important that the bullets remain individual and uniquely
identifiable. This means in particular that the same bullet cannot be used for different
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victims. Otherwise, it would not be possible to determine exactly which victim the bullet
was injected into if it reappears at a certain point in the network.

It is also important to ensure that addresses used as bullets are not sent through the
network independently of the experiment. From this we derive the restriction that the
addresses must not belong to real and advertised nodes. To this extent, addresses must
also not have been used as bullets recently. This holds true even though it is possible to
identify these previous injections of the same bullet or bullet addresses sent independently
of the experiment by the timestamp used in the corresponding ADDR-messages address
entry. As described in Section 2.3.3, this is because nodes store already known addresses
and are less likely to forward them to their neighbours if they know that they already
know the address.

All in all, the requirements for the bullet addresses are as follows:

1. must be IPv4 addresses

2. must be unique within the set of all used bullets, no bullet reuse

3. must not be an address previously known to any Bitcoin node

Since only a tiny fraction of all IPv4 addresses are running an actual Bitcoin node, it is
possible to use random IP addresses as bullets to meet these restrictions. The probability
that a given bullet address is then already known as a real address within the network
would then be negligible. However, distributing random addresses makes it more likely
that uninvolved IP endpoints are exposed to connection attempts by Bitcoin clients after
the experiment. Because of this, we decide to use addresses under our control as bullets
for this thesis instead.

We use an IPv4 range provided by the university faculty as it fulfils these requirements.
The range encompasses 64 IP addresses. For each individual of these addresses we use the
port range 8333 to 65535, which results in 64 × 57203 = 3, 660, 992 possible IP-port-pairs
to be used as bullets for our measurement.

The number of injections possible per victim node is therefore limited by this maximum
available total number of bullets. In this regard, measuring more victims simultaneously
reduces the number of bullets per victim. Also, reusing addresses within a 24 hour
timeframe may distort how they are relayed by peers under certain circumstances, as
described in Section 2.3. Therefore, IP addresses should not be used as bullets more than
once a day, even across separate experiment runs. Since we expect initial connections up
to 5000 victim nodes, some of which may break off prematurely, we can assume about
800 available bullets per victim in the experiment.

For injection, the service flags must be added to each address. Since these are not
relevant for the experiment, we can specify any values here. For the forwarding of
addresses, as described in Section 2.3.3, a minimum requirement is the presence of
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the flags NODE_NETWORK or NODE_NETWORK_LIMITED. For moral reasons,
we make a minimal selection of flags here. We hope that this then leads to nodes
remembering the addresses we advertise as less interesting, keeping nodes from trying to
connect to them. Since there is no real Bitcoin node behind the addresses we use, this
keeps the number of failing connection attempts that occur as a direct consequence of
our experiments as small as possible.

In addition, a timestamp must be added to each address. As described in Section 2.3,
deliberately setting this field to a spoofed value can reduce the time for which the address
is forwarded through the network as part of the gossip protocol. From a technical point
of view, this allows the flooding time for individual bullets to be easily limited. To reduce
the load on the network, we therefore set this timestamp for each bullet to a value that
is a fixed number of seconds in the past compared to the respective bullet injection time.
We choose this timestamp such that addresses are forwarded for 200 seconds. This idea
of controlling the desired relay time by utilising this time stamp has also been addressed
in related work. Biryukov et al. kept the time as small as possible to reduce the influence
of false positives [BKP14]. in contrast, Grundmann et al. describe that the attacker they
observed increased this time up to 19 minutes [GBH21].

We also note that service flags and the timestamp do not provide a way to create more
individual bullets for fewer IP addresses by variation. So it is not practically possible
to use the same (host, port)-tuple of an IP address in multiple bullets by changing the
other fields. This limitation exists, although it would be possible for the estimation to
distinguish these bullets from each other. The reason for this is that, as described in
Section 2.3, a victim node keeps track of which of its neighbours it has already forwarded
IP addresses to. Reusing an IP address in multiple bullets would therefore prevent the
bullet from being forwarded to monitor nodes multiple times.

While we refrain from doing so, we would like to point out that it is possible to use real
addresses used in the network as bullets. These bullets can become uniquely identifiable
to the attacker by adjusting the time and service field. The forwarding behaviour would
then possibly be distorted to some extent by the fact that the measured nodes may have
already seen the addresses and forwarded them before. We expect that this would lead
to reduced accuracy of the results. Arguably, an attacker can decide to take advantage
of this opportunity to act less conspicuously by distributing plausible and real addresses.
A reduced accuracy of the results could be accepted for this purpose.

3.4.3 Scaling-Up and Workflow Planning

The larger the number of nodes to be measured, the more important the planning of
the workflow and its scaling; More connections have to be established and maintained
simultaneously, the computational overhead increases with the number of bullets and
victims, and the total experiment runtime increases with the number of total injections.
In this subsection, we discuss design decisions that we make with respect to the scaling
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of the experiment. However, we limit ourselves to the conceptual design and not to
technical optimizations of the code.

Workflow: We propose that scaling the experiment workflow to the full network can
be done according to two different approaches; we call them broad and narrow.

In the narrow approach, the conductor connects to a small selection of nodes and injects
messages only into individual victims. This measurement is resource efficient, but only
those nodes can be identified as neighbours of victim nodes that lie within the set of
nodes selected by the conductor. In iterative further steps, the set of connected nodes
can be further adjusted after initial estimates to further search for likely neighbours of
victims. As a result, the experiment setup would become more and more narrowed down
to probable neighbors while multiple rounds of injections are conducted.

In the broad approach, the conductor connects to the entire connectable Bitcoin network
at once. Thus, the actual neighbours of the victim nodes are certainly within the selected
client set. Due to this circumstance, a single round of injections would be sufficient to
find all neighbors. The experiment time is further reduced in comparison to the narrow
approach in that it is possible to measure all connectable nodes at the same time. A
prerequisite for this approach, however, is measurement hardware sufficiently powerful to
hold all necessary connections to all nodes simultaneously.

For our main measurement we choose the broad approach, i.e. we measure all relevant
Bitcoin nodes at the same time.

Multiple Injecting Monitors: A constraining factor is the throttling of accepted
incoming addresses to an average of 0.1 per second, as explained in Section 2.3. For the
experiment, this means that measurements with as many bullet addresses as possible
can take a considerable amount of time. However, it is desirable to have as short an
experimental runtime as feasible. This keeps the time frame for a possible network
disturbance and detectability small. It also increases the credibility and usefulness of the
results, since fewer changing connections can be expected in the network in a shorter
time.

A practical way to increase the injection rate is to inject with multiple connected monitor
nodes at the same time. Since the throttling of the injection rate applies per connection,
the actual total injection rate can be increased many times over by using multiple
simultaneous connections. This means that the experiment runtime can be significantly
reduced in this way, while having no impact on the estimation. It should be noted that
the number of connected monitors is limited by the network connection of the conductor
and the associated number of practically sustainable TCP connections. At the same
time, the number of simultaneous incoming connections accepted by the victim and client
nodes is, of course, also a limiting factor.

While it is possible to configure the conductor for the largest possible number of monitors
and tolerate a high number of disconnections, this approach has major disadvantages.
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Initial large connection numbers demand a lot from the network connection of conductor,
victim and client. In addition, the conspicuousness of the attempt increases, and the
attacker risks no longer operating undetected. We therefore set the number of monitor
nodes to the value of 5. In previous attempts, we empirically determined this to be
a good compromise. Of these five monitor nodes, all take the role of injector and
receiver simultaneously during the experiment to speed up the experiment as much as
possible. This means that all monitors inject one after another, instead of only one
sending messages and the others exclusively waiting for the receipt of these messages.
This approach allows for a greater number of injections by the total number of monitors
while maintaining the same experiment runtime. In addition, the increased total number
of listening monitors also increases the number of bullet addresses received back. Thus,
the accuracy of both connection inference and degree estimation can be increased, as we
show in Section 4.1. To combine the data from the monitors after the experiment, it is
only necessary to combine the sets of receptions and injections each across all monitors.
Further adjustments to the estimation are not necessary.

However, increasing the number of connected monitors per node is likely to also increase
the rate of disconnections per victim node. This means that the number of connected
monitors for a node decreases over the duration of the experiment. To prevent this
variation from being a disturbing influence on the estimation, the connection times for
all monitors are measured. A duration-weighted average of the number of monitors can
then be taken as the value for the estimator.

However, when increasing the injection speed to as large a value as possible, care must be
taken not to overload the network. We learned in Section 2.3 that during the artificially
added trickling wait time, incoming addresses are added to a queue before being sent
in bulk. If this queue reaches a size of more than 10, the messages are still sent but
not forwarded by the next node. Since these messages can then no longer be used for
connection inference, this circumstance should be avoided as far as possible. Furthermore,
the average bulk size should even be smaller than 3, as this value would suggest that
the total message volume is at the throttling speed2. We validate the extent to which
our experiment affects these congestion metrics in Section 4.1.2. In any case, we limit
the flooding of bullet addresses to limit overloading by decreasing the timestamp by 400
seconds, i.e., to 200 seconds of flooding.

Bulk Injections: It is possible to inject multiple addresses with a single ADDR-
message. There can be a bulk of up to 10 addresses per message without changing the
way the individual addresses are forwarded. However, from the point of view of the
throttling taking place through the victim node, it is necessary to increase the waiting
times between the ADDR-messages to a corresponding extent. This is because the
rate-limiting takes into account the number of addresses rather than the number of

2Sending a bulk message containing 3 addresses would, with the average trickling delay of 30 seconds,
correspond to one address every 10 seconds. This is the maximum average relay speed before throttling
takes place.
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individual ADDR-messages these addresses come in. Due to this, no time gain can be
achieved for the test execution. However, this increase in bulk size can be useful from a
technical point of view to reduce computational overhead. This is because less frequent
switching between the active injectors is then required. For the experiment, we therefore
always inject 10 messages in bundles. In doing so, we keep the experiment similar to
Biryukov et al. and Grundmann et al., who reported also using a bulk size of 10 for their
respective experiments [BKP14, GBH21]. Additionally, we increase the waiting times
between injections per victim node tenfold accordingly.

Final Workflow

All in all, the overall workflow looks like the following:

1. The conductor creates the monitors

2. All monitors connect to all selected victim nodes that are to be measured.

3. To let rate-limiting buckets build up, the monitors wait for a time depending on
the block size before starting to inject.

4. Taking into account the minimum waiting times due to rate-limiting, the full
addresses are injected into each victim node to which at least two monitors are
connected. A maximum injection rate of 10 seconds per address per monitor is
maintained. For each victim node, all monitors connected to this node are used
for injection. Addresses are sent in blocks of the designated block size and their
timestamp is artificially decreased relative to the time of injection.

5. To give the network time to relay addresses back to the monitors, the monitors
wait for a while after the last injection.

6. The connections are terminated and the measured data is collected.

7. The measured data is passed to the estimator, which makes an estimation using
two estimation modes: time-based and relay-based.

8. Graph-theoretic metrics are calculated for the estimated network graph

3.4.4 Experiment Conduction
As an active probe of the open network, we carry out the final measurement on the
Bitcoin mainnet using the prototype framework that we developed. The experiment is
conducted using a single a Ubuntu 20.04.5 LTS (GNU/Linux 5.4.0-96-generic x86_64)
system. It is hosted on a dedicated measurement server with 32 AMD EPYC 7313P
16-Core CPUs @ 3GHz, 255GiB RAM and a 10Gb/25Gb RDMA Ethernet Controller.
At the time of measurement, the measured actual network speed is about 2483.77 Mbit/s
in download and 899.25 Mbit/s in upload.

59



3. Methodology

Instead of focusing on a single test node, this time the measurement is directed against
all IPv4 and IPv6 nodes of the Bitcoin network. The filter proxy that was used in the
additional experiments to limit them locally is therefore also not used.

A total of 6795 IP addresses associated with Bitcoin nodes were obtained from Bitnodes.io
immediately before the experiment. This set forms the set of victims. Up to 5 monitor
nodes connect to each of these victims, if possible. All of them perform injections
simultaneously. Up to 800 bullet addresses are injected into each victim. Each injection
consists of an ADDR-message containing 10 of the bullet addresses at the same time.

For reference, the entire codebase of the framework used for the measurement, and
the subsequent estimations can be found at https://gitlab.sba-research.org/
johanna/coninf_klonowski.
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CHAPTER 4
Evaluation

In this chapter, we validate the estimator performance, present the results of the experi-
ment and discuss our findings.

The validation in Section 4.1 measures the precision and recall of the estimator. The
two estimation modes are compared to each other, and the influence of experimental
parameters, such as the number of monitor nodes and injections, is measured and
discussed. In particular, the credibility of the measurement results is also justified
through this validation. A brief overview of the raw results data is given in Section 4.2.
The topology of the Bitcoin network determined by the measurement is presented in
Section 4.3. Graph-theoretical metrics are also applied here, and the implications of
their results are discussed. The discussion in Section 4.4 summarises the most important
results of this thesis and places it in the context of this field of science.

4.1 Validation
To validate the results, it is necessary to make a comparison with known values. We
therefore perform quantitative validation by testing the framework in a testbed. Specifi-
cally, this means that we measure a Bitcoin node under our control and use the estimator
to estimate its degree and connections. Since the ground-truth connections are known for
this node, it is thus possible to evaluate the accuracy of the estimation. This allows us to
specify precision and recall of the framework, and compare them for different experiment
parameters. In this way, we measure and compare the performance of the estimator
in terms of degree estimation and connection inference for relay-based estimation and
time-based estimation. It also allows us to justify the training data of the estimator by
comparing which generated training data gives the best results. The estimator perfor-
mance evaluation is furthermore conducted for different node degrees to determine how
well the method covers all possibilities of nodes in the network. Finally, the performance
of the method presented in this thesis is compared with methods from related work.
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4.1.1 Setup
Hardware: The tests are run on a virtual machine with 2 virtual Intel(R) Xeon(R)
Gold 6230 CPU @ 2.10GHz, 4GiB RAM and a 10Gbit/s Ethernet interface. At the time
of measurement, the measured actual network speed is about 1430Mbit/s in download
and 1080Mbit/s in upload.

Software: The tests are performed on a Ubuntu 20.04.4 LTS (GNU/Linux 5.4.0-109-
generic x86_64) system. The measured testbed node runs the Bitcoin client Bitcoin Core
version 22.0.

Parameters: For the sake of comparability, we measure the test node with parameters
similar to those that were used for the main experiment: 1000 bullet addresses are
injected into the victim node with a delay of 10 seconds each. The victim node has a
stable node degree of 120, and 5 monitors are connected to the victim and 2000 clients
each. All monitors were used for injection. Thus, the total run time of the measurements
is about 33 minutes. The training set for the estimator is generated based on the
following parameters: A network is built with 14, 000 nodes in total, out of which 4000
are connected to 5 monitors each. 1000 injections are simulated with a 10-seconds delay
between each other into 5 victims with node degrees 0, 20, 40, 60 and 80.

These parameters are applied to all the validation runs if not stated otherwise. For
validations that determine the results as a dependency of one of these parameters, only
this parameter under consideration is changed and all others are the same as above.

Datasets: Usually, it is desirable for validation to collect as much data as possible
in order to be able to robustly average the results against variation. However, in this
thesis, collecting data for validation means interfering with the operation of the Bitcoin
network. This is because the test of connection inference requires injected addresses to
reach the main network beyond our test node. For this reason, we decided to perform
the validation with as few data sets as possible. As a result, the exact results may differ
from the true average. However, we see that trends can nevertheless be identified in the
evaluation. We therefore argue that the experiments presented below can still be used to
validate the choice of parameters.

4.1.2 Validation Results
For validation, we determined the influence of the following experimental parameters
on estimation performance: monitor count, victim node degree, training dataset, setup
connectivity, injection amount, and address timestamp. We also measure the overall
performance of the estimator in both modes studied as PR and ROC graphs, and validate
the influence of the main measurement in terms of possible network overload. Validated
are both the degree estimation and the connection inference. The results of this are
presented in this section and briefly interpreted where appropriate.
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Figure 4.1: Precision-recall graph for the
time-based estimator and the relay-based
estimator

Figure 4.2: Receiver Operating Characteris-
tic graph for the time-based estimator and
the relay-based estimator

Connection Inference Precision and Recall per Threshold

As described in Section 3.2, the estimator produces probability values for all possible
connections during the connection inference. These are then turned into a binary
classification based on estimated probabilities, to which a threshold value is applied. By
setting this threshold value, a tradeoff between good values for precision or recall can
be achieved. In this section, we evaluate the performance of the estimator by building
the precision-recall graph and the receiver operating characteristic graph as presented in
Section 2.2. The curve of the PR graph for both estimation modes is shown in Figure 4.1.
We see that the time-based mode consistently outperforms the relay-based mode. The
precision value of the relay-based estimator decreases even for low recall values from up
to 20 % to about 40 %. Thereafter, it decreases less rapidly to below 10 % at 60 % recall.
The time-based estimator, on the other hand, shows more than 90 % precision at up
to 35 % recall. Only then does its precision drop steeply to the level of the relay-based
estimator of below 10 % at 60 % recall.

The ROC graph also shows how the time-based estimator generally outperforms the
relay-based one. In doing so, the time-based estimator shows a steeper increase than the
relay-based estimator. While the former reaches a true positive rate of 80 % at a false
positive rate of 10 %, the latter has this value only at 20 %. For higher FPR values, the
TPR of the time-based estimation mode moves steadily towards 100 %. The TPR of the
relay-based estimator, on the other hand, has a clear jump at 70 %.

For the PR graph and the ROC, both the AUC value and the Gini coefficient for both
estimation modes can be obtained from Table 4.1.

We can also compare the PR graph of our estimator with that of Neudecker et al. [NAH16].
For the latter, it was reported that it maintains a precision of 40 % for a recall of 40 %.
Thus, we find that the researchers’ timing analysis shows better performance than the
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PR ROC
Estimator Mode AUC GINI AUC GINI
time-based 0.44147 -0.11706 0.89423 0.78847
relay-based 0.23448 -0.53104 0.84198 0.68396

Table 4.1: Estimator metrics for the two estimation modes

Average relative error
Real connections Injections time-based relay-based Biryukov et al.

10 500 12.88889 10.88889 3.2
30 1000 -4.62811 -5.98443 10
70 1000 3.49365 3.56328 3.4
100 2000 -6.88543 -7.83781 3.0

Table 4.2: Relative degree estimation error depending on node degrees, compared with
the estimator by Biryukov et al. [BKP14]. A negative error value means that the node
degree was estimated lower than it actually is.

relay-based estimator of this thesis. However, the performance of our timing analysis for
this sensitivity is equal with also a precision of about 40 % at 40 % recall. For the range
of recall values from 20 % to 40 % the precision of our time-based estimator drops off
slightly less steeply.

Degree Estimation Relative Error

To measure the performance of the degree estimation, we set up and measured the testbed
node with different node degrees. For better comparability, we chose the same parameters
as Biryukov et al. [BKP14] in their validation. That is, we measured the node with
degrees 10, 30, 70 and 100. Between 500 and 2000 injections were used in accordance
to the reference evaluation the researchers describe. Subsequently, the node degree was
estimated on the basis of these measurement results in both estimation modes.

The results of this can be seen in Table 4.2. As expected, the relative error of the
relay-based estimator is similar to that from the reference paper. For both, the relative
error ranges between 3 % and 10 %. This is also in line with the validation results of
Grundmann et al., who report an average relative error of 4.1 % for a comparable degree
estimation experiment. We assume that the similarity is due to the fact that the same
equation was used for the estimations across all papers.

We note, however, that the researchers’ estimator consistently overestimates the node
degree, while in our estimate the sign of the error fluctuates. In addition, we see a large
deviation in our estimate for node degree 10, possibly caused by stabilization problems
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Figure 4.3: Degree Estimation performance
for different numbers of monitors

Figure 4.4: Connection Inference perfor-
mance for different numbers of monitors

of the actual node degree in the testbed. For all node degrees except 10, the absolute
value of the relative error in the time-based estimation is lower than in the relay-based
estimation, but only to a small extent.

Overall, we can verify that the estimator developed in this thesis produces estimates with
similar accuracy as the reference estimator from related literature.

Monitor Amount

In the context of the experiment, there are two factors in favor of connecting as many
monitor nodes as possible to the victims and clients: 1) more injectors at the same
time allow for parallel injection and thus speed up the experiment 2) more receivers at
the same time increase the chance that an address is forwarded back to the attacker.
Especially 2) hints towards an improvement of the results by increasing the total relay
observation count, especially in case of low numbers of injections. We measured the
effect of changing the number of monitors beyond these two points on the quality of the
estimation using the testbed node. For this purpose, 1000 bullets were injected into the
node with different numbers of monitors per victim and client. The results of this can be
seen in Figure 4.3 and Figure 4.4.

We find that the posterior value returned by the time-based estimator for the degree
estimation remains constant. For the error of the degree estimation, no clear trend
can be observed over the monitor number. Both the time-based and the relay-based
estimation modes produce fluctuating results that sometimes overestimate and sometimes
underestimate the node degree. The fluctuation of the error rate is significantly smaller
with the time-based estimator.

The results are similar for connection inference. Here, both the time-based and the
relay-based estimation produce varying results across different monitor amounts. Again,
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Figure 4.5: Degree Estimation performance
for different victim degrees

Figure 4.6: Connection Inference perfor-
mance for different victim degrees

the deviation does not show a clear trend in relation to the number of monitors. We
conclude that the number of monitor nodes has no clear influence on the results of the
experiment. One possible explanation for this could be that the other experimental
parameters can guarantee stable results even for low numbers of monitors. Specifically,
we argue that this would mean that 1000 injections into a victim with node degree of 120
can lead to enough returning bullets for estimation, even when using a smaller number
of receiving monitors.

Victim Degree

As shown by Grundmann et al. [GBH21], the nodes in the Bitcoin network can assume
a wide range of node degrees. We therefore validate the performance of the estimator
for nodes with different node degrees. This allows us to determine the extent to which
the estimator can produce valid results across the entire heterogeneous network. The
results of the measurement series are shown in Figure 4.5 and Figure 4.6. We see that the
posterior value for the degree estimation is slightly higher at lower node degrees, and then
becomes constant above approximately 100. The relative error of the degree estimation
develops similarly for the relay-based estimation as for the time-based estimation. For
low node degrees, both overestimate the degree. The error decreases until around 125.
From then on, the relative error increases strongly for increasing node degrees, but varies
by sign. Both estimation modes are affected. We suspect that this may be because
variations of single recurring bullets carry more weight at large node degrees due to the
lower absolute expected number of returns. In this way, small statistical deviations have
a greater influence on the degree estimation at large node degrees.

In terms of connection inference, there is no clear tendency for precision or recall in
either mode. Only the time-based estimation mode shows an unusually low performance
at node degree 25. Otherwise, all values remain rather constant with small fluctuations.
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Training Set Parameters

To run the estimator in time-based mode, a model must first be created. This can then be
used to interpret the measured data and perform the estimation. In this sense, training
is a necessary first phase for this estimation mode before the actual estimation. This is
not necessary for the relay-based estimator.

As described in Rosenblattl’s study, a training data set is required for this training phase.
This data set contains forwarding data in a format similar to the measurement data
format. More specifically, the training data sets are generated in the context of this
thesis by a simulator provided by Rosenblattl’s work. This first creates a random graph
as similar as possible to Bitcoin and then simulates the forwarding of ADDR-messages
through this graph using the forwarding rules described in Section 2.3.3. The forwarding
delays observed during this simulation, together with the known ground truth regarding
the connections in the simulated network, then form the training basis for the statistical
estimator [Ros].

While the random node degree distribution of the simulated graph is designed to follow that
determined by Grundmann et al. [GBH21], the remaining parameters of the simulation
can be freely chosen to fit the resulting training data set for better estimation results.
The choice of parameters here include:

• total number of clients

• number of clients connected to monitor nodes

• number of monitor nodes

• number and degrees of the measured victims

• number of injections per victim

We choose different values for these parameters to create a series of training data sets.
We then use these to estimate the same set of measured reference data. In this way,
we determine the influence of the different aspects of the training data set on the final
estimation. The results of this series of experiments are listed in Table 4.3.

We find that all parameters have only a negligible impact on the quality of the estimation
results. In particular, the performance with a large number of victims with a wide variation
of degrees is not different from the performance of small sets with only one victim. Under
the training dataset with the number of monitors increased to 20, connection inference
is slightly better, but degree estimation is significantly worse compared to the other
datasets. When the number of monitors is increased even further to 1000, this effect
is reversed. Noticeably, even the number of simulated injections for the model to train
on barely changed the estimation outcome. However, increasing the total size of the
simulated network had a noticeable effect on the quality of connection inference, while
maintaining good degree estimation results.
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Dataset M combines these aspects in an attempt to add up their respective benefits.
However, we notice that the estimation performance under this training set is slightly,
but not considerably higher than using any other training set. We therefore conclude
that the choice of training data has little effect on the quality of the estimation results.

Connectivity Rate

As described in Section 3.1, the estimation of both node degrees and connections works by
retrieving bullets from Bitcoin nodes. Especially in connection inference, it is important
to maintain a large number of connections simultaneously. This includes the links from
monitors to the respective victim node, but also all connections between the monitors and
all neighbours of the victim node. If individual such connections do not exist, the bullets
cannot be routed from the respective peer to the monitors. As a direct consequence of
this, the peer cannot be recognized as a neighbour of the victim node, since no bullets
are recognized as recurring through this client.

To define a measure of the extent to which this condition is met, we define the connectivity
rate. This denotes the proportion of all actual connections between monitors and
neighbours of the victim node out of all possible such connections. Since it is expected
that not all such connections can be maintained in practice for the full duration of
the experiment, we expect the value of this parameter to be less than 1 during the
measurements.

For validation experiments, it is possible to achieve a high connectivity rate by suitable
selection of the connections of the monitors and by controlling the desired neighbours
of a controlled victim node. However, this is not feasible for the main experiment, as
it has been shown in practice that not all desired connections of monitors are always
holdable. Thus, there is not always a desirable degree of connectivity to the neighbours
of all victim nodes.

In this validation, we therefore investigate how different connectivity rates affect the
estimation results. To this end, we perform several measurements in a control environment
with a high connectivity rate. Subsequently, we artificially simulate a worse such rate by
trimming the measurement data, and average the precision and recall values for both the
time-based estimator and the relay-based estimation mode.

The results of this series of measurements can be seen in Figure 4.7. We notice that the
performance of both estimation modes increases strictly with increasing connectivity.
The growth is strongest up to the point of a connectivity of about 30 %. After that, the
influence of the connectivity rate on the estimator performance decreases.

We can conclude that the connectedness of the monitors to the network should in principle
be as high as possible. At the same time, however, we argue that our measurement setup
can still produce credible results even at connectivity of as low as 30 %.
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Figure 4.7: Connection inference performance per connectivity rate

Injection Amount

The stochastic nature of the message forwarding process in the ADDR-message relay
leads to an inherent imprecision of the estimation. Due to random decisions in the
selection of forwarding partners and the corresponding time delay, it is possible that a
node behaves differently for individual messages than an observer would expect: With
some probability, for example, monitor nodes may be underrepresented in the choice of
forwarding partners during the experiment, or long forwarding chains with unusually low
total delay may be observed.

This circumstance suggests that a large number of injections might lead to better
estimation results. The intuition is that some of these misleading random events then
lose weight in the total number of events measured. A larger data set could therefore
lead to better estimations.

We investigate whether this assumption is true by validating the number of injections.
For this purpose, a measurement with a high number of injections is conducted first.
Then, a dataset with an arbitrarily small number of injections is simulated by subsequent
trimming of the data. The performance measures of the estimator are calculated on those
trimmed datasets.

The results of this evaluation are shown in Figure 4.8 and Figure 4.9. Regarding the degree
estimation, the time-based estimation mode produces constant results independent of
the number of injections. The relay-based mode, on the other hand, produces constantly
improving results with increasing number of injections up to a point of around 1500
injections.

For connection inference, both precision and recall decrease slightly throughout the
relay-based mode up until around 1000 injections. After this, both metrics start to rise
steeply. In the time-based mode, performance increases sharply with increasing number
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Figure 4.8: Degree estimation performance
per number of injected addresses

Figure 4.9: Connection inference perfor-
mance per number of injected addresses

of injections up to the point of about 1000 injections, after which it continues to grow
only marginally.

From this we can conclude that the total number of injections should be as high as
possible, but at least 800 for decent estimation results. Accordingly, we can assume
that the number of injections we used in the main experiment, although not optimal, is
sufficient to provide valid results. However, a larger number of injections, as it would be
desirable according to the results of this validation, was not feasible due to availability
limitations as discussed in Section 3.4.2.

Trickling and Time to Live

In Section 2.3 we describe that addresses are forwarded together with an associated
timestamp. This can be between 10 minutes in the past and up to 10 minutes in the
future. The purpose of the timestamp is to abort the flooding of addresses after a
predefined time. To the attacker, this mechanism allows controlling how long messages
are forwarded through the network, or their time to live (TTL). An address that is
given the current timestamp at the time of injection is forwarded for 10 minutes. If the
injection timestamp is artificially reduced, the flooding for this message ends sooner.
Alternatively, the time can also be increased, since time stamps that lie slightly in the
future are also tolerated. In this case, the message is forwarded through the network for
a longer duration.

Since there is an average time delay of 30 seconds with each forwarding of the message
as part of the trickling process, messages that return a long time after their injection
have most likely taken a large number of steps between the injector and the receiver.
For connection inference, however, only messages with a small number of relays are
relevant, since it is these that come from the neighbours of the victim node. To reduce
the number of irrelevant messages that the monitors receive from the network, an attacker
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Figure 4.10: Histogram of the delay times of bullet receptions from different sources

can therefore choose the timestamp of the addresses such that they are forwarded only
briefly. Alternatively, it is of course also possible to filter bullets that come back with a
long delay after the fact in preparation for estimation.

In addition, the number of multiplications of an injected address increases quadratically
network-wide: Once received, an address is forwarded twice. This squaring takes place
up to a saturation point. After all, addresses are only forwarded less often when many
network subscribers already know them. This increase in message volume suggests that
reducing the lifetime of an address for flooding may reduce the network load.

We can observe both of these effects in a histogram of the measured delay times. Such a
histogram is given in Figure 4.10. We notice that the set of messages that were forwarded
often is significantly larger due to the multiplicative factor. These messages can be
recognized well by the high measured delay. This results in a large accumulation of
messages in the right part of the histogram. Addresses that come from a client that
is not adjacent to a victim node are almost exclusively found in this right part of the
histogram.

We note, however, that there is also a large proportion of packets among the addresses
with a large delay that come from neighbours of the victim node. This contradicts the
intuition that addresses coming back through neighbours of the victim should generally
have a low delay. We assume, however, that this proportion of packets may also be
packets that do not return directly through the victims’ neighbour, but have reached said
neighbour over a longer path. In other words, addresses arriving through neighbours of the
victim can have the delay associated with minimal path length expected of a direct path,
but can also show a delay time of an indirect path. As a result, the histogram appears
roughly divided into two parts: A cluster on the left side represents predominantly packets
coming back directly from victim nodes and their neighbours. The much larger cluster
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Figure 4.11: Degree estimation metrics for
receptions limited to being lower than spe-
cific delay times

Figure 4.12: Connection inference metrics
for receptions limited to being lower than
specific delay times

on the right side shows addresses returning over paths of long length. The separation
between these two areas appears to be around 200 seconds.

We can assume that the total delay of individual bullets across n forwarders follows
an Erlang distribution. This is because the total delay is the sum of independently
exponentially distributed partial delays. We see in the histogram that the curve roughly
follows this expected distribution. On a site note, we can find that the observed
maximum is at about 550 seconds delay. Since it should be n−1

λ for an Erlang function
Erl(λ, n), we calculate the average number of bullets relays within the network to be
n = 550×λ+1 = 550× 1

30 +1 = 19.34. This suggests that ADDR-messages are forwarded
on average about 19 times on their way through the network.

The bullets used in Figure 4.10 all have an unadjusted timestamp. Thus, the expected
flooding time is 10 minutes or 600 seconds. We see that the number of bullets received
after this time drops sharply, but not immediately to 0. This is because the consideration
of the timestamp takes place when the bullet is received, and thus before the trickling
duration is applied. In this way, even after more than 10 minutes after injection, bullets
can still be returned by network nodes.

A strategy suggested by the observed bi-partition of the histogram can therefore be
to limit time delays in such a way that only messages with small delays arrive or are
considered further. The goal of this strategy would be to limit the interfering influence
of messages from the right part of the histogram by limiting the estimation to messages
from the left part. In a sense, we filter for exactly those messages that we can assume
are most likely to come from the victim and its neighbours.

Intuitively, it is to be expected that a certain influence on the degree estimation by this
procedure is to be noticed. On the one hand, the bullets forwarded from the victim to
the monitors without further hops generally show a low overall delay. On the other hand,
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we expect that in the set of all bullets returning through the victim node there are also
some that have followed a longer path. These would then not have been forwarded to
monitors again directly after the injection into the victim, but would have taken a detour
over multiple other peers before returning to the victim and finally to the monitors. In a
sense, they would have taken a detour through the network before reaching the monitors
through the victim. As we discussed in Section 3.2.2, these bullets can be effectively
filtered out by introducing a maximum delay. This would correct the degree estimation
error downwards.

The actual impact of this approach on the performance of degree estimation can be seen
in Figure 4.11. We find that the true impact on the degree estimation is negligible. This is
the case for both the relay-based and the time-based estimation. The reason for this may
be that in practice hardly any bullets return to the monitors via long detours through the
victim. In terms degree estimation performance, therefore, no filtering of these bullets is
necessary. This observation is consistent with Biryukov et al., who point out that the
TTL of the message should be kept artificially small for the degree estimation [BKP14].

For connection inference, the effect of the time to live of an address can be seen in
Figure 4.12. We observe, that for the time-based estimation mode, both precision and
recall remain constant across all possible values for the time to live of bullets. The
relay-based estimation mode however is heavily influenced by the delay time: For low
values, both the precision and recall show good results of up to 40 % at 100 s. With an
increasing time to live of the bullets, both of these metrics drop significantly to less than
10 % at 400 s, where they remain constant for all higher values.

This fact is illustrated by the comparison of the corresponding Gini coefficients. The
coefficient of the time-based estimator is constant at 0.6 − 0.7 for all time-to-live values
greater than 400 seconds. Between 100 and 400 seconds the value increases slightly
to a maximum value of 0.75 − 0.80 . The relay-based estimator, on the other hand,
has a constant value of about 0 for TTL values above 400 seconds. This circumstance
shows that the relay-based estimator does not perform better than a random guess for
unfiltered high TTL values. With lower maximum TTL, however, the Gini coefficient
rises steeply to values of up to 0.75. Thus, the time-based estimator is an upper bound
for the performance of the relay-based estimator depending on TTL.

In summary, the effect of the maximum forwarding time can therefore be regarded as
significant for only the relay-based estimation mode. This estimation method benefits
greatly from a low maximum time delay. Generally, this parameter does not significantly
influence the time-based estimation method. Filtering the receptions for a maximum
delay of 100 s represents a good parameter choice that greatly benefits the relay-based
estimation without being at the expense of the time-based estimation.

Network Overload

It is easy to see that it is important for our experiment not to overload the network.
As described in Section 2.3, all messages that a node is holding back to send over a
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connection are combined into a single ADDR-message during the trickling delay period.
As the volume of ADDR-messages within the network increases, the number of messages
a node accumulates in this way generally increases, and so does the average number
of addresses per message. We therefore argue that, in addition to the total number of
addresses per connection duration, the average bulk size of messages is a good measure
of network utilisation. This metric is particularly important because packets with a bulk
size of more than 10 are not forwarded and therefore distort the results of the estimation.
That means that if messages are injected so fast that they accumulate to a bulk of more
than ten addresses in the outbound queue, these bullets are ignored by all non-monitor
network participants.

It is therefore in the interest of the attacker to inject slowly enough so that the average
bulk size of incoming data packets from the network does not become too high. Also,
the number of messages for which a bulk size more than 10 is detected at the monitors
should be kept as low as possible. The average address rate should be below 0.1 per
second per connection, as this value would suggest a maximum network load. With an
average trickling delay of 30 seconds, this corresponds to a maximum average bulk size
of 3.

In order to be able to determine the additional load on the network during the experiment,
we compare the message volume before and during the execution of the experiment.
Figure 4.13 shows the speed at which addresses are sent through the network via ADDR-
messages per connection in a 24-hour time frame without our involvement. It can be
seen that a large proportion of connections have a message rate between 0.002 and 0.015
while only few connections send more than 0.02 messages per second. The average is
0.0054 per second, which would amount to one message roughly every 185 seconds on any
given connection. We observed the average bulk size to be 1.26147 over the course of this
timespan. Only 0.00655 % of all received ADDR-messages had a bulk size of more than
10. This indicates that the total number of address forwardings during normal network
operation is far from the technical limit.

By comparing this amount of traffic to the volume of messages sent during the experiment
execution, we can then derive a consideration of how invasive the active measurement of
the network in our main experiment is to be assessed. Here we compare the data obtained
not from the smaller validation measurements, but from the full measurement of the
entire network according to the parameters described in Section 3.4.4. In this case, the
average bulk size increased to 2.22230. The number of ADDR-messages containing more
than 10 addresses increased several fold to 1.65897 %. The average number of incoming
address entries per second also increased to 0.01895. This corresponds to one address
every 53 seconds on average.

We can conclude from this that the load on the network increased by a multiple during the
experiment. Nevertheless, the load on the Bitcoin network remained below the technical
limit at which throttling would occur. We can therefore assume that the results of the
measurement were not distorted to any significant extent by network overload.
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Figure 4.13: Histogram of the rates of incoming ADDR-messages per connection

The network load in terms of bandwidth, on the other hand, is difficult to measure.
This is because the Bitcoin protocol is an overlay protocol on TCP. Therefore, multiple
ADDR-messages can be combined into single TCP packets, reducing the impact of
the TCP header. However, we can provide an upper bound estimate of the additional
bandwidth required. For this, we assume that each address is sent individually in an
ADDRv2-message (bulk size 1) in a separate TCP packet. We have measured that the
complete data frame in such a case has a size of 92 Byte, although the payload part of
the Bitcoin message is only 14 B. Thus, the amount of data traffic would increase from
0.4968 B

s to 1.7434 B
s per connection. A node with an average of 120 connections would

therefore have an additional data traffic of only 149.592 B
s per upload and download.

4.2 Raw Results
The measurement was performed on October 31, 2022. It lasted for a total of 90 minutes,
from 16:42:13 to 18:11:44 UTC.

Before starting the measurement, 15537 of 33975 (= 45.73068 %) of the monitor con-
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nections were successfully established. Reached were 4615 of the 6795 individual nodes
of the network that were to be measured. Out of these, 2985 nodes (43.92936 %) had
connections to at least two monitors, and thus the minimum number to be actively
measured. 2553 nodes had all five monitor connections, 89 only four, 100 were reached by
three monitors, 243 by two and 1630 nodes had a connection to only a single monitor node.
This connectivity percentage is roughly in accordance to the expected value. Grundmann
et al. estimate, that around 53 % of accessible nodes have either no open connection slots
left or are close to their respective maximum slot amount [GBH21].

At the end of the injections, the number of remaining active connections had decreased
to 13608 (= 40.05298 %) to 4357 individual nodes. As a result, as many as 2547 of the
original 2985 nodes still had the required monitor connection count for active measurement.
The number of nodes that still had all five monitor connections upheld had dropped to
2015. Also, the proportion of nodes that still had only between four and two monitor
connections had shifted to 277, 105, and 150 respectively. Nevertheless, 1810 nodes still
held exactly one persisting connection to a monitor, which meant that receiving bullets
through these nodes was still possible.

The total number of addresses received from the monitors during the experiment is
1, 578, 809. Of these, 582, 355 (= 36.88572 %) are bullets that were previously injected.

Due to some connections breaking prematurely, not all planned injections were per-
formable. Hence, only to 2288 of the victims 100 % of the bullets intended for them could
be injected. For 2591 of the victims, more than 75 % of the injections were performed,
and for 2609, at least half were performed. The number of nodes for which at least 10 %
of the injections could take place is 2684.

Estimation: The data collected during the measurement process was subsequently
passed on to the estimator to obtain an estimate of the measured Bitcoin subnetwork.
After a single initial training phase of 50.5 seconds on simulated network data, the
time-based estimator performed the estimation for a total of around 24.5 h 1.

4.3 Graph-Theoretical Results
Due to the better performance, the time-based estimation mode was chosen as a basis
for the graph analysis. To transform the resulting estimates into a graph, they were first
converted into a binary classification. For this purpose, as discussed in Section 3.2, a
flexible threshold was applied to the posterior values. Thus, for each node, exactly as
many connections were positively estimated as given by the estimated node degree.

Subsequently, we have implemented the estimated connections in a directed graph. In
this aspect, the model differs from the real Bitcoin graph, which would be undirected.
The reason for this is that the labels for the mutually opposite edges (u, v) and (v, u)

1We suspect the significant time cost to be rooted in implementation issues in the time-based degree
estimation code. For reference, the corresponding relay-based estimation would take mere seconds.
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between two nodes u and v in our binary classifier can differ from each other. Unifying
this circumstance into an error-minimized graph that still has the desired node degrees
poses a significant problem. We leave solving this issue as a subject for future work. In
this thesis, we work with a simplified model of the resulting graph. For this reason, the
results obtained by us may differ from the values of the real network.

With the help of this graph reconstruction derived from the estimation, we determine
graph-theoretic metrics. By doing so, we hope to gain insights into the nature of the
peer-to-peer network that Bitcoin is based on. The results of the created metrics can be
seen in Table 4.4.

On the one hand, we use metrics that produce a single number representing the entire
graph. On the other hand, we also compute metrics that produce values for all individual
nodes or node pairs. For the latter, we calculate the standard deviation, minimum and
maximum as well as the Gini coefficient in addition to the arithmetic mean of all these
values for a better breakdown of the value distribution. All metrics are applied only to
those nodes that were part of the active measurement. Client nodes that were determined
as the destination of a connection, but that do not have any outgoing connection data
themselves, are thus explicitly excluded.

In addition, we compare the results obtained for the estimated graph with the results
of a random graph. This comparison allows for a better understanding of what values
might be expected or desired for the graph. The random graph is an Erdös-Rényi graph.
It is created using the same parameters and therefore contains the same number of nodes
and edges as the main graph.

Metrics: The formed graph consists of 3328 nodes, out of which 2614 are actively
measured victims and 714 are clients. A total of 255, 827 connections are estimated
between the nodes. Thereby, the victim nodes have an average node degree of 97.86802.
A histogram of the node degree distribution is shown in Figure 4.14. For reference, the
degree distribution of the relay-based estimation is also included in the histogram.

We can see that the node degree results of the two estimation modes overlap significantly.
Both see a large proportion of the node degrees distributed over low values below one
hundred. Furthermore, both estimators find an outstanding accumulation of nodes with
degrees between 125 and 150. Overall, the relay-based estimator tends to show a smoother
distribution of node degrees, while the time-based estimator shows a more pronounced
accumulations in small value ranges. This is reflected in the spikes of the time-based
histogram.

For clarity, the histogram cuts outliers in the degree estimation with estimated node
degrees above 400. We found that there are 8 of these in our relay-based result data,
with degrees of up to 1407, but none in the time-based estimation.

For comparison, we include the degree distribution as presented by Grundmann et al.
in Figure 4.15. Comparing our degree distribution results with the result provided by
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Figure 4.14: Normalized histogram of the estimated nodes degrees in the network in both
relay-based and time-based estimation. Outliers of degree > 400 combined to the single
maximum value for the relay estimation

their work, we see that both results agree in the detection of the large number of nodes
with low degrees. The accumulation around node degree 125 is also confirmed by our
findings. This makes sense, as 125 is the default maximum number of nodes connected
to the standard client. However, the results differ in that the spike around 125 found by
our time-based estimator is less pronounced. The accumulation that our estimator finds
for high node degrees is completely absent from the comparative histogram. Also, the
accumulation at about degree 75 that we find in both estimation modes is not confirmed
by the researchers’ results [GBH21]. It is unclear whether these differences are due to
topological changes in the network or to differences in the experimental setups.

Naturally, the average degree of the nodes in the estimated graph is exactly equal to that
of the random graph. The deviation of the node degrees from each other is much larger
on the other hand. Thus, the distribution of the node degrees is exceptionally unequal,
which can also be seen in the high Gini coefficient. In particular, this can mean that a
large number of nodes with large degrees might play an important role in the network.

This is also reflected in the betweenness centrality. Here, the distribution of the values for
the nodes is similarly highly dispersed, and the standard deviation is much higher than
with the random graph. For Bitcoin, this means that there are a lot of nodes that occupy
a particularly central position in the routing of the network. Interestingly, however, the
Gini coefficient is equally low for both graphs. We can therefore conclude that there are
differently central nodes in both graphs, but that the unequal distribution of centrality
does not exceed the expected level.
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Figure 4.15: Normalized histogram of the estimated nodes degrees in the network as
presented by Grundmann et al. [GBH21]

Metric Degree Clustering Betweenness Shortest Path Length

es
tim

at
ed

min 5 0 0 1
max 346 0.24863 30165 5
avg 97.86802 0.06050 3101.82708 2.19854
std 101.61283 0.02340 3241.19010 0.48393
gini 0.50233 0.19179 0.09376 0.10030

ra
nd

om

min 67 0.02116 1233 1
max 133 0.02999 5665 3
avg 97.86802 0.02590 2792.31714 2.07134
std 9.78032 0.00117 551.44565 0.35378
gini 0.05627 0.02539 0.11015 0.05991

Table 4.4: Results of graph-theoretic metrics for the estimated Bitcoin network, and a
random Erdös-Rényi graph with the same number of nodes and edges for comparison.
The degree, clustering coefficient, and betweenness centrality metrics were applied to
each node, and the shortest path length was applied to each pair of nodes in the network.
For each of the metrics, the minimum, maximum, arithmetic mean, standard deviation,
and Gini coefficient are given.
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As expected, the clustering coefficient is consistently low in the random graph, with a
negligible standard deviation. However, this is not the case for the estimated graph. Here
we find a strongly unequal distribution of the clustering. The values range to a maximum
that exceeds that of the random graph by a factor of more than eight. It is therefore
evident that clusters of nodes are present in Bitcoin’s peer-to-peer network.

In terms of the shortest path length, however, the two graphs hardly differ. Both have
low values altogether, which indicates a fast distribution of information in the network.
Here, the Gini coefficients of the shortest path length between all pairs of nodes are small
for both networks. This means that the fast spread of information is roughly equally true
for all nodes. The diameter of the networks is 5 and 3, respectively.

In order to evaluate the resilience of the estimated graph, we also calculated the bisection
width of our graph and the reference graph. For this, we used the Kernighan-Lin bisection
algorithm. This represents a heuristic for estimating the bisection width, making it
runtime efficient enough to be performed for the large number of nodes in the graph [KL70].
The resulting value for the estimated graph is 70, 218, for the random one it is 113, 310.
So we find that the bisection width is about 38.0302 % lower than it would be for a
random graph. The reason for this reduced value may be the increased clustering. In
practice, this would mean that the difficulty of certain attacks on the network is reduced.
For example, an attacker who wants to separate the network into subnetworks would
have to attack fewer connections.

Overall, our results are consistent with those of Delgado et al. who calculated network
metrics for Bitcoin’s testnet following their topology discovery attack. The researchers
determined a diameter of 5, which corresponds exactly to our value. They also find
an average clustering coefficient that is slightly higher than that of random graphs at
0.052 % [DSBPS+19]. Thus, although these values refer to the testnet instead of the
mainnet and, with a total of only 733 nodes and 6090 edges, the size of the data set is
much smaller, the evaluation results are about the same in this respect.

In direct comparison with the metrics of the random graph, we find that the Bitcoin
peer-to-peer network does not appear to be a random graph. In particular, the uneven
distribution of clustering coefficients and node degrees represents a clear difference
between the graphs.

Overall, it can be seen that there appear to be relative clusters in the Bitcoin peer-
to-peer network. The node degrees are also unevenly distributed, wich might lead to
the assumption that individual nodes hold increased importance in the graph. In these
aspects, the characteristics of the network graph differ greatly from those of a true random
graph. The betweenness centrality is broadly scattered but not less uniformly distributed
than it would be expected from a truly random graph. Accordingly, we find no evidence
that the routing influence of individual nodes is strongly increased beyond the expected
level in the network, despite the dode degree distribution hinting towards this fact. The
low average shortest path length also indicates that the information exchange in the
network is fast for all nodes.
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We can conclude that the Bitcoin network is not a random graph. Nevertheless, the
topology exhibits characteristics that we assume could be indicative of routing fairness
and fast information exchange. We argue that it can be assumed that the Bitcoin network
could therefore fulfill the typical requirements that can be placed on peer-to-peer networks
in this respect. In terms of resilience, however, the network graph shows significantly
reduced values.

4.4 Discussion
In this thesis, we present a method for degree estimation and connection inference of
the underlying peer-to-peer network of Bitcoin. This is done by exploiting message
forwarding of the address relay process. We show that both of these methods can be
conducted together and are then suitable to form a comprehensive topology discovery of
the network.

We perform validation experiments in a lab setting against a testbed node under our
control. For the degree estimation, both relay-based and time-based estimation exhibit
similar performance. Here, the relay-based estimation has relative error rates of up to
10 %, while the timing based estimation showed an error of up to 12 % for nodes with low
degrees. This is in line with the results of Biryukov et al. reporting 3 − 10 % [BKP14]
and Grundmann measuring 4.1 % [GBH21] error in similar experiment setups. In terms
of the connection inference, the relay-based estimator had a precision of 20 % for a recall
value of 40 %. The time-based estimator proved to have a higher performance here, with
a precision value of 40 % at the same recall. This superiority of the timing analysis over
the estimation based on idiosyncratic behaviours is also visible through the PR-Graph
and the ROC-Graph. Here, the time-based estimation mode shows a slightly larger
AUC for the ROC-Graph with a value of 0.89423, compared to the 0.84198 of the purely
relay-based one. In the PR-Graph, the difference is considerably bigger with 0.44147 as
opposed to 0.23448. Both estimation modes perform significantly better than a randomly
guessing classifier, which indicates that the topology discovery is generally possible using
the methods presented in this thesis.

We also validate the parameter choices of the experiment against our testbed node.
Validating node degree and monitor count, we see no clear trend. When trimming the
receptions by transit times, we note that the time-based estimator is nearly unaffected.
The relay-based estimator on the other hand changes performance drastically depending
on the maximum time to live of bullets: For any value above 400s, it performs the
connection inference no better than random guessing. The lower the value below 400s,
the more the performance rises steeply, all while still having the time-based estimator as
upper bounds. The parameters, with which the training set for the time-based estimation
was generated, seem to have no noticeable effect on the estimation results.

Furthermore, we conducted the topology discovery attack against the peer-to-peer network
that underlies Bitcoin. Based on the estimated connections, we then apply metrics to the
topological model that we found. To this end, we also build a random Erdös–Rényi-Graph
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based on the same parameters, to compare the metric results against. In doing so, we see
that the network seems to have clusters, and a degree distribution that distinguishes it
from a random graph. The betweenness centrality is evenly distributed, suggesting a fair
routing. The shortest path length is generally low, which may indicate a fast information
distribution within the network. Lastly, we find that the bisection bandwidth is reduced
significantly compared to the random graph.
Because we find that the estimator performance is decent even with rather low connectivity
values and a reasonably low number of injected bullets, we are confident these results
hold true. In the end, these are the parameters that the practical experiment conduction
was most restricted by. Furthermore, we use a series of complementary measurements to
show that the overall node churn rate in the network is approximately 30 %. The link
stability in the network is high, with more than 80 % of a given nodes peers being still
connected to it after one hour. This increases the credibility of the results further, as it
indicates that the estimation results would be valid for a long period of time.
We observed that the network load during the experiment noticeably increased. This
suggests that it would be possible for observing nodes to detect such large network
wide measurements in the future. As it was the overall load that was increased, a
detection can be done even when the injections are not made directly into nodes of the
observer. In fact, it was this increase of observed addresses in circulation that led to the
belief that an attack similar to our procedure has already been performed by unknown
actors. Grundmann et al. report that in July and August 2021, an unknown actor
connected nodes in the network to send them spoofed addresses within a large number of
ADDR-messages [GBH21]. This observation precedes all experiments we conducted in
the context of this thesis. However, we note that this observed behaviour is identical to
the one that would be observed from the perspective of network participants that are
victims to the experiments described in this thesis. In their paper, they restrict their
analysis of the event on the idea that the observed influx in addresses could relate to a
degree estimation experiment. However, they do not note the possibility of a connection
inference and thus a full topology discovery having been conducted with the same event.
In this thesis, we have shown that the topology discovery attack they observed in 2021
could have gone further than they have previously considered. The unknown actor that
sent out the initial suspicious ADDR-messages could have obtained a detailed topological
map of the Bitcoin network with considerable accuracy, in much the same way that we
did.
With respect to the observed spam wave, we also note that, according to Grundmann et
al., the performer adjusted the timestamp of the ADDR-messages, thereby artificially
increasing their transit times [GBH21]. This would not be necessary for a mere degree
estimation, as Biryukov et al. note [BKP14] and we verify in Section 4.1.2. Also, for
simple connection inference using the naïve relay-based estimation approach, this would
not be beneficial either, and it has no impact on timing analysis as we have also shown
in Section 4.1.2.
All in all, the experiment we have conducted in this thesis has mainly shown that past
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countermeasures implemented by Bitcoin are not sufficient to adequately prevent attacks
of this type. Grundmann et al. claim that the rate-limiting implemented in September
2021 prevents the degree estimation they performed. A detailed justification for this
claim was not given [GBH21]. However, we have seen that degree estimation is still
feasible despite rate-limiting. On the one hand, this is due to a suitable scaling of the
injections with several sybil nodes. Thus, an injection of sufficient messages for the degree
estimation is still possible in reasonable time. On the other hand, it is also because even
small amounts of injected messages are enough to accurately determine the node degree,
as we validated in Section 4.1.2.

Similarly, Neudecker et al. introduced trickling as a countermeasure to the timing analysis
they performed [NAH16]. However, we have seen that a timing analysis is still possible in
ADDR-message relay despite the trickling that has been implemented in the meantime.
We have validated that the performance of our timing analysis is at least as high as
that of the researchers without trickling. Furthermore, the performance of the naïve
relay-based estimation increases with cutting the messages according to transit times, as
we were able to validate in Section 4.1.2. The time-based estimator remains the upper
bound of the relay-based estimator in precision and recall. We therefore conclude that
the influence of the timing data is still essential for the connection inference. Evidently,
timing analysis has not been distorted, as it would be the goal of the trickling.

It is particularly noteworthy that the costs of the attack in terms of hardware are
exceptionally low. The attacker only needs to operate a few Sybil nodes. These, in turn,
are mostly passive listeners, so they have little computational overhead. For this thesis,
we decided to use the university’s dedicated measurement server. However, we found that
the framework we developed can also be run on average mid-range hardware. Equipment
of this scale could well be owned by a potential attacker for private use. This means that
there is only a low hurdle to the implementation of the presented attack. This underlines
the possibility that attacks of this kind could continue to be detected in the wild in the
future.

Limitations: The measurement and subsequent application of network metrics was
limited mainly by the fact that stable connections could not be established to the entire
network at the same time. There are three main reasons for this: 1) The measurement
works by design only for nodes that allow incoming connections, which corresponds to
about 19 % according to estimations [GBH21]. 2) We have chosen to reduce the scope
of this thesis by not measuring Onion-addresses. These would account for about 53 %
of the openly reachable nodes. 3) Not all open nodes accept all incoming connections.
This is possibly because nodes do not have enough open connection slots left [GBH21].
Due to this, the percentage of nodes that held enough initial connections to be measured
was 43.93 % of all designated victim peers. In total, the proportion of nodes that could
be actively measured simultaneously was thus about 22.79 % of all reachable clients and
4.33 % of all total Bitcoin clients. In this sense, only a subnetwork of the Bitcoin network
was measured. It can therefore be assumed that the determined graph-theoretical metrics
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deviate to a certain degree.

For the nodes where a measurement could take place, we were able to validate that the
estimation produces solid results that go far beyond random guessing in their precision
and recall. Nevertheless, an accuracy of 100 % could not be achieved. Accordingly, the
presented topology discovery attack cannot be used to lead to a situation where an
attacker knows all neighbours of a victim node.

Furthermore, topology discovery based on ADDR-message relay can only identify non-
block-relay connections by design. Attacks can therefore not build on the detected
topology with the aim of preventing block relay.

Finally, the number of injections per node was also limited by the availability of addresses.
An attacker with access to a larger usable IP address space, or one that uses random
addresses, is able to perform more injections. This could then further lead to an increased
performance of the estimation.

4.4.1 Moral Considerations
Where possible, we have tried to affect the Bitcoin network as little as possible for the
experiment and preparatory tests. It is not the goal of the presented attack to have
a disruptive impact on the operation of the peer-to-peer network. We argue that a
malicious attacker also shares this goal, since a non-disruptive execution of topology
discovery means that the attack is more likely to go undetected. To achieve this goal we
have taken the following measures:

• A filter proxy was used as described in Section 3.3 to prevent our addresses from
being forwarded to the network during testing unless necessary.

• Only IP addresses from an address range under our control were used to prevent
uninvolved foreign addresses from being advertised as Bitcoin node operators and
consequently being exposed to connection attempts.

• By lowering the associated timestamp, the forwarding time of each address and
thus the overall traffic was reduced.

• A minimal choice of specified services per address ensures that bullets, even if
stored in nodes in the address manager of victim peers, are seen as uninteresting
for connections. This reduces the number of failed connection attempts as a result
of our experiment.

• By choosing the number of monitors to be 5, the total number of sybil nodes
in the network is negligible. Admittedly, these sybil nodes did not productively
participate in network operations, for example by delivering blocks or transactions.
However, sybil nodes represented only a small proportion of all connections of a
given network participant. We can see this from the fact that in the results of the
estimation, the average node degree is much greater than the number of the given
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sybil node connections. Therefore, it is not reasonable to assume that any node of
the network was disrupted in its regular operation by the connection of these sybil
nodes.

The extent to which overall ADDR-message traffic on the network increased during the
experiment was determined in Section 4.1.2. We argue that this increase is measurable
network-wide but is too small to be perceived as a disruptive factor. Overall, we consider
the value for the estimated upper bound of the additional data consumption of 1.7434 B

s
per connection per node to be negligible.

The network can also be disrupted if the bullet addresses that are not accessible as
Bitcoin clients are stored in the address memory of victim nodes during the experiment.
However, in our reference node, which was also exposed to the measurement, we found
only 12 bullet addresses in the address memory after the measurement. This means that
the number of addresses added to the address managers of the nodes in the network as a
direct result of the experiment is negligible. Therefore, it cannot be assumed that the
experiment had a significant negative impact on the shared address knowledge in the
network.

All in all, we therefore consider the influence of the measurement on the network to be
sufficiently low to justify the actual execution of the attack on the basis of academic
interest.
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CHAPTER 5
Conclusion

In this thesis, we explored a method to discover the topology of the Bitcoin peer-to-
peer network. For this purpose, we introduced methods for degree estimation and
connection inference. We also have presented an approach for performing these methods
simultaneously in a single active measurement. The underlying idea is to observe the
forwarding of ADDR-messages sent by the attacker. We used two methods for estimation,
one based on characteristic forwarding behaviour, and another one based on flooding
inherent timings. The goal was to evaluate the performance of the timing analysis by
using the naïve estimation method as a baseline for comparison.

The validation of our approach shows that connection inference can be performed with
considerable precision and recall of about 40 % each. The relative error of the degree
estimation also remains below 10 %. For both estimations, timing-based analysis proved
to be superior to the relay-based method. This shows that trickling as a countermeasure
against timing analysis is unable to reduce the accuracy of such an attack in practice.
Even with the implementation of rate-limiting in the Bitcoin reference client as a
countermeasure in place, one can still achieve sufficiently high injection speeds such that
the analysis yields useful results.

We implemented a framework to carry out this approach. We used this framework to
actively measure a portion of the Bitcoin mainnet, demonstrating that such measurements
can be performed with minimal time and hardware. The topological model resulting
from the estimation was then analysed using graph-theoretic metrics. We showed that
the network exhibits non-random structural properties, especially in the distribution of
node degrees and local clustering coefficients. In addition, we showed that the network
possesses significantly lower bisection width than a comparable random graph.
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5.1 Future Work
We have shown that this attack is possible in the current way the protocol works. Whether
it can be prevented by changing the relay algorithm remains to be seen. Thus, future
work could investigate possible adjustments of the trickling and rate-limiting parameters.
For example, without structurally changing the flooding protocol per se, the rate-limiting
could be tightened to make it unprofitable to perform the measurement we have presented.
Alternatively, the utilisation of entirely different flooding algorithms could be examined.
Another approach might be, for example, avoiding relay-based degree estimation by
setting address forwarding probabilities per neighbour to a fixed value instead of being
dependent on the node degree.

It would also be worth examining whether the identified network metrics change when
Onion-nodes are included in the measurement. We measured only about half of the open
mainnet without connection to Onion-services. With an adjustment to the framework,
the remaining nodes could also be measured to see whether this changes the resulting
network metrics.

Furthermore, it remains to be seen to what extent the methods presented in this thesis
can be applied to other peer-to-peer networks, such as Ethereum or Dogecoin. Networks
that implement information flooding in their protocol similar to Bitcoin’s gossip protocol
may be affected in the same way. In addition, networks that have implemented trickling
may test whether it provides the desired level of protection against timing analysis by
adapting and applying our work.

Finally, we suggest that future work should discuss the trickling procedure once more.
We have shown that trickling in its current form does not prevent timing analysis.
Accordingly, a discussion of possible changes is of utmost necessity.
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