
Visual Detection of
Anti-Adblocking Software

DIPLOMARBEIT

zur Erlangung des akademischen Grades

Diplom-Ingenieur

im Rahmen des Studiums

Wirtschaftsinformatik

eingereicht von

Samuel Brendler, BSc.
Matrikelnummer 0952463

an der Fakultät für Informatik

der Technischen Universität Wien

Betreuung: Privatdoz. Dipl.-Ing. Mag.rer.soc.oec. Dr.techn. Edgar Weippl, Projectassistent
Mitwirkung: Dr. techn. Markus Huber, MSc

Wien, 31. August 2017
Samuel Brendler Edgar Weippl

Technische Universität Wien
A-1040 Wien Karlsplatz 13 Tel. +43-1-58801-0 www.tuwien.ac.at

Visual Detection of
Anti-Adblocking Software

DIPLOMA THESIS

submitted in partial fulfillment of the requirements for the degree of

Diplom-Ingenieur

in

Business Informatics

by

Samuel Brendler, BSc.
Registration Number 0952463

to the Faculty of Informatics

at the TU Wien

Advisor: Privatdoz. Dipl.-Ing. Mag.rer.soc.oec. Dr.techn. Edgar Weippl, Projectassistent
Assistance: Dr. techn. Markus Huber, MSc

Vienna, 31st August, 2017
Samuel Brendler Edgar Weippl

Technische Universität Wien
A-1040 Wien Karlsplatz 13 Tel. +43-1-58801-0 www.tuwien.ac.at

Erklärung zur Verfassung der
Arbeit

Samuel Brendler, BSc.
Wien

Hiermit erkläre ich, dass ich diese Arbeit selbständig verfasst habe, dass ich die verwen-
deten Quellen und Hilfsmittel vollständig angegeben habe und dass ich die Stellen der
Arbeit – einschließlich Tabellen, Karten und Abbildungen –, die anderen Werken oder
dem Internet im Wortlaut oder dem Sinn nach entnommen sind, auf jeden Fall unter
Angabe der Quelle als Entlehnung kenntlich gemacht habe.

Wien, 31. August 2017
Samuel Brendler

v

Kurzfassung

Adblocker erfreuen sich zunehmender Beliebtheit, weswegen Webseitenbetreiber begonnen
haben, mit Anti-Adblockern Adblock-Benutzern den Zugang zu ihren Webseiten zu
versperren. Daraus ist ein Wettrüsten entstanden, welches nicht klar entschieden ist. In
dieser Arbeit werden die technischen Möglichkeiten, welche beiden Seiten zur Verfügung
stehen, analysiert. In einer Fallstudie werden die Anti-Adblock Implementierungen von
drei bekannten Webseiten und Gegenreaktionen der Adblock-Community untersucht. Des
Weiteren wurde ein Webcrawler zur automatischen Erkennung von Webseiten, die Anti-
Adblocker einsetzen implementiert. Die Erkennung basiert auf visuellen Merkmalen von
Screenshots und verwendet diese um mit Algorithmen für machinelles Lernen Modelle zu
generieren. Mit diesen Modellen wird ein zufällig gewählter Datensatz von 300 Webseiten
aus der Alexa Topliste analysiert.

vii

Abstract

The number of adblock users has been on the rise throughout the last years, with the
consequence that publishers have started using anti-adblocking software to deny adblock
users access to their websites. This has lead to an ongoing arms race between the
advertising industry and adblock users from which no winner has emerged. In this thesis
the technical possibilities, which both sides have at their disposal, are analyzed. In a case
study the implementations of anti-adblocking scripts and the adblocking community’s
reactions and countermeasures are compared. Furthermore a webcrawler for automatically
detecting websites, which use anti-adblocking scripts was implemented. The detection is
based on visual features of screenshots and uses them with machine learning algorithms
to generate models. With those models, a random sample of 300 websites from the Alexa
top 1 million websites is analyzed.

ix

Contents

Kurzfassung vii

Abstract ix

Contents xi

1 Introduction 1
1.1 Motivation and problem definition . 1

2 Background 3
2.1 Online advertising ecosystem . 3
2.2 Problems with online ads . 10
2.3 Anti-Adblocking (AAB) . 13
2.4 Anti-anti-adblocking . 14

3 State of the Art 17
3.1 Attacks against and Defenses of Adblocking 17
3.2 AAB detection . 24
3.3 Tracking . 24
3.4 Latest developments . 25

4 Methodology 27
4.1 Literature review . 27
4.2 Case study . 27
4.3 Webcrawler . 28

5 Case Study 37
5.1 Bild.de . 37
5.2 Forbes.com . 40
5.3 Wired.com . 43
5.4 Comparison . 46

6 Software Design 51
6.1 Software Architecture . 51

xi

6.2 Candidate Generator . 52
6.3 Crawler . 53
6.4 Result Aggregator . 53
6.5 Result Verifier . 54
6.6 Visual Similarity Comparer . 54
6.7 OCR Reader . 54

7 Evaluation 55
7.1 Candidate Generation . 55
7.2 Visual Similarity Algorithms . 55
7.3 Classifier Effectiveness . 57
7.4 Feature Evaluation . 57
7.5 Evaluation with Alexa top 1 Million Websites 57

8 Discussion 59
8.1 Limitations of Visual Anti-Adblock Detection 60
8.2 Future Work . 61

9 Conclusion 63

Bibliography 65

CHAPTER 1
Introduction

1.1 Motivation and problem definition
Online advertising has been a driving factor for the rapid growth of the Internet as we
know it today because it enables content providers (e.g. website owners) to create revenue
without directly charging their users. Over the last years the global market for online
advertising has been growing continuously, reaching 145 billion USD in 2014 according
to eMarketer1 [46].

By targeting ads directly at users, advertisers can achieve better results, but also
need access to private information about their users such as browsing history, context
information, geolocation and social networking profiles. Users are therefore tracked
across websites, which allows to create detailed profiles of them, resulting in a conflict of
interests because many users consider this a cutback of their privacy. Additionally, online
advertising also adds multiple other drawbacks to the user’s web browsing experience.
For example ads can significantly increase the loading time of websites [39], infect the
user’s computer with malicious code [44] (malicious advertising a.k.a. malvertising) and
worsen the user experience by taking up space on websites or inducing unwanted waiting
times when being forced to watch an ad before streaming a video.

With the increasing presence of online advertising, the usage of ad-blocking software
(a.k.a. adblockers) such as the popular browser plugin Adblock Plus also became more
popular. The problem with adblockers is that content providers don’t profit from users,
who use them. Thus, in the hypothetical scenario that the majority of users was browsing
with adblockers enabled, content providers would not be able to offer their contents for
free and would have to switch to other business models or be forced to shut their services
down. As depicted in Figure 1.1 there is a current trend of growing adblocker user rates,
which led to a still ongoing public debate about the future of online advertising.

1Original source not publicly accessible, therefore recited

1

1. Introduction

2010 2011 2012 2013 2014 2015 2016 2017

21 30 39 54

121

181
216

236
Mio. users (January of year)

Figure 1.1: Worldwide development of desktop adblock usage
Data from Pagefair 2017 Global Adblock Report [60]

Publishers such as print media, which are struggling to make the transition to online
media in a profitable way, are trying to counteract adblocking by lobbying, lawsuits
and anti-adblocking software, which detects the usage of adblockers and prohibits users
with active adblockers from accessing their contents. On the opposite site there are
companies like Eyeo (Adblock Plus), Ghostery and a large open-source community. Even
though scientific research on adblockers exists, anti-adblocking software is a very recent
trend, that has not yet been covered in detail. A lot of knowledge about it is distributed
among blogs, software documentation and reports of companies, which provide services
specialized in the field.

We have now reached a tipping point in the history of online advertising, where its future
is uncertain because advertisers and adblockers have already engaged in an arms-race
against each other. In many cases anti-adblocking software can already be countered by
tools such as Anti-Adblock Killer [71].

The goal of this thesis is to understand how this conflict can further evolve, which requires
understanding how far it has already escalated and which technical possibilities there
are on either side for enforcing their goals. For this reason the research questions are
formulated as follows:

• What are effective measures for detecting the use of adblocking tools?

• What are effective measures for circumventing adblock-detection as used in anti-
adblocking tools?

• Which categories of anti-adblocking tools exist?

• How many of websites from a random sample of 100 pages from the Alexa Top 1
million websites are using anti-adblocking software and do they use hard blocking
(restrict access to content) or soft blocking (hinting to disable adblocker)?

2

CHAPTER 2
Background

2.1 Online advertising ecosystem

2.1.1 Ad-serving

With the continuing growth of the online advertising industry, balancing the demand
and supply of ads and ad space became more challenging. Whereas in the earlier days of
the Internet publishers had direct contracts with advertisers or ad networks, nowadays
a large share of ads are auctioned in real time to the highest bidder. The following
paragraphs describe those processes based on a whitepaper by OpenX [57].

Figure 2.1: Ad networks buy ad
space from publishers and sell it to
advertisers

Ad networks serve as intermediaries between ad-
vertisers (e.g. a car company) and publishers (e.g.
a news website). By contracting multiple publishers
to serve its ads, an ad network creates a supply of
advertising space, which it can sell to advertisers,
who are in demand because they want to deliver
their ads to potential consumers. The aggregation
of supply and demand has multiple advantages. A
publisher doesn’t have to spend resources searching
for advertisers who are willing to partner up with
his/her website. An advertiser can increase the
reach of his ads, because through the ad network,
they are displayed on a large number of websites.
Ad networks offer different degrees of transparency
to advertisers with regards to the positioning of their ads on websites. Vertical ad net-
works offer high transparency and usually ad space provided by publishers from the same
sector. Targeted ad networks, allow advertisers to select their target groups by defining
criteria such as demographic attributes, interests and context. Blind ad networks offer

3

2. Background

low costs for advertisers and in return take charge of the selection of publishers. A major
problem of ad networks was that forecasting of their ad space supply was inaccurate.
Because those spaces were sold in advance, it was possible that there were too many ads
and not enough space or vice versa. Ad networks therefor started trading their capacities
with other ad networks.

Figure 2.2: Multiple ad networks have
bilateral trading relationships with each
other

Figure 2.3: An ad exchange as single
point of contact for ad networks

Source of Figures 2.1-2.3: liesdamnedlies.com [79]

Ad exchanges facilitate this process by introducing centralized marketplaces, where it
is no longer necessary that ad networks negotiate individual contracts with each other.
Instead publishers and advertisers have a single point of contact (per ad exchange), where
ad space is auctioned to the highest bidder. The auctions are happening in real-time,
which makes forecasting and planning of demand and supply unnecessary. As soon
as a user visits the website of a publisher, a request is sent to the ad exchange. This
request states that the publisher supplies ad space in a format specified by the website
(e.g. banner ad, 800 x 200 pixels). Typically such a request also contains information
about the user for allowing targeting ads. Together with context information about the
originating website this user information is made available to advertisers, who can then
place a bid within a time window. When the time window closes, the ad of the highest
bidder gets delivered to the visitor. Because time windows are usually in the range of a
few milliseconds, bidding has to happen fast and is automated with a set of bidding rules
based on a bidding strategy.

Ad serving is the process of requesting and loading an ad to the browser of a website
visitor. This process starts with a visitor requesting a website. The source code of the
website contains ad-tags, which are placeholders for ads. An ad-tag contains the URL of
the so called publisher ad server and some parameters, which identify the publisher and
the characteristics of the ad space.

4

2.1. Online advertising ecosystem

An example of an ad-tag of Google’s DoubleClick for Publishers [27]:

http://ad.doubleclick.net/Nnetwork_code/ad/first_level_ad_unit/
second_level_ad_unit;pos=top;tile=tile_number;sz=widthxheight;
ord=1234567890?

Figure 2.4: Simplified ad serving process
Image source: www.adopsinsider.com [35]

A publisher ad server is used for delivering
and tracking advertising [35]. When the
browser loads the page, it also sends a
request to the publisher ad server. In a
very simple scenario the publisher ad server
acts as a repository for ads [80] and directly
returns an ad to the user’s browser. The
benefits of using a publisher ad server are
tracking of ad requests and separation of
the website’s source code and ads, which
allows dynamically rotating available ads.

In a more realistic case, the publisher ad
server uses external ads and redirects the
browser with an HTTP 302 status code to

an advertiser ad server. An advertiser ad server (a.k.a. marketer ad server) allows
the advertiser to manage ad campaigns and measure delivery of ads among multiple
publishers. The actual ad can be returned directly by the advertiser or by a content
distribution network.

It is clear that performance of all involved servers is critical especially because the requests
have to pass the user’s browser sequentially - If there is one weak link in this chain, the
overall loading time of the ad increases.

5

2. Background

2.1.2 Adblockers

Categories of adblockers

Adblockers can be implemented in different ways. Browser extensions such as Adblock
Plus are the first choice for most users but in some scenarios are not applicable (e.g.
older iOS versions) or other solutions offer additional benefits. While researching existing
solutions the following types of adblockers were identified:

Browser extensions can be installed from extension repositories, which all popular
browsers offer. Adblock Plus (ABP), uBock Origin and Adblock (unrelated to ABP) are
the most prominent examples. All three of them are open-source software and rely on
community-generated third party filter lists such as EasyList[17] or Fanboy Annoyances
List [20]. They differ in the way they handle those filter lists internally, which leads to
differences in performance and system load [47]. Because extensions have access to the
browser’s API, they can operate with more detailed information such as the Document
Object Model (DOM) [42] of a website. This allows them not only to perform URL-based
blocking but also to manipulate CSS values and thereby change what actually gets
displayed in the visible area of the screen. Listing 2.1 shows ways to render CSS elements
invisible on the screen.

1 /* Remove the element, occupied space collapses */
2 #blockMe1 {
3 display :none
4 }
5 /* Hide element, occupied space remains occupied */
6 #blockme2 {
7 visibility: hidden;
8 }
9 /* Resize to 0px and hide contents, occupied space collapses */

10 #blockme3 {
11 height: 0;
12 width: 0;
13 overflow: hidden;
14 }
15 /* Shift element out of visible area, occupied space collapses. Can cause

problems with focusing links */
16 #blockme4 {
17 position: absolute;
18 top: -1000px;
19 left: -1000px;
20 }
21 /* Shift element out of visible area, occupied space remains occupied */
22 #blockme5 {
23 text-indent: -1000px;
24 }
25 /* Adding !important to the CSS property can make the rule prone to

overwriting. */

Listing 2.1: CSS properties for hiding elements

6

2.1. Online advertising ecosystem

Hosts file blacklisting also takes place on the user’s device but filters all outbound
traffic of a system according to a blacklist. The hosts file serves the purpose of resolving
domains locally and therefor entries in it take precedence over queries to the remote
DNS server. Ads can be blocked by dropping requests to ad servers and CDNs. To block
requests domains are resolved to 0.0.0.0 or 127.0.0.1 instead of their real IP-addresses,
which prevents them from reaching the original ad servers and CDNs. Listing 2.2 shows
that traffic can be blocked for entire domains and subdomains. Even though this setup
is very simplistic, it has two downsides. Firstly rules can only be defined on a domain
level, which is more coarsely grained in comparison to browser extension solutions.
Consequently it becomes easier for advertisers to detect that an ad has not been loaded,
when a strict set of rules is active. Secondly the host file can also be abused to redirect
to malicious IP addresses, which can be a problem when subscribing to a third party
blacklist which is automatically updated without verifying it’s contents. Currently there
are multiple solutions available as open source software, some of which also block host
entries of malware and tracking domains.

1 # Drop all traffic to exampleadserver.com
2 0.0.0.0 exampleadserver.com
3
4 # Drop all traffic to subdomain "ads" on exampleadserver.com
5 0.0.0.0 ads.exampleadserver.com

Listing 2.2: Example hosts file for dropping requests to ad servers

DNS-filtering is based on the same principle as hosts file blacklisting. The difference is
that a typically remote DNS server takes over the task of filtering requests instead of the
local machine. The advantage is that many devices can use the same DNS-server and
thus the blacklist only needs to be maintained in one place. Furthermore DNS-filtering
can also be applied without admin or root privileges because DNS configurations are part
of standard network settings in many operating systems. This makes it a viable option
on mobile devices and smart TVs, where other methods require more permissions. Even
though projects for hosting an own DNS-server such as Pi-hole [62] exist, they require
complex configuration and administration. Opposed to that third-party solutions such as
OpenDNS [56] are easier to use because the user only has to change DNS IP-address in the
network settings once and the DNS service provider handles maintenance of the blacklist.
On the downside whitelisting individual websites or ad servers is not possible anymore,
which can raise the issue of not being able to visit websites running anti-adblocking
software. The risk of malicious redirects is the same as with hosts file blacklisting with the
difference that it usually is not possible to manually inspect the blacklist. Furthermore
third party DNS-services can log all DNS-requests and share their insight into the user’s
browsing history with marketing companies [43] and governments [29].

VPN and proxy solutions forward network traffic to a remote server, which takes
care of the filtering. A VPN solution can apply blacklists to all the network traffic

7

2. Background

of a computer whereas proxy solutions can be enabled per application. By providing
additional encryption, VPN services can prevent man-in-the-middle attacks such as
the known incidents of ad-injection by ISPs [3, 5] but on the other hand put the VPN
service provider in a position to sniff and manipulate unencrypted traffic. By controlling
the exit node to the Internet, the VPN service provider is in the perfect position to
perform active and passive man-in-the-middle attacks. As a result the user has to entrust
the provider with his data streams. When considering that many of those services are
provided free of charge by for-profit companies, there is plausible reason for suspicion.
Ad-free VPN service providers typically use proprietary ad-blocking technologies, which
are not publicly disclosed.

Network-level adblocking is a very recent trend, where the ISP implements the
filters somewhere within its infrastructure. The important difference with network-level
adblocking is that users no more have to opt-in, install or configure anything - ads are
blocked by default. Should network-level adblocking become prevalent among ISPs, this
could drastically increase adblock user rates and seriously decrease publishers’ revenues.
At the time of writing, the legality of network-based adblocking is unclear. The mobile
operator Three announced to introduce the a proprietary adblocking solution by Shine
Technologies to all their U.K. customers [48]. Within EU borders however the European
Net Neutrality Guidelines [54] launched in August 2016 forbid ISPs to block Internet
traffic if not necessary.

Adblockers can be categorized by their scope.

• Application-wide
Browser extensions
Proxy

• System-wide
Host file
DNS
Proxy

• Network-wide
VPN
DNS
Gateway-/Router-based
Proxy

Commercialization of adblocking

Adblockers can be provided as commercial products run by for-profit organizations or as
non-commercial software. Commercial in this context does not necessarily imply that
the user pays money to use the adblocker.

8

2.1. Online advertising ecosystem

Adblock Plus is a browser extension with a very large user base provided by Eyeo
GmbH for all major browsers. There also is a standalone Android app for system-wide
adblocking. In the last years there has been a large public debate followed by lawsuits
because publishers are complaining about ABP’s Acceptable Ads program. ABP blocks
ads, but whitelists ads, which are considered "acceptable". If a publisher wants his/her
website to be whitelisted, it needs to comply with a list of criteria [25], apply at Eyeo
and sign an agreement. Furthermore Eyeo used to charge publishers with more than 10
million ad impressions by whitelisting 30% of the additional revenue. A German court
ruled in June 2016 that it is illegal to charge publishers for whitelisting. In response
Eyeo now provides the acceptable ads program free of charge but with the same criteria
as before [40]. Eyeo has announced a partnership with the micropayment service Flattr,
which allows users to spread small amounts of money among content providers according
to their browsing habits [64].

Brave [34] is a browser, which is supposed to tackle the problem of annoying ads. The
basic idea is that Brave comes with an adblocker and tracking protection out-of-the-box.
When surfing with Brave, intrusive ads will be blocked automatically and instead ads
provided by Brave will be inserted. Revenues will be split not only between Brave and
the content provider but also the user. Similar to Flattr it is also possible to transfer
money to a wallet and make micropayments to content providers. Brave promises that
their ads respect the users privacy and minimize page loading times. The implementation
of Brave is based on the Chromium browser and still under active development, which
means that many of the features are not working in the currently available build (version
0.18.23).

Subscription services Adblocking is often included in Proxy and VPN services where
it helps reducing network traffic. This is especially useful with slow connections. Many
of those services also include other filters such as malware domains and parental control -
adblocking is just one feature among others.

Paid apps for mobile devices have received much attention lately, especially since Apple
allowed content-blocking extensions for iOS 9. Usually such apps can be purchased with
a one-time payment.

9

2. Background

2.2 Problems with online ads

2.2.1 Annoying ads

Figure 2.5: Skyscraper ad
Source: derstandard.at

From a user’s perspective the most noticeable im-
pact of online advertising is the disruption of the
user experience when browsing the web. Banner
and skyscraper ads often cover large areas of a page,
which otherwise could be used for content (see Fig-
ure 2.5).

Overlay ads even cover content and have to be closed
by clicking a button, which often is only possible
after waiting a few seconds (see Figure 2.6).

In some cases sponsored content gets embedded
with a similar style as the real content , which makes it hard to tell it apart from the
real content (e.g. an ad looks like an entry in a news feed - see Figure 2.7).

Figure 2.6: Floating Ad
Source: billiger-telefonieren.
de Figure 2.7: Sponsored content

Source: yahoo.com

Pop-up and pop-under ads open new browser windows, which can also cover the visible
area of the screen or stay opened in the background until the main window is closed.
The same principle also works with opening new tabs in the fore- or background. Some
pages trick their users into clicking an ad by hiding it inside regular page elements such
as the Play button of a video player. Ads can not only contain static images or text, but
also flashing animations, video and audio. Furthermore ads cause additional network
traffic and due to the complex processes of real-time auctioning can increase the loading
time of a website significantly [69].

Research indicates that annoying ads are the main reason, why users turn to adblockers.
In an experiment Goldstein et al. gave workers the task to categorize emails, which also
contained ads with different levels of annoyance and payment levels (independent from

10

derstandard.at
billiger-telefonieren.de
billiger-telefonieren.de
yahoo.com

2.2. Problems with online ads

each other). This allowed them to create an economic model for estimating the cost of
annoying ads [26] and showed that it was necessary to pay workers more for completing
the same task with more annoying ads.

For researching how people actually use adblockers, a group of German researchers
looked into a real data set of network traffic from the perspective of a European ISP and
found that 22% of the most active users were browsing with Adblock Plus enabled [66].
Furthermore they were also able to determine parts of the client configurations, which
indicates that most users were not as much concerned about protecting their privacy as
they were about annoying ads.

Advertisers are facing new challenges with the current trend towards mobile computing.
Processing power and data volume are limited resources on smartphones and tablets
whereas those factors can be neglected on conventional PCs. Since many mobile apps
use in-app advertising as their business model, adblockers are a threat to the app store
ecosystem. In Apple’s and Google’s app stores, there are no apps available, which can
block ads for the entire system because both platforms prohibit such apps in their terms of
service. However there are at least browsers, which come with adblockers out-of-the-box
(e.g. Eyeo’s Adblock Browser) and some other browsers can be extended with plugins for
adblocking. Solutions for blocking ads system-wide also exist but are only available in
third-party app stores and some of them require root privileges on Android respectively
jailbreak on iOS in order to function properly.

2.2.2 Privacy

One of the main concerns about online advertisement is its impact on the user’s privacy.
Advertising can directly and indirectly cause the leakage of personal information to third
parties. The following points summarize the most common concerns.

Tracking

Advertisers’ compensation usually increases with the click-through-rate (CTR) of the ads,
which they feed to ad networks. In order to achieve high click-rates, ads are targeted to
specific target groups or individual users. Trackers can identify users across websites and
build profiles based on their browsing history and other personal information, which in
turn aid estimating the effectiveness of an ad.

Similar to ad-tags, tracking scripts are included in the source code of a website and issue
requests from the user’s browser to tracking servers, when the page gets loaded. Some
users are not comfortable with sharing their personal information with third parties. The
Do Not Track (DNT) HTTP header is a mean for allowing users to signal websites not
to track them [45]. As of now, the initiative has not succeeded and the DNT header is
being ignored by the majority of advertisers. Furthermore state-of-the-art user tracking
has evolved from cookie-based to fingerprint-based tracking, which not only recognizes a
user with a mixture of technologies (Javascript, Flash, HTML5, etc.) but also the device
he/she is using [52]. In comparison, fingerprint-based tracking is less transparent, as the

11

2. Background

user is not able to delete cookies from the browser easily anymore. Even though browser
fingerprinting raises the difficulty for dodging the radar of trackers, it can also be used
for significantly improving session security by preventing session hijacking [81].

As trackers and advertisers have been lacking the willingness to make compromises in
favor of user privacy, tracking blocking tools similar to adblockers were introduced in
order to give users control over which tracking services to allow or block.

HTTPS

Over the last years the global usage of HTTPS has continuously increased. The leak
of documents regarding NSA mass surveillance programs lead to a paradigm shift and
users now have to assume that all of their network traffic is analyzed and stored by
governments and ISPs all over the world. By encrypting data exchanged between browser
and webserver, HTTPS can protect the user’s privacy and increase the cost of bulk
data collection. Although some certificate authorities such as Let’s Encrypt now issue
certificates free of charge and have streamlined the process of obtaining and renewing
certificates, ad networks are still slowing down HTTPS deployment by providing only
HTTP-based ad tags. The problem is, that browsers block requests to HTTP content
on HTTPS pages, which consequently leads to ads not loading and therefor not being
counted as impressions. To prevent revenue loss, many publishers wait until their current
ad network supports HTTPS, before making the transition. This means that privacy
and communication security are sacrificed on behalf of the user.

JavaScript code injection, in the form of a MITM attack, has been used by ISPs in the
past to inject ads into HTTP traffic [5]. HTTPS can prevent code injections from MITM
attacks, as the protocol verifies the integrity of data packets.

2.2.3 Malvertising

Malvertising is an umbrella term for malware delivered through ads. By either compro-
mising infrastructure used in the ad delivery process or simply dodging quality checks,
an attacker can insert malicious code into ads and have them embedded in legitimate
websites. A user, who browses a website with embedded malicious ads, automatically
runs this code. This code typically triggers a drive-by download, which can happen
without the user noticing. In that case the code takes advantage of software vulnerabilities
which often are present in browsers and their plugins. Exploits are also used to execute
the downloaded content, which allows the attacker to deploy arbitrary malware on the
victim’s computer [41]. The same result can be achieved when the malicious embedded
code impersonates a legitimate download such as a software update, which the user
manually executes.

Malvertising per se is not a new phenomenon [65] but has become a popular attack
vector. Multiple factors are responsible for that. On one hand the difficulty of malware
development has decreased due to a growing number of easily available exploit kits.
The trend towards mobile computing and proprietary black-box software also leaves

12

2.3. Anti-Adblocking (AAB)

users exposed to vulnerabilities as security updates are still not delivered in a timely
manner in many cases. Additionally the recent monetary success of ransomware gives
attackers incentive to pursue those attacks. As malvertising offers the same possibilities
for targeting victims as targeted advertising does, attackers can aim their malware at a
selected target group, which in turn can further increase their profits. Events of the last
years have shown that ad networks are not capable of delivering sufficient quality control
and thus have lost many users’ trust.

Incidents such as the malvertising campaign delivered through PageFair’s CDN [4] and
forbes.com [33] underline that forcing users to load ads can put them at risk and is
there for unprofessional practice. This has been acknowledged by institutions such as the
German BSI [22] and the Dutch NCSC [55], which recommend blocking ads for a secure
browsing experience. Even Scott Cunningham from IAB in 2015 addressed the status
quo of online advertising with the words "we messed up" in a statement [13] proposing to
take the user’s perspective more seriously.

2.3 Anti-Adblocking (AAB)

The term anti-adblocking is commonly used to describe all kinds of measures for preventing
users from blocking ads. As there is no formal definition, it is often used synonymously
with adblock detection. Typically an AAB solution is a script included in a website, which
performs a check for determining whether or not ads are displayed and triggers an action
such as displaying a pop-up, forwarding to another page or just silently tracking the user.
The typical process for detecting and blocking AB users is described in the following
steps:

1. Add bait elements

For detecting active adblockers, AAB solutions add bait elements to the DOM of
a website. Their purpose is to appear as regular ad and tracking elements, which
trigger the adblocker’s blocking mechanisms. This is done by requesting JavaScript
files with suspicious names (e.g. ads.js, adsense.js) or inserting DOM elements with
typical class names of ads (e.g. pub_300x250, textAd). Those names are blacklisted
in most block lists, which results in the file or elements not being loaded when
an adblocker is active. In the case of a JavaScript bait file, there usually is code
included, which applies changes to a variable.

2. Verify bait elements

In a second step the integrity of the bait elements is checked. In the case of a HTML
elements, this is usually done by verifying that they are still present in the DOM,
comparing CSS attributes with the initial values or searching for hiding properties
as described in Listing 2.1. Bait scripts can be verified by setting variables and
cookies or simply checking the contents of a function (e.g. character length).

13

forbes.com

2. Background

3. Response action
When the verification is not successful, meaning the bait has been tampered with,
a response action is triggered. In many cases this is only a notification for the
user, where the website asks him/her to whitelist or support it in another way (e.g.
donations, subscriptions, micropayments, affiliate programs etc.). A more drastic
measure is to prevent the user from consuming the website’s contents similar to
a paywall. For some websites it is also of interest to gather statistics about the
adblocking-rate of their userbase, which can be done by reporting detection status
back to a tracking server. Some websites also load different ads, which fulfill the
Acceptable Ads guidelines [25].

AAB solutions can be categorized by their AB-detection mechanisms, their response
action and their defenses against tampering and circumvention. The most common
detection method is injection of bait elements as described in Step 1 and 2. Nevertheless
side channels can also reveal the presence of adblockers. For example some adblockers
expose resources [51] such as error pages, which can be checked. Methods against for
protecting AAB scripts are explained in the Attack and Defense Model 3.1.

2.4 Anti-anti-adblocking
As a response to AAB solutions gaining prevalence, adblockers have also introduced
countermeasures. There are several filter lists available, which serve the purpose of
rendering AAB scripts useless and allowing users to display contents without being
interrupted by them. Furthermore specialized solutions, which complement existing
adblockers, have been introduced. To the knowledge of the author, the following solution
is the most sophisticated one for this purpose.

Anti Adblock Killer (AAK) is a sophisticated open source solution for countering ad-
block detection scripts. It can circumvent more than 30 generic anti-adblocking solutions.
It consists of a filter list, which must be used with an adblocking browser extension,
and a UserScript. The syntax of the filter list is compatible with the most common
adblocking extensions. The UserScript is JavaScript, which runs when a website is loaded
and modifies its contents and scripts. It contains rules for generic anti-adblocking scripts
as well as individual websites. Such rules typically perform tasks such as manipulating
cookies, variables and parts of the page’s original JavaScript code. Particularly useful is
the onBeforeScript event listener because it allows to perform checks such as searching
for variable names and strings within each individual script of the website. Listing
2.3 is an exemplary rule, which scans JavaScripts of the websites tvspielfilm.de
and finanzen.ch for the string "UABPInject" and removes the script containing it.
Filtering with such high granularity makes AAK a very effective complement for existing
browser extension adblockers but the required setup and configuration are likely to
prevent mainstream users from adopting this solution.

14

tvspielfilm.de
finanzen.ch

2.4. Anti-anti-adblocking

1 ad_defend_uabp : {
2 // note: when adblock detected inject new ads
3 // source: http://pastebin.com/cFQCp80W
4 host : [’tvspielfilm.de’, ’finanzen.ch’],
5 onBeforeScript : function () {
6 return [{
7 detected : ’AdDefend{UABPInject}’,
8 contains : ’UABPInject’,
9 external : false,

10 remove : true
11 }];
12 }
13 },
14
15 ad_defend_uabp : {
16 // note: when adblock detected inject new ads
17 // source: http://pastebin.com/cFQCp80W
18 host : [’tvspielfilm.de’, ’finanzen.ch’],
19 onBeforeScript : function () {
20 return [{
21 detected : ’AdDefend{UABPInject}’,
22 contains : ’UABPInject’,
23 external : false,
24 remove : true
25 }];
26 }
27 },

Listing 2.3: Example UserScript rule from Reek’s Anti-Adblock Killer.
Source: https://github.com/reek/anti-adblock-killer/blob/master/
anti-adblock-killer.user.js

15

https://github.com/reek/anti-adblock-killer/blob/master/anti-adblock-killer.user.js
https://github.com/reek/anti-adblock-killer/blob/master/anti-adblock-killer.user.js

CHAPTER 3
State of the Art

Research about online advertising, user tracking and its privacy impacts has been con-
ducted and technical aspects of user tracking with cookies as well as browser fingerprinting
are well explored. The economic view on the online advertising market and the value
of privacy has also received attention from the scientific community. However, when
narrowing the subject to literature related to detecting and blocking advertisements and
trackers, until lately most effort went into understanding behavioral phenomenons of
human interaction with ads and adblockers as well as tackling existing problems such as
malvertising.

To the knowledge of the author the area of anti-adblocking software and adblock detection
has only been covered by a small number of papers, which were published during the
creation of this thesis.

3.1 Attacks against and Defenses of Adblocking
This section contains a model of the most common attacks against adblockers.

3.1.1 Obfuscation

Obfuscation aims at making code harder to understand for humans and prevent automated
attacks. It is used to hide data and program logic from reverse engineering and prevent
tampering. The following obfuscation methods are described by Xu et al. [84] in a paper
focused on JavaScript malware obfuscation, but also apply to adblocking and AAB.

• Randomization Obfuscation
Classical adblocking is signature based, meaning it relies on some kind of identifier
(e.g. file name, domain or CSS selector) for detecting ads. It is possible to

17

3. State of the Art

randomize those identifiers on the server side, so that they change with every page
load. Randomization can also be applied to AAB scripts and pop-up modals ("nag
screens") to prevent automated detection. Randomization can also be performed
on the client side for dynamically changing CSS selectors [1].

• Data Obfuscation
Variables and constants can also be represented as the computational results
of other variables and constants. String splitting splits a string into multiple
substrings, which when concatenated result in the original string. The JavaScript
functions document.write() and eval() can be used to execute concatenated strings.
JavaScript also allows keyword substitution, which is arbitrary replacement of
JavaScript keywords.

• Encoding Obfuscation
JavaScript code can be encoded in different representations such as escaped ASCII
characters, unicode, hexadecimal and custom encodings. Furthermore it is also
possible to deliver encrypted code together with a decryption function and decrypt
it during runtime.

• Logic Structure Obfuscation
This technique changes the logic structure of the code by either inserting instructions
not related to its actual functionality and/or adding conditional branches.

The average size of JavaScript files on websites has grown continuously through the last
years [10]. On one hand this allows "hiding" small code snippets in plain sight because
with the size of the JavaScript the search space for the snippet increases. On the other
hand it has become common practice to use minification tools to reduce JavaScript
file size by removing unnecessary characters and restructuring code. Depending on the
methods used for minification, readability can suffer significantly. Minification can also
combine multiple JavaScript files into one to minimize the number of HTTP(S) requests.
By combining ads or adblock detection scripts with scripts actually required to deliver
page content, it becomes more difficult to block them because it is no longer possible to
block the request for the entire file (see also Section 5.3).

3.1.2 Defenses against Obfuscation

• Blocking third-party content
Randomization can be countered in different ways depending on how it is applied.
One of them is domain rotation, where ads are loaded from regularly changing
domains. Classical adblocking tools would have to add all of those domains to their
filter lists and deliver them to the user immediately when they start being used.
This would require high maintenance effort and bloat their filter lists. In response
to the company Yavli actually practicing domain rotation, Easylist has made a

18

3.1. Attacks against and Defenses of Adblocking

statement[18]. It says that all third-party content will be blocked on websites using
Yavli. This effectively not only blocks ads, but also all third-party analytics and
tracking scripts.

• JavaScript deobfuscation in the JavaScript engine

Even if obfuscation has been applied in a way that makes the source code of a
script unreadable to humans, at some point it will be compiled and executed by
the JavaScript engine. The JavaScript Deobfuscator [61] is a developer tool, which
displays code as it is being executed, at which point it is already deobfuscated.
This can be very useful for understanding AAB scripts and detecting a script if it
is randomly obfuscated on page load but the core functionality is always the same.

• Static code analysis and simulated execution

Many of the above mentioned obfuscation techniques can be defeated precalculating
the results of functions with static results. Tools such as JSDetox [78] furthermore
emulate script execution and a HTML DOM environment.

3.1.3 Escalation of the Arms Race

As various obfuscation techniques still pose challenges for comparing JavaScript code
snippets, AAB detection based on code analysis faces the same problems as JavaScript
malware detection. Abstract syntax trees (AST) [14] are a form of code representation,
which allows to overcome some parts of obfuscation such as variable naming. Mughees
et al. also analyzed the identified AAB scripts based on their AST representations
and were able to cluster them by the similarity of their structure. They showed that
most observed first-party AAB scripts are in one dense cluster and therefor share high
structural similarity. Nevertheless, as with malware, it is possible that new, structurally
different scripts are not detected by comparing them against the already known clusters
of AAB scripts.

The paper by Storey et al.1 [77] introduces an analytical framework and new techniques
for demonstrating how ads and AAB scripts can be defeated in the future. They developed
a state model which categorizes scenarios where either publisher or user "wins" (see Figure
3.1).

State 1: User has no effective adblocker - ads are displayed.
State 2: User successfully blocks ads by using an adblocker, which is effective at detect-
ing ads.
State 3: Publisher detects adblocker and is able to deny access to content.
State 4: User successfully blocks ads and AAB software.

1not yet published in a scientific journal

19

3. State of the Art

Figure 3.1: State model of adblocking conflict
Image source: Storey et al. [77]

The model considers measures taken by the user or publisher as transitions between those
states. Based on it, Storey et al. proposed new techniques for demonstrating the means
available to users, which are summarized in the following paragraphs.

• Perceptional adblocking is a technique for detecting ads by taking visible features
into account. It is based on the assumption that ads have to be labeled as ads
to adhere to legal requirements. Instead of static filter rules, as used by common
adblocking extensions, perceptional adblocking detects ads as objects in the DOM
by considering multiple criteria during runtime. In a first step all containers with
dimensions typical for ads are selected. Fuzzy image matching and searching is
then used to detect icons contained in disclosure standards such as the common
AdChoices [2]. Furthermore optical character recognition (OCR) is performed2

to identify text such as "Sponsored" in images. A click simulator follows links in
hidden browser tabs to determine if they are related to an ad disclosure standard.
By those criteria it is determined, whether a container contains an ad or not. The
main advantage of this approach is its ability to overcome ad obfuscation. The
paper contains a case study stating that perceptional adblocking is very effective
against Facebook ads, which are not easily distinguishable by their CSS id and
class attributes.

• Rootkit-style stealthy adblocking is supposed to defeat adblock detection. It
creates a new DOM root node above the original one and injects a subtree with
overlay containers, which cover the detected ads. All of the website JavaScript
pointing to the root node needs to be replaced, so that it points to the original root

2The paper states that OCR performs badly and has only minimal impact on the effectiveness of
perceptional adblocking.

20

3.1. Attacks against and Defenses of Adblocking

node. The DOM traversal API is modified so the website JavaScript can’t reach
the new root node or the subtree of overlay containers. This is possible due to the
higher privilege level of extension JavaScript, which allows hiding extension data
from website JavaScript. The website CSS is modified to only apply to the original
DOM subtree. This method has the drawback, that the website JavaScript can
detect interception of property access.

• Shadow execution style stealthy adblocking creates a shadow copy of the
unmodified DOM and maps DOM elements in the original tree to their counterparts
in the shadow copy. The shadow copy tree remains unmodified whereas adblocking
is applied to the original tree. API calls are executed on both DOM subtrees
but the responses are only returned from the shadow copy. This way from the
perspective of the website JavaScript it is impossible to detect CSS changes (such
as hiding ads). On the downside shadow execution style stealthy adblocking has
not yet been implemented, as it is would require changes on the browser source
code. Furthermore it might be possible for publishers to detect duplicate requests
originating from the same host.

• Signature-based active adblocking aims at blocking ads despite active AAB
scripts on a website. Active adblocking in this context is a mixture of HTTP request
and response manipulation and modification of JavaScript. Not all browsers allow
HTTP response manipulation, and thus also require a proxy. Similar to classical
filter list adblocking, lists of signatures are created by humans, who manually inspect
the website’s source code. The signature lists can consist of regular expressions
(e.g. function and variable names), structural JavaScript signatures or semantic
signatures using call graphs. The paper is accompanied by an implementation of a
signature based active adblocker with regular expression-based signatures effectively
circumventing AAB scripts on 49 websites.

• Differential active adblocking is a theoretical technique for detecting AAB
code. The website gets loaded twice - once without any manipulation and once with
an active adblocker. By "visual diffing" the impact of AAB scripts (e.g. popup) are
identified. By comparing the execution traces, it becomes possible to identify the
code paths responsible for the visual changes. Finally the responses of API calls
made from those code paths in the adblocking-enabled version of the website are
replaced by the responses from the unmodified version.

The presented techniques are very promising for visually blocking ads, however they
should not be seen as a panacea. With (partial) exception of signature-based active
adblocking, they only address the problem of annoying ads, but still leave users vulnerable
to malvertising and tracking, as untrusted JavaScript still is executed on the user’s client.
Furthermore they don’t reduce network traffic because all ads are downloaded before
detecting them. In some cases network traffic might even increase because a website gets
loaded twice. Furthermore there is a performance impact (+0.53 seconds of page loading

21

3. State of the Art

time for perceptional adblocking without OCR on an Intel i7 powered laptop). Therefor
it is questionable if it will also be usable on slower mobile devices with limited battery
power.

3.1.4 Attack and Defense Trees

For this thesis the following models were created with the modeling tool ADTool [36]
to visualize the ongoing struggle between adblockers and anti-adblockers. They each
represent the transitions between two stages from the state model by Storey et al. (see
Figure 3.1).

Figure 3.2: Attacks and Defenses between stage 1 and 2

Figure 3.2 shows the transition between state 1 and 2. Adblockers can detect ads
by three criteria. A domain or a pattern contained in the URL (e.g. /ads) can be
used block resources. Publishers can try to circumvent such static filter rules by using
random domains to deliver their ads. This can temporarily unblock ads, but in the past
filterlist providers have reacted to this tactic by simply blacklisting all requests to third
party domains and creating exception rules for resources that are required for the main
functionality of the website. If ads are delivered from the same origin as the content,
adblockers can still block the resources by their file name or patterns in the relative path
(e.g. ads.js). In this case the adblocker can block all resources and again only whitelist
desired resources - this time based on resource patterns instead of domains. The third
case requires that an ad has already been loaded and is injected into the DOM of a
website. Adblockers can detect ads based on their CSS selectors such as class, id, and
their parent and sibling nodes. By changing their CSS attributes they can make them
invisible to the user (see Listing 2.1). If the publisher randomizes CSS selectors, ads can
no longer be distinguished from real content. In this case perceptional adblocking can be
used to identify ads.

22

3.1. Attacks against and Defenses of Adblocking

Figure 3.3: Attacks and Defenses between stage 2 and 3

Figure 3.3 starts with the scenario that ads have been successfully blocked. Publishers
can now try to run AAB scripts in the user’s browser. AAB scripts loaded from third
party services can be blocked with URL filter rules the same way ads are blocked. To
prevent this, checks to verify that the AAB script was loaded can be placed in the
source code of the page. If an AAB check takes the form of inline-JavaScript, it can
still be blocked by intercepting API-calls. It is possible to block functions by their name
or search for patterns such as variable names or strings contained in them and block
execution or inject a replacement function if necessary. If the bait element has static
identifiers between page loads, it can be whitelisted with an exception rule. Publishers
can randomize identifiers of bait elements to prevent that.

Figure 3.4: Attacks and Defenses between stage 3 and 4

Lastly Figure 3.4 shows how adblockers can evade adblock detection without preventing
execution of AAB scripts. For details see Section 3.1.3.

23

3. State of the Art

3.2 AAB detection
Two papers use webcrawlers for detecting anti-adblocking scripts but they use different
approaches.

Mughees et al. use automated A/B testing in combination with machine learning to
detect whether a site uses anti-adblocking scripts [51]. They do so by first loading the
page multiple times without any active adblockers - this allows them to identify what the
content of the website should look like when it is fully accessible and noise created by
dynamic content can be filtered out. The crawler loads the same page with an adblocker
enabled and then compares the two pages for changes in the DOM nodes (added/removed
nodes, visibility property changes, etc.). In the test set (1200 websites) the approach
detects the existence of anti-adblockers with a precision of 94.8%. On the downside this
method does not automatically detect which anti-adblocker was used - information that
is of essence for countering the anti-adblocker.

Nithyanand et al. [53] go one step further by not only testing if an anti-adblocking
script is present, but also identifying the scripts. They first crawl a list of websites and
download each embedded or linked JavaScript in them. By comparing each JavaScript
to all other JavaScripts with vector multiplication (Term Frequency–Inverse Document
Frequency) they measure the similarity and can identify scripts which are basically the
same with some minor alterations (e.g. website-ID) and group them into cliques. One
downside of this approach is that the runtime O(n2) increases heavily with the number of
JavaScripts n, which imposes limitations for scaling to a large number of websites. The
second problem is that it is still necessary to manually investigate whether a clique is
actually a family of anti-adblocking scripts or is unrelated to adblocking. Furthermore it
is possible to obfuscate JavaScript, in such way that its true functionality only becomes
visible during execution.

3.3 Tracking
User tracking is the foundation of targeted advertising and therefor an integral component
of online advertising. Furthermore many tracking blockers are based on the same methods
as adblockers. Popular tools such as Ublock Origin and Adblock Plus even combine those
features and provide filter lists for both purposes.

Merzdovnik et al. performed a large scale study among the Alexa 200,000 top ranked
pages, where they analyzed the effectiveness of tracker-blocking tools for browsers and
mobile devices.
The paper differentiates between three types of rulesets. Community-driven rulesets
are blacklists maintained by a number of contributors in public repositories, whereas
centralized rulesets are maintained by companies. Opposed to them algorithmic rulesets
such as the one used by EFF’s Privacy Badger’s are generated on the client by a heuristic.
Ghostery, which uses a centralized ruleset, blocked the most third party requests compared
to other popular ad and tracker blockers.

24

3.4. Latest developments

Furthermore the study looked into performance impact of those blocking tools. The
researchers found that the tested browser extensions did not significantly increase CPU
load - in the cases of uBlock Origin and Disconnect it even got reduced. The initial
memory consumption was higher with than without an extension, but after crawling 30
webpages all extensions except ABP reached a similar or even lower level of memory
usage than the plain browser. [47]

A framework for categorizing and detecting 3rd party tracking already exists even though
due to the fast evolution of tracking, the information might not be up to date [72].

The effect of adblocker usage with regards to different industries has been investigated in
2006 [39] and is also reported annually by the company Pagefair [58, 59, 60] - a company
which offers sophisticated anti-adblocking software. They claim, that some websites such
as gaming- and technology-related ones suffer from significantly higher adblock-rates
than others, which underlines that there is no single best strategy for handling the threat
of decreasing revenues due to adblocking.

Goldstein et al. created an economic model for estimating the cost of annoying ads [26]
and the paper Follow the Money by Gill et al. quantifies the value of information about
users and comes to the conclusion that even small numbers of users blocking trackers
lead to large revenue drops for publishers [24].

Pujol et al. looked into a real data set of network traffic from the perspective of
an European ISP and found that 22% of the most active users were browsing with
Adblock Plus enabled. Furthermore they were also able to determine parts of the
client configurations, which indicate that most users were not as much concerned about
protecting their privacy as they were about annoying ads.[66]

3.4 Latest developments
The continuously increasing demand for adblocking did not go unnoticed. As stated in
the 2017 Pagefair report mentioned earlier, the user numbers of adblockers have increased
continuously through the last years (see Figure 1.1). According to it the combined number
of desktop a mobile adblocker users has increased from 326 million in January 2015 to
616 million in December 2016 (+ 89,0%). The increase of mobile AB user numbers is
amplified by the general trend towards using mobile devices for browsing, where absolute
growth numbers are much higher than on desktops.

The Coalition for Better Ads is a industry-driven project, which defined standards[21]
for less intrusive ads similar to Eyeo’s Acceptable Ads program. Major players of such
as Google, Facebook and the IAB joined the coalition. Google announced to include an
adblocker into Chrome [68], which blocks ads not complying with those standards and is
enabled by default. According to StatCounter, Chrome has a market share of more than
50% [76] on both desktop and mobile devices. Therefore this step will most likely impact
the ad industry heavily. Smaller ad networks and publishers will be forced to also join
the coalition and adhere to their standards in order to avoid significant losses.

25

3. State of the Art

Apple’s iOS 9 introduced a content blocking API for Safari on mobile devices. Third
party apps can use this to block ads, trackers and inappropriate contents. The company
also announced to include a tracker blocker in the desktop version of Safari to protect
their privacy [83]. It will use an algorithmic approach, where the ruleset is generated on
the client using machine learning for classifying, which domains have the ability to track
the user cross-site. Only cookies and website data from domains the user actively visits
(first-party context) are stored. For one day they can also be used in 3rd-party context
and after 30 days without revisiting a domain they are purged.

Facebook has engaged in a cat and mouse game against the adblocking community. It
removed CSS selectors, which were prior used by adblockers for ad detection and replaced
it with regularly changing CSS classes. As a result the ads became almost impossible
to distinguish from real content in Facebooks "timeline". This method is only possible
because Facebook acts as publisher and ad network at the same time, which means that
resource blocking is not effective due to the ads being served from the same domain.

Critics of AAB software argue that the advertising industry has not fixed the problem
of malvertising and thus disabling adblockers poses a security threat. Assuming that
malvertising campaigns aim at infecting as many machines as possible, publishers with
AAB scripts are better attack channels than those who tolerate adblockers. Incidents of
malvertising campaigns[12] on websites, which are using anti-adblocking software (e.g.
forbes.com [33] and pagefair [4]) imply that the topics malvertising and anti-adblocking
software are closely related and such attacks might become more common in the future.

26

forbes.com

CHAPTER 4
Methodology

This chapter describes the research methods chosen to answer the research questions.
The first part is aimed at understanding how AAB tools work and what the strengths
and weaknesses of different techniques for AB-detection are. The second part aims at
automatic detection of AAB scripts on websites.

4.1 Literature review
The first step was to search for existing literature and review it for relevance to the topic.
This includes scientific literature as well as online resources, software documentation and
source code of existing adblocking related tools. In this step a list of the most common
adblockers was created (see Section 2.1.2).

4.2 Case study
The case study takes a look at the AAB implementation of three representative websites
and their effects. The websites bild.de, wired.com and forbes.com were chosen
because they have large user bases and are pioneers in applying AAB software (in
comparison to websites with similarly high user numbers). We analyzed the websites’
implementations of anti-adblocking scripts and compared their adblocking detection
methods and their defenses against tempering with them. For experimenting with those
websites the latest available version of Mozilla Firefox [49] on Fedora [70] was used. In a
first step each website was visited with only Adblock Plus and default settings enabled to
learn how the website reacts. Next JavaScript was disabled completely with the extension
NoScript to determine if the page’s contents can be accessed. Furthermore the scripts
responsible for adblock detection were identified by blocking individual scripts with
NoScript and uMatrix. Then we looked into the source code of the identified scripts and
used developer tools provided by Firefox [50] together with JavaScript Deobfuscator [61]

27

bild.de
wired.com
forbes.com

4. Methodology

to monitor the DOM and understand obfuscated code. Furthermore existing methods for
countering the AAB scripts were analyzed and we tested which of the following adblock
and content filter solutions were able to bypass the anti-adblocking scripts:

• NoScript was chosen because it disables JavaScript and other scripts completely.
It also offers an option to ignore <noscript> elements, which can be used to detect
the presence of the extension, as is the case on bild.de.

• Ghostery is an anti-tracking tool with a large number of users. It was configured
to only block all trackers from the Advertising and Adult Advertising category.

• Adblock Plus (ABP) represents the de facto standard for adblocking as it is
the most widely used adblocking extension. It provides an option for allowing
unintrusive ads (see Section 2.1.2) and for subscribing to the Adblock Warning
Removal List (AWRL) by Easylist.

• uBlock Origin is a popular alternative to ABP, which consumes less system
resources and does not compromise on unintrusive ads. It can use filter lists with
the same syntax as ABP and by default besides its own filter list has Easylist and
other third party lists enabled.

• Anti Adblock Killer (AAK) was the most comprehensive solution for countering
AAB software at the time of writing, to the knowledge of the author. In table 5.1
Reeks AAK means that both the filter list and the userscript provided on the AAK
website were enabled.

The effectiveness of those pioneer AAB solutions is important because other content
providers, who are considering to use anti-adblockers themselves, will base their revenue
expectations on the success or failure of them. Therefor we also researched user statistics
and how they developed after the introduction of AAB. Because real user numbers are
hard to obtain, the Alexa rank was used as an indicator. It should be noted, that Alexa
ranks are not evenly distributed and therefor the numbers can not be compared directly.

4.3 Webcrawler
This section aims at generating a model for automatically detecting the presence of
AAB scripts on websites. For this purpose a webcrawler was implemented to collect
data from a list of websites. By loading a website multiple times with different browser
profiles, it is possible to detect differences in its representation. Mughees et al. published
a methodology for detecting AAB scripts based on monitoring of DOM changes such
as nodes added/removed, text changes and style changes [51]. They performed A/B
testing and used those features to train machine learning algorithms and build a model.
A random forest classifier was most successful and reached a precision of 94.8%. My
implementation follows a similar approach but focuses on optical changes visible to
humans, when they see a website on a screen.

28

bild.de

4.3. Webcrawler

4.3.1 Candidate Generation

Candidates are tuples consisting of a URL and a crawlMode. A crawlMode is a browser
profile which contains a configuration for using a specific browser extension. For each URL

multiple of those tuples are generated, each representing a crawlTask. For training the
machine learning algorithm a list of 50 domains was retrieved from the Adblock Warning
Removal List [17] and Anti-Adblock Killer [71] filterlists. Additionally 50 domains were
randomly selected from the Alexa top 1 million sites. For all of them candidates were
generated once with a plain browser profile and once with ABP configured to block
Acceptable Ads as this is one of the most common scenarios for triggering an AAB script.
The crawler then took screenshots of all those pages once per profile, which were manually
evaluated. This way they were categorized as positive (AAB detected) and negative

(no AAB detected).

crawlMode Extension

van
Vanilla:
No browser extensions enabled

abp
Adblock Plus:
Acceptable Ads disabled

ubo
uBlock Origin:
Default settings

gho
Ghostery:
Advertising and Adult Advertising lists blocked

Table 4.1: Descriptions of crawlModes

To avoid interference between websites (e.g. cookies) for each page visit a new browser
instance with a fresh profile is created. This also helps achieving higher stability and
keeps the memory footprint of the crawler small. To make sure that an AAB is actually
triggered, the crawler simulates user interaction by scrolling up and down randomly for
20 seconds after loading the page. It then returns to the top of the page and takes a
screenshot. During this time it monitors the current browser URL and logs redirects if
they occur. This is necessary because some AAB scripts react delayed and would not be
visually recognizable without this waiting time. Also pop-ups and browser notifications
can unpredictably disturb the screenshots. Therefor browser notification dialogues were
disabled with the following setting:

1 # disable notification dialogues
2 self.profile.set_preference(’dom.webnotifications.enabled’, False)

Even though there also are cases where only on subpages of a website AAB scripts are
used, we limited the candidate URLs to the landing pages of websites1. Including subpages
is out of scope for this thesis, as it would drastically increase runtime. Instead of intrusive

1with the exception of the AAB demo pages

29

4. Methodology

AAB warnings, some publishers only make subtle changes to their pages, which are not
visible without further interaction with the website. For example a publisher can block
parts of the website’s functionality such as video playback or a comment section when no
AB was detected. Furthermore AAB scripts can also silently set cookies or only report
the AB detection to a tracking server. Detecting those subtle changes is also out of scope
for this thesis.

Figure 4.1: Loading wallmart.com twice yields different screenshots due to dynamic
content

Many websites have dynamic contents (e.g. ads, videos, newsfeeds), which create visual
differences between visits. Since only the differences between candidates with different
browser profiles are of interest, dynamic contents can be considered as noise. To be more
robust against that, the crawler visited each candidate URL multiple times with each
browser profile.

30

wallmart.com

4.3. Webcrawler

4.3.2 Anti-Adblock Detection

AAB scripts can be detected on multiple levels. Firstly they must either be present
in the source code of a website or loaded by another script during runtime. Secondly
AAB scripts apply changes to the DOM when they inject bait elements and perform
counteractions such as changing content visibility or adding a pop-up container. Some
AAB solutions use redirects, which only occur when an adblocker is detected.

Mughees et al. [51] already showed, that AAB detection based on the observation of
changes to the DOM is possible and can yield good prediction results. Unfortunately they
did not release their crawler implementation. Recreating their experiments for improving
them further would have been too much effort for the scope of this thesis.

The approach chosen for this thesis therefor relies on a completely different set of features.
It is based on the assumption that AAB scripts create visual changes to a website, when
they detect an AB.

Feature extraction

For each crawlTask a screenshot is taken and redirects are logged. Screenshots of the
same website can be compared against each other by measuring visual differences. Besides
the logging of redirects, all features are extracted from screenshots taken by the crawler.

Visual similarity matching

For measuring visual similarity, the python library imagehash [9] is used. It calculates
hashes, which can be seen as fingerprints of images. The Hamming distance [31] between
two hashes is a measure for visual differences between the images. A Hamming distance of
0 means that the images are identical, greater values mean greater differences. The library
offers multiple perceptional hashing algorithms, of which pHash [38] and dHash [37] are
used in this thesis. The library was chosen because its algorithms are designed to perform
well on large datasets as its original purpose is to detect duplicates of pornographic
images and prevent them from being accepted when uploading to a platform. The two
hashing algorithms work as follows:

Masking

To anticipate the noise produced by dynamic content, we introduce the concept of
masking. The idea is to identify the parts of hashes, which vary even between screenshots
produced with the same browser profile. A mask has the same number of fields as a hash
(64) with values between 0 and 1 in them. This number is the average of the bit values,
considering them as 0 or 1. A value close to 0.5 means that the bit values at the same
position of the hashes have high variance. The idea is that mask values can indicate noise,
that should be ignored. To generate a mask at least three image hashes are necessary.
Table 4.3 exemplifies the generation of a mask from three hashes of images taken with
crawlMode van. Masking is an enhancement on top of pHash and dHash as the hashes
don’t need any modification to be compared with masking. For comparison a threshold

31

4. Methodology

pHash dHash

1. Reduce resolution to 32x32 pixels

2. Reduce to greyscale

3. Compute discrete cosine trans-
formation (DCT) - 32x32 values

4. Reduce DCT to top left 8x8 values
(low-frequency values)

5. Compute average DCT value of
all DCT values except first term

6. Reduce DCT values to 64 bit: If
the DCT value is above average set
bit to 1, else to 0

7. Construct hash: Generate 64 bit
integer number from the reduced
DCT values as hash

1. Reduce resolution to 9x8 pixels

2. Reduce to greyscale

3. Calculate differences between ad-
jacent pixels

4. Reduce to bits: if the left pixel
is brighter than the right adjacent
pixel, set to 1 else to 0

5. Construct hash: Generate 64 bit
integer number from bit values

Table 4.2: Sequence of steps performed by pHash and dHash algorithms

is required, which defines how close to 0.5 values can be before they are regarded as noise.
When comparing two hashes with masking, the following check is performed for each
position of the hash:

1 if abs(val - 0.5) < self.maskTolerance:
2 #set both bits at position n to 0
3 imgHash1.hash[x][y] = 0
4 imgHash2.hash[x][y] = 0

This code replaces the bits at position n of local copies of both compared hashes with 0
when the value of position n in the mask is within 0.5± threshold. This way, when the
Hamming distance is calculated the bits at position n are ignored.

Figure 4.2 shows how groups of screenshots are compared to each other. The following
steps are taken to calculate similarity per website:

1. Generate similarity values of vanilla candidates.
Similarity values for all screenshots taken with crawlMode van are calculated. In
Figure 4.2 they are the represented by the blue edges {sA1, sA2, sA3}. For later
comparison both pHash and dHash are used with and without masking.

32

4.3. Webcrawler

vanHash1
1 1 1 1 1 1 1 1
1 1 1 1 0 0 0 0
0 0 0 0 0 0 0 0
1 0 1 0 1 0 1 0
0 1 0 1 0 1 0 1
0 0 0 0 1 1 1 1
1 1 0 0 1 1 0 0
0 0 0 1 1 0 0 0

vanHash2
1 1 1 1 1 1 1 1
1 1 1 1 0 0 0 0
0 1 0 0 0 0 0 0
1 0 1 0 1 0 1 0
0 1 0 1 1 1 0 1
0 0 0 0 1 1 1 1
1 0 0 0 1 1 0 0
0 0 0 1 1 1 0 1

vanHash3
1 1 1 1 1 0 1 1
1 1 1 1 0 0 0 0
0 1 0 0 0 0 0 0
1 0 1 0 1 0 1 0
0 1 0 1 0 1 0 1
0 0 0 0 0 0 1 1
1 0 0 0 1 1 0 0
0 0 0 1 1 1 0 1

Mask
1 1 1 1 1 0.67 1 1
1 1 1 1 0 0 0 0
0 0.67 0 0 0 0 0 0
1 0 1 0 1 0 1 0
0 1 0 1 0.33 1 0 1
0 0 0 0 0.67 0.67 1 1
1 0.33 0 0 1 1 0 0
0 0 0 1 1 0.67 0 0.67

Table 4.3: Example mask generation from three hashes. Red cells are ignored for a
threshold > 0.16

2. Calculate mean of van similarity values.
The mean of all values (per hashing algorithm) generated in Step 1 is calculated as
an indicator of normal noise on the page.

3. Generate similarity values between vanilla and adblock candidates.
For each screenshot with crawlMode van is compared against each screenshot with
crawlMode abp. In Figure 4.2 the red edges {sB1, sB2, sB3, sB4, sB5, sB6, sB7, sB8, sB9}
represent the similarity calculations between the two candidate sets.

4. Calculate mean of abp similarity values.
The mean of all values (per hashing algorithm) generated in Step 3 is calculated
and denotes the average difference between an van screenshot and a abp screenshot.

Optical Character Recognition (OCR)

A second visual feature, which differs between visiting a website with crawlMode van and
abp is the visible text. Mughees et al. found that the DOM features, which contributed
the most information gain to their AAB classifier were change in number of words
(35.44%), change in number of text nodes (27.89%), change in number of lines (18.17%),
numbers of changes in nodes (17.37%) and change in numbers of characters (17.19%)
[51]. Text-related features appear to have significant impact on AAB detection. Since
most this information is not only contained in the DOM but also in website screenshots,
we decided to try extracting it. The python library pytesseract [32], which is based
on the Tesseract OCR engine [75], was used. To obtain better results, the images were
preprocessed to greyscale and thresholding was applied. However OCR is not originally
designed to operate on images with noisy, colorful backgrounds and varying font sizes.
Even though overall text is not very well recognized, metrics such as the number of
characters can still be valid indicators for similarity. Furthermore adblock warnings are
typically placed at well readable positions of the website and often contain similar text.
Therefor pattern matching was also used to count the occurrences of patterns such as the
word "adblock". OCR offers the advantages that adblock warnings can also be detected if
they are displayed as an image file and is furthermore resistant against obfucation of the
text in the website’s source code. For each website the mean values of character count
and pattern occurences count are calculated for each browser profile.

33

4. Methodology

Figure 4.2: Calculation of visual similarity values for screenshots of watson.ch. All van
screenshots are compared to each other (blue edges) and each abp screenshot is compared
to each van screenshot (red edges).

Feature Aggregation

In a post-processing step the features are combined to express the differences between
two browser profiles. All PercentageDiff values were calculated with an offset of 1 to
avoid empty values due to division by 0. Table 4.4 explains how they are calculated.

34

watson.ch

4.3. Webcrawler

Features
redirectDiffVan Average number of redirects which

are different between page visits with
crawlMode van

redirectDiffVanAbp Average number of redirects which
are different between page visits with
crawlMode van and abp

redirectDiffOfDiffVanAbp Absolute difference between
redirectDiffVanAbp and
redirectDiffVan

similarityMeanVan Average visual similarity value between
page visits with crawlMode van

similarityMeanVanAbp Average visual similarity value between
page visits with crawlMode van and abp

similarityDiffVanAbp Absolute difference between
similarityMeanVanAbp and
similarityMeanVan

similarityPercentageDiffVanAbp Percentual increase or decrease be-
tween similarityMeanVanAbp and
similarityMeanVan

ocrCharCountVan Average number of characters with
crawlMode van

ocrCharCountAbp Average number of characters with
crawlMode abp

ocrCharCountDiffVanAbp Absolute difference between
ocrCharCountAbp and ocrCharCountVan

ocrCharCountPercentDiffVanAbp Percentual increase or decrease between
ocrCharCountAbp and ocrCharCountVan

ocrPatternMatchesVan Average number of pattern occurrences
with crawlMode van

ocrPatternMatchesAbp Average number of pattern occurrences
with crawlMode abp

ocrPatternMatchesDiff Absolute difference between
ocrPatternMatchesAbp and
ocrPatternMatchesVan

ocrPatternMatchesPercentageDiff Percentual increase or decrease be-
tween ocrPatternMatchesAbp and
ocrPatternMatchesVan

Table 4.4: Feature descriptions

35

4. Methodology

AAB Classification

For generating predictive models about AAB presence on a website,the H2O machine
learning tool suite [30] was used. Experiments were conducted with various combinations
of features (see Table 4.4) and the following classification algorithms were applied:

• Naive Bayes

• Distributed Random Forest (DRF)

• Deep Learning

Evaluation

All models were evaluated with k-fold cross-validation, where k = 10. To examine the
effectiveness of the different visual similarity algorithms, the original dataset was split
into the following 5 datasets.

Datasets
dHash All redirect- and OCR-related features, dHash similarity values
pHash All redirect- and OCR-related features, pHash similarity values
dHashMask All redirect- and OCR-related features, dHash similarity values with

masking
pHashMask All redirect- and OCR-related features, pHash similarity values with

masking
combined All redirect- and OCR-related features, dHash and pHash similarity

values with and without masking

Table 4.5: Features contained in datasets

36

CHAPTER 5
Case Study

In this chapter the websites bild.de, forbes.com and wired.com are analyzed. All
three of them are news platforms with large user bases and pioneers of anti-adblocking.
The case study looks into how their anti-adblocking scripts work, how effective they
are for actually locking out adblock users and how their introduction impacted their
businesses.

5.1 Bild.de
Bild.de is an online news and entertainment platform belonging to the publisher Axel
Springer SE. As one of the first of the major German websites, it has been running
an anti-adblocking script to enforce that their ads are displayed. The anti-adblocking
software manifests itself by redirecting to the URL
http://www.bild.de/wa/ll/bild-de/unangemeldet-42925516.bild.html
when an active adblocker is detected.

Figure 5.1: Bild.de detected an Ad-
blocker

This URL is hard-coded into the main HTML-file as
embedded JavaScript (see Listing 5.1). Apparently
the 8 digit numbers are codes for differentiating be-
tween subscribers, adblocker users and regular users.
They are not randomized and the URL strings are
not obfuscated or encrypted. This makes it easy to
detect the script and prevent its execution for ad-
blockers capable of interfering with inline JavaScript
- All they have to do is search for the referrer URL
string in all external JavaScript files and inline
JavaScript and stop them from running. However,
all blockers working only with per-file or per-host
granularity have difficulties because the relevant

37

bild.de
forbes.com
wired.com
http://www.bild.de/wa/ll/bild-de/unangemeldet-42925516.bild.html

5. Case Study

JavaScript is included in the main HTML file of
each page, which is necessary to load. Host-based
adblockers also can be defeated with the adblock
detection script for the same reason. Even though
strings are not obfuscated, the program logic is.

The first hurdle to overcome is a job offer, which is displayed in the JavaScript console
(see Figure 5.2).

Figure 5.2: Job offers in JavaScript console on bild.de

1 a : {
2 a : 1,
3 b : {
4 a : ’42925672’,
5 b : ’http://www.bild.de/wa/ll/bild-de/bildplus-42925672.bild.html’,
6 c : ’42925678’,
7 d : ’http://www.bild.de/wa/ll/bild-de/angemeldet-42925678.bild.html’,
8 e : ’42925516’,
9 f : ’http://www.bild.de/wa/ll/bild-de/unangemeldet-42925516.bild.html’

10 },
11 c : ’43645300;43645254;42925650;42925604;42925636;42925628;42925622;

42925602;42925618;42925614;42925608’,
12 d : 2
13 },

Listing 5.1: Hard-coded referrer URL in embedded JavaScript.
Source: www.bild.de

A bait element is loaded from cdn1.smartadserver.com - a domain, which is present
on all major adblocking blacklists (see Listing 5.2). It introduces a boolean variable with
the value true.

1 var sasverify=true;

Listing 5.2: Bait element verify.js

The inline script in Listing 5.3 loads an image file from http://atsfi.de and appends
a parameter to the GET request. If the bait script has been executed the parameter
takes the value 0 and if sasverify is undefined and the value is 1.

1 <script type="text/JavaScript">
2 (function(){
3 document.createElement("img").src="http://atsfi.de/s.png?b="+

38

bild.de
www.bild.de
cdn1.smartadserver.com
http://atsfi.de

5.1. Bild.de

4 ((typeof(sasverify) == "undefined")?1:0);
5 })();
6 </script>

Listing 5.3: Inline JavaScript on bild.de sends tracking status disguised as image

An obfuscated jQuery script from code.bildstatic.de verifies the integrity of the
anti-adblocking scripts. The function getAbData() calls g(), which in turn calls f()

to verify that SmartAdServer has been loaded correctly. Because the file has a size of
331 KB and consists of mostly unreadable code, it was necessary to use the Firefox
extension Javascript Deobfuscator, which allows to inspect code generated on the fly as
it is compiled and executed by the JavaScript engine [61].

1 getAbData: function() {
2 return g()
3 }
4
5 ...
6
7 function g() {
8 return n === !1 && (n = {
9 elemHidden: !1,

10 saDisabled: f()
11 }, n.ba = n.elemHidden || n.saDisabled), n
12 }
13
14 ...
15
16 function f() {
17 return (void 0 === window.SmartAdServerAjax ||

window.SmartAdServerAjax.toString().length < 50) && void 0 ===
window.sasmobile

18 }

Listing 5.4: Deobfuscated jQuery verification script from code.bildstatic.de

Listing 5.5 and Listing 5.6 are the filter rules and userscript from AAK[71]. The filter
rules are written in the syntax of ABP. They define that no cosmetic filtering is performed
on bild.de and scripts from the domains sascdn.com and smartadserver.com
are whitelisted.

1 ! bild.de
2 ! https://github.com/reek/anti-adblock-killer/pull/687
3 @@||bild.de^$elemhide
4 @@||sascdn.com^$script,domain=bild.de
5 @@||smartadserver.com^$script,domain=bild.de

Listing 5.5: Filter rules from Reek’s Anti-Adblock Killer filter list

The userscript searches every function on bild.de for the redirect URL string and
replaces it with JavaScript:undefined.

39

bild.de
code.bildstatic.de
code.bildstatic.de
bild.de
sascdn.com
smartadserver.com
bild.de

5. Case Study

1 bild_de : {
2 // issue: https://github.com/reek/anti-adblock-killer/issues?q=bild
3 host : [’bild.de’],
4 onBeforeScript : function () {
5 return [{
6 contains :

’http://www.bild.de/wa/ll/bild-de/unangemeldet-42925516.bild.html’,
7 external : false,
8 replace : [’JavaScript’, ’void(0);’].join(’:’)
9 }];

10 }
11 }

Listing 5.6: UserScript script from Reek’s Anti-Adblock Killer

Axel Springer SE engaged in an court battle with Eyeo, claiming that the Acceptable Ads
initiative was illegal. They also threatened to sue video blogger Tobias Richter[23] under
the claim that his video tutorial about circumventing the anti-adblocker was infringing
a German national law, which prohibits circumvention of copyright protections (1)[15].
This argumentation lacks accuracy because neither the website’s contents are encrypted
nor does the anti-adblocking script serve the purpose of protecting them from being
copied - it serves the purpose of protecting ad impressions.

5.2 Forbes.com

Figure 5.3: Forbes.com gateway
page

The business magazine Forbes introduced an AAB
script around December 2015. Similar to bild.
de, the user is redirected to a page to notify
him/her to turn off adblocking. When no ad-
block is detected, the cookies dailyWelcomeCookie
and welcomeAd are set to true. Appearently
the check is only performed, when requesting
the index page or when the two cookies are
not set. The script 1714dc93.main.js from
i.forbesimg.com/welcomead/scripts/ (see Listing
5.7) seems to be responsible for detecting ad-
blockers. Particularly interesting is the function
setBypassCookie() because - as the name suggests
- it sets the cookies for bypassing the adblock detec-
tion. Since those cookies are all that is required to

bypass the detection script it is possible to set them manually. The only caveat is that
they have an expiration date (12:00 AM next day), which means they have to be set
again after a few hours.

1 function() {

1German translation: "technische Schutzmaßnahme für urheberrechtlich geschützte Inhalte"

40

Forbes.com
bild.de
bild.de

5.2. Forbes.com

2 "use strict";
3 WelcomeAd.Modules.AdBlockChecker = Backbone.View.extend({
4 checks: [],
5 first: !Cookies.get("forbes_ab"),
6 checking: !1,
7 adblock: !1,
8 initialize: function(a) {
9 _.assign(this, a)

10 },
11
12 addCheck: function(a, b, c) {
13 var d = this;
14 this.checks.indexOf(a) > -1 || (this.checks.push(a), b && "number" ==

typeof b && setTimeout(function() {
15 d.checks.indexOf(a) < 0 || (d.triggerAdBlockState(!(c === !1)),

d.removeCheck(a))
16 }, b), 1 === this.checks.length && this.check())
17 },
18
19 removeCheck: function(a) {
20 this.checks.indexOf(a) > -1 &&

this.checks.splice(this.checks.indexOf(a), 1)
21 },
22
23 check: function() {
24 this.checking = !0;
25 var a = this,
26 b = setInterval(function() {
27 if (a.adblock || 0 === a.checks.length) return a.checking = !1, void

clearInterval(b);
28 for (var c = 0; c < a.checks.length; c++) a.checks[c] &&

a.checks[c]() && a.removeCheck(a.checks[c])
29 }, 10)
30 },
31
32 triggerAdBlockState: function(a) {
33 this.adblock || (this.adblock = a, a &&

this.trigger("AdManager:AdBlockDetected"))
34 },
35
36 getAdBlockState: function() {
37 return this.adblock
38 },
39 ...
40
41 setBypassCookie: function(a) {
42 var b, c, d = new Date(+new Date + 2592e6),
43 e = Cookies.getJSON("global_ad_params") || {};
44 e.ab = {
45 value: "off",
46 expiration: d.getTime()
47 }, b = _.isUndefined(urlParams.force_ab) ? Cookies.get("forbes_ab") :

urlParams.force_ab.toUpperCase(), c = b && b[0].match("A") ? b[0] :

41

5. Case Study

"A", Cookies.set("forbes_ab", c, _.merge({
48 expires: d
49 }, this.cookie.settings)), Cookies.set("global_ad_params", e, _.merge({
50 expires: d
51 }, this.cookie.settings)), a ? (Cookies.set("welcomeAd", !0, _.merge({
52 expires: d
53 }, this.cookie.settings)), Cookies.set("dailyWelcomeCookie", !0,

_.merge({
54 expires: d
55 }, this.cookie.settings))) : (Cookies.remove("welcomeAd",

this.cookie.settings), Cookies.remove("dailyWelcomeCookie",
this.cookie.settings))

56 },

Listing 5.7: js_options.js loaded from http://i.forbesimg.com/welcomead/
scripts/1714dc93.main.js

Alternatively to setting the cookies, it was also possible to deactivate the Adblocker only
for the URL http://www.forbes.com/forbes/welcome/, because only here the
checks are performed. This implies that it was possible to browse the website without
being exposed to ads.

AAK adapted a userscript rule just a few days after forbes had introduced the anti-
adblocking feature (see Figure 5.8). It sets the two cookies mentioned before to true,
updates their expiration dates and navigates the browser to an actual destination URL
stored as the cookie toUrl. This ensures that the user gets redirected away from the
detection page.

1 forbes_com : {
2 // by: Giwayume
3 // issue: https://github.com/reek/anti-adblock-killer/issues/865
4 host : [’forbes.com’],
5 onStart : function () {
6 if (window.location.pathname.indexOf(’/welcome’) > -1) {
7 Aak.setCookie(’welcomeAd’, ’true’, 86400000, ’/’);
8 Aak.setCookie(’dailyWelcomeCookie’, ’true’, 86400000, ’/’);
9 window.location = Aak.getCookie(’toUrl’) || ’http://www.forbes.com/’;

10 }
11 }
12 },

Listing 5.8: forbes.com rule from AAK list [71]

42

http://i.forbesimg.com/welcomead/scripts/1714dc93.main.js
http://i.forbesimg.com/welcomead/scripts/1714dc93.main.js
http://www.forbes.com/forbes/welcome/
forbes.com

5.3. Wired.com

5.3 Wired.com

Figure 5.4: Bild.de detected an Ad-
blocker

The technology news website wired.com uses the
open-source script blockadblock [74]. Compared to
the other two websites it is less intrusive because
it does not display its message for disabling ad-
blockers immediately. Instead the detection script
gets triggered after about 1 minute and only when
page scrolling is detected, which at least gives the
reader enough time to decide if the content is worth
whitelisting wired.com. Since BlockAdBlock is a
generic script also used by other websites, there are
already filter rules for circumventing it available.

Listing 5.9 shows that first a boolean variable
blockadblock is set to false and then a script load

containing blockadblock is loaded.
1 <script > var blockAdBlock = false; < /script>
2 ...
3 <script src="http://www.wired.com/assets/load?scripts=true&c=1&load%5B%5D=
4 outbrain,blockadblock,tracking,wired,ads,wp-embed&ver=1470953511"

type="text/JavaScript"> < /script>

Listing 5.9: Script tag for loading blockadblock on wired.com

Listing 5.10 shows the most relevant functions from the BlockAdBlock script. First
class names for creating bait elements and their CSS attributes are defined. The class
names are the same as in the example configuration on the BlockAdBlock website.
The bait elements are injected as div tags by the b.prototype.createBait function.
b.prototype.checkBait then verifies that they are still present and their CSS attributes
have not changed. The check is performed in a loop and bait elements are removed after
each iteration.

1 ! function(a) {
2 var b = function(b) {
3 this._options = {
4 checkOnLoad: !0,
5 resetOnEnd: !1,
6 loopCheckTime: 50,
7 loopMaxNumber: 5,
8 baitClass: "pub_300x250 pub_300x250m pub_728x90 text-ad textAd text_ad

text_ads text-ads text-ad-links",
9 baitStyle: "width: 1px !important; height: 1px !important; position:

absolute !important; left: -10000px !important; top: -1000px
!important;",

10 debug: !1
11 },
12 ...

43

wired.com
wired.com
wired.com

5. Case Study

13 b.prototype._creatBait = function () {
14 var b = document.createElement(’div’);
15 b.setAttribute(’class’, this._options.baitClass),
16 b.setAttribute(’style’, this._options.baitStyle),
17 this._var.bait = a.document.body.appendChild(b),
18 this._var.bait.offsetParent,
19 this._var.bait.offsetHeight,
20 this._var.bait.offsetLeft,
21 this._var.bait.offsetTop,
22 this._var.bait.offsetWidth,
23 this._var.bait.clientHeight,
24 this._var.bait.clientWidth,
25 this._options.debug === !0 && this._log(’_creatBait’, ’Bait has been

created’)
26 },
27 ...
28 b.prototype.check = function (a) {
29 if (void 0 === a && (a = !0), this._options.debug === !0 &&

this._log(’check’, ’An audit was requested ’ + (a === !0 ? ’with
a’ : ’without’) + ’ loop’), this._var.checking === !0) return
this._options.debug === !0 && this._log(’check’, ’A check was
canceled because there is already an ongoing’),

30 !1;
31 this._var.checking = !0,
32 null === this._var.bait && this._creatBait();
33 var b = this;
34 return this._var.loopNumber = 0,
35 a === !0 && (this._var.loop = setInterval(function () {
36 b._checkBait(a)
37 }, this._options.loopCheckTime)),
38 setTimeout(function () {
39 b._checkBait(a)
40 }, 1),
41 this._options.debug === !0 && this._log(’check’, ’A check is in

progress ...’),
42 !0
43 },
44 b.prototype._checkBait = function (b) {
45 var c = !1;
46 if (null === this._var.bait && this._creatBait(), (null !==

a.document.body.getAttribute(’abp’) || null ===
this._var.bait.offsetParent || 0 == this._var.bait.offsetHeight ||
0 == this._var.bait.offsetLeft || 0 == this._var.bait.offsetTop ||
0 == this._var.bait.offsetWidth || 0 ==
this._var.bait.clientHeight || 0 == this._var.bait.clientWidth) &&
(c = !0), void 0 !== a.getComputedStyle) {

47 var d = a.getComputedStyle(this._var.bait, null);
48 (’none’ == d.getPropertyValue(’display’) || ’hidden’ ==

d.getPropertyValue(’visibility’)) && (c = !0)
49 }
50 this._options.debug === !0 && this._log(’_checkBait’, ’A check (’ +

(this._var.loopNumber + 1) + ’/’ + this._options.loopMaxNumber + ’
~’ + (1 + this._var.loopNumber * this._options.loopCheckTime) +

44

5.3. Wired.com

’ms) was conducted and detection is ’ + (c === !0 ? ’positive’ :
’negative’)),

51 b === !0 && (this._var.loopNumber++, this._var.loopNumber >=
this._options.loopMaxNumber && this._stopLoop()),

52 c === !0 ? (this._stopLoop(), this._destroyBait(), this.emitEvent(!0),
b === !0 && (this._var.checking = !1)) : (null === this._var.loop
|| b === !1) && (this._destroyBait(), this.emitEvent(!1), b === !0
&& (this._var.checking = !1))

53 },

Listing 5.10: blockadblock script on wired.com

The rule for countering from AAK is also a generic solution which is designed to work
for all websites using BlockAdBlock. It injects multiple JavaScript functions to replace
the original AAB script.

1 fakeFuckAdBlock : function (instanceName, className) {
2
3 // inject fake fuckadbluck
4 Aak.addScript(Aak.intoString(function () {
5
6 var CLASSNAME = function () {
7 var self = this;
8 var callNotDetected = false;
9 this.debug = {

10 set : function () {
11 return self;
12 },
13 get : function () {
14 return false;
15 }
16 };
17 this.onDetected = function (callback) {
18 this.on(true, callback);
19 return this;
20 };
21 this.onNotDetected = function (callback) {
22 this.on(false, callback);
23 return this;
24 };
25 this.on = function (detected, callback) {
26 if (!detected) {
27 callNotDetected = callback;
28 setTimeout(callback, 1);
29 }
30 console.info([’AntiAdbKiller’, location.host, ’FuckAdBlock’]);
31 return this;
32 };
33 this.setOption = function () {
34 return this;
35 };
36 this.options = {
37 set : function () {
38 return this;

45

wired.com

5. Case Study

39 },
40 get : function () {
41 return this;
42 }
43 };
44 this.check = function () {
45 if (callNotDetected)
46 callNotDetected();
47 };
48 this.emitEvent = function () {
49 return this;
50 };
51 this.clearEvent = function () {};
52 };
53
54 Object.defineProperties(window, {
55 CLASSNAME : {
56 value : CLASSNAME,
57 writable : false
58 }
59 });
60
61 Object.defineProperties(window, {
62 INSTANCENAME : {
63 value : new CLASSNAME(),
64 writable : false
65 }
66 });
67
68 }).replace(/INSTANCENAME/g, instanceName || ’fuckAdBlock’)
69 .replace(/CLASSNAME/g, className || ’FuckAdBlock’));
70
71 },

Listing 5.11: Userscript for replacing BlockAdBlock on wired.com from AAK list [71]

5.4 Comparison
Effectiveness of AAB solutions
For evaluating the effectiveness of the three AAB solutions, different browser configura-
tions were used (see Section 4.2) to browse the pages and determine if they would be
detected as adblock users (see Table 5.1).

NoScript, as the most primitive method, was only able to bypass wired.com with default
settings. With the hide <noscript> elements option enabled, it also made content on
bild.de available without showing ads. However blocking all scripts also means that
dynamic content such as image galleries, videos or third-party feeds are not displayed
correctly. Even though JavaScript is a de facto standard of web development, publishers
should keep in mind that completely locking out NoScript users can negatively impact
their ranking in search engines[7].

46

wired.com
wired.com
bild.de

5.4. Comparison

bild.de wired.com forbes.com
NoScript@default* blocked OK blocked
NoScript + hide <noscript>* OK OK blocked
Ghostery@Advertising** blocked blocked OK
ABP@default* blocked blocked blocked
ABP + acceptable ads* blocked blocked blocked
ABP + AWRL* blocked blocked blocked
uBlock Origin@default* OK blocked OK
ABP + Reek’s AAK* OK OK OK
uBlock O. + Reeks AAK* OK OK OK

** tested on November 16, 2016
* tested on February 20, 2017

Table 5.1: Adblock detection matrix

Adblock Plus was detected by all three websites with default configuration as well as with
AWRL and acceptable ads enabled. AWRL only contains cosmetic filters for removing
HTML elements such as div tags. A possible explanation is that ABP, due to its large
user base, is a main target of AAB software.

With default configuration uBlock Origin was only detected and blocked by wired.com,
which makes it the most effective out-of-the-box adblocking solution without noteworthy
caveats.

Anti-Adblock Killer successfully unblocked all three websites with both ABP and uBlock
Origin.

Impact on user base
Publishers turn to AAB solutions for increasing their revenue. Whether or not this
expectation is realistic depends on many factors such as the adblock rate (% of users
with active adblockers), target audience and uniqueness of the contents. Measuring the
adblock rate not trivial due to the many different methods for adblocking and the ongoing
efforts to evade adblock detection. Furthermore this information is rarely published and
can only be speculated on. However Alexa provides website statistics including a global
traffic ranking, which can be seen as an indicator for user numbers. Figure 5.5 shows
how the user numbers reacted when the AAB solutions were introduced to the three
websites. The 2017 Pagefair report[60] found in a survey that 74% of users confronted
with an adblock wall would rather leave the website than disable their adblockers. All
three case study websites confirm this tendency as all of them have increased their Alexa
ranking, which reflects a decrease in the number of visitors.

bild.de introduced its AAB solution after an upwards trend in user numbers which
for the next 4 months fell significantly. The Alexa rank had its peak in September 2015
(257.5) but then fell drastically until it stabilized in March 2016 (414.61). After August
2016 a second downwards trend in user numbers followed which lead to a low point in

47

wired.com
bild.de

5. Case Study

Figure 5.5: Alexa rankings over time (monthly averages)

Website AAB introduction
bild.de 10/2015
forbes.com 12/2015
wired.com 02/2016

Table 5.2: AAB introduction dates

December 2016 (568.52).

forbes.com had a ranking of 155.23 in September 2015. After the AAB introduction
in December 2015 (166.58) the website lost visitors until July 2016 (237.0). The ranking
then stopped falling and improved slightly and remained at 214.94 in December 2016.

wired.com started losing visitors in October 2015 (563.0) and introduced its AAB
solution in February 2016 (739.86). The user numbers kept decreasing until July 2016
(1008.87), where they stagnated shortly and even increased in October 2016 (947.45).

Overall the websites share a clear trend of declining user numbers immediately after AAB
introduction. According to their own statements[16][28], forbes.com and bild.de
have 42 respectively 67 percent success rates in making their users turn off their adblocker.
However even though adblock users do not directly contribute to the publishers revenue
streams, they still can benefit them in many ways such as sharing articles with other users
(some them will visit the page without adblocker) or creating user content. Furthermore as

48

bild.de
forbes.com
wired.com
forbes.com
wired.com
forbes.com
bild.de

5.4. Comparison

a result of outrage in the adblocking community, efforts for boycotting websites with AAB
solutions were made by the influential social news aggregation website reddit.com[6]
and others.

Regarding AAB solutions, the Pagefair adblock report 2017 came to the verdict:

"Adblock walls are ineffective at motivating most adblock users to disable their adblock
software, even temporarily. Unless the website in question has valued content that cannot
be obtained elsewhere, an adblock wall is likely to be ineffective at combatting adblock
usage at any significant rate."[60]

Month bild.de forbes.com wired.com
2015-06 280.70 169.87 667.80
2015-07 270.32 164.26 676.19
2015-08 262.00 155.87 631.10
2015-09 257.50 155.23 593.57
2015-10 264.00 160.16 563.00
2015-11 289.73 165.27 585.30
2015-12 327.90 166.58 631.39
2016-01 361.42 168.55 681.87
2016-02 388.59 173.45 739.86
2016-03 414.61 181.55 809.65
2016-04 414.77 187.90 843.57
2016-05 428.00 210.58 907.77
2016-06 432.50 234.00 948.60
2016-07 427.23 237.00 1,008.87
2016-08 406.06 223.32 991.29
2016-09 431.57 219.77 1,005.63
2016-10 480.45 217.77 947.45
2016-11 544.67 221.17 951.30
2016-12 568.52 214.94 975.39

Table 5.3: Monthly average of Alexa rankings

49

reddit.com

CHAPTER 6
Software Design

This chapter describes the design of the implemented software.

6.1 Software Architecture
The implemented software consists of the following components:

• Candidate generator

• Crawler

• Visual Similarity Comparer

• OCR Reader

• Result Verifier

• Result Aggregator

The entire project is written in Python [67] and was tested with version 3.61 on Fedora
26 [70]. For better scalability the performance critical components, namely Candidate
Generator, Visual Similarity Comparer and OCR Reader are loosely coupled. To achieve
this, the distributed task queue Celery [11] with a RabbitMQ 3.6.10 server [63] as its
backend was used in version 4.1.0. This enables parallelization of tasks, because Celery
can spawn multiple worker threads simultaneously. Furthermore the program could
easily be extended to distribute crawlTasks between multiple computers by changing the
RabbitMQ host configuration to point to the same queue.

1Most components also work with Python 2.7, but the OCR reader requires a Python 3 environment.

51

6. Software Design

Figure 6.1: Software Architecture

6.2 Candidate Generator

The candidate generator takes a list of URLs as input, which it then parses. For each of
the URLs a number of crawlTasks is generated in accordance to a global configuration file.
In the configuration file the number of crawlTasks per crawlMode is defined. Masking
(see Section 4.3.2) requires at least three screenshots with crawlMode van. In order not
to flood the websites with multiple requests at once, the list of URLs is traversed multiple
times, once per crawlMode, so that sequential crawlTasks do not contain the same URL.

1 # crawlerConfig.py
2 ...
3 VAN_RUNS = 3 # Vanilla profile
4 ABP_RUNS = 1 # Adblock Plus Profile
5 ...
6 # urlList
7 example1.com
8 example2.com

Listing 6.1: Example of crawlerConfig.py and an urlList

With the configuration from Listing 6.1 the tasks would be enqueued in the following
order:

52

6.3. Crawler

URL crawlMode
1 example1.com van
2 example2.com van
3 example1.com van
4 example2.com van
5 example1.com van
6 example2.com van
7 example1.com abp
8 example2.com abp

Table 6.1: Example sequence of crawlTasks

6.3 Crawler

The Crawler aims at triggering as many AAB scripts as possible by mimicing a real human
user and therefor needs to run with an authentic configuration. Selenium Webdriver
[73] is a software-testing framework for browser automation. It is compatible with
multiple popular browsers and was used to control Mozilla Firefox [49]. The open-source
privacy analysis framework OpenWPM [19] uses a similar technology stack, but only
supports Firefox until version 48, which collides with the goal of mimicing a real user
and might also lead to incompatibilities with browser extensions. The Crawler can be
run in headless mode, which is based on the Xvfb virtual framebuffer X server for X [82].
A CrawlerWorker instance is started as a Celery task and is and is only used for one task.
At the begin of the task a new browser profile is created with Webdriver and depending
on the crawlMode parmeter an extension is loaded. While executing a crawlTask, mouse
scrolling is simulated and the current browser URL gets checked for changes. At the end
of the crawl, a screenshot is taken and the list of URL changes and a reference to the
screenshot file is saved as a JSON [8] results file. Both files are stored in a directory
named after the domain of the website - multiple crawlTasks therefor write to the same
directory.

6.4 Result Aggregator

With the results from the crawlTask four operations need to be performed:

• Verify results from crawlTasks

• Generate visual similarity values

• Perform OCR scans

• Aggregate results

53

6. Software Design

The Result Aggregator creates Celery tasks to perform those operations and enqueues
them to worker queues. This way they are run in parallel. The tasks are performed on per
website, which means that for example a visualSimilarityCompareTask gets the domain
example1.com as parameter and then loads all images in the directory example1.com to
compare them. When all result files from the workers are present, the Result Aggregator
generates a summary of all features (see Table 4.4). Comma-separated values (CSV) file,
which can be used as the dataset for the machine learning experiments.

6.5 Result Verifier
For the analysis of captured screenshots, it is a prerequisite that the results from the
crawlTask are verified. The Result Verifier serves the purpose of control that during
a crawlTask both a result file and a screenshot have been persisted. This is necessary
because the Webdriver instance is terminated at the end of a crawlTask. During high
system load, I/O operations can be too slow to persist the files before Celery terminates
the thread. The Result Verifier checks that every referenced screenshot actually is present
in the file system and the other way around that every screenshot in the file system is
referenced in a results file. All files not fulfilling those criteria are moved to a hidden
directory and excluded from further analysis. While iterating over the results files, the
Results Verifier also compares the lists of redirects contained in them. For that results
are compared pairwise and the number of disjunct items is counted as an indicator of
the difference in redirects. This has the advantage that dynamic redirects, meaning that
the browser is always redirected to a dynamically changing URL, are also detected when
comparing the Crawler’s results with crawlMode van and can be interpreted as noise.

6.6 Visual Similarity Comparer
For each screenshot in a website’s directory hashes are generated and compared as
described in Section 4.3.2. Hashes are persisted to avoid having to recalculate them, when
analyzing visual similarity multiple times. While performing the comparison operation,
the program first checks whether hash files for the given screenshots already exist and
generates them otherwise. The results are again stored in a JSON file.

6.7 OCR Reader
The OCR Reader scans screenshots and tries to extract the text contained in it (see also
Section 4.3.2). We observed that sometimes incorrect whitespaces were present in the
parsed text, which in turn could impede pattern detection. Therefor all whitespaces were
removed from the text and furthermore the capitalization of all characters was changed
to lower case. OCR results are stored in a JSON file.

54

example1.com

CHAPTER 7
Evaluation

7.1 Candidate Generation
Originally, the training dataset consisted of 50 pages with AAB (14 with strict and 36
soft blocking pages) and 50 without. In total 11 pages were not loaded correctly (timeout
or HTTP status code 404 error) often enough to have enough samples to apply masked
visual similarity comparison. The Alexa top 1 million URL list was obtained in February
2017 and is not published anymore. The actual crawls were performed in August and
September 2017, therefor it makes sense that some of the websites do not exist anymore.
The unreachable websites were excluded from the dataset, which now consisted of 89 (44
AAB positives and 45 AAB negatives). All screenshots were manually inspected to verify
that they had been correctly classified.

7.2 Visual Similarity Algorithms
To evaluate the effectiveness of dHash, pHash with and without masking, models were
trained with the H2O machine learning suite [30]. The five datasets described in Table 4.5
were trained with Naive Bayes, Distributed Random Forest and Deep Learning classifiers
and k-fold cross-validation, where k = 10.

dHash pHash dHashMasked pHashMasked combined
AUC 90.12% 90.07% 92.36% 89.88% 90.29%
Precision 84.96% 83.17% 86.82% 81.17% 84.22%
Recall 85.39% 85.60% 85.61% 84.85% 84.85%

Table 7.1: Evaluation of Visual Similarity algorithms. Averages of all classifiers

Table 7.1 contains the Area under ROC Curve (AUC), precision and recall as stan-
dard measures of prediction quality. Overall the results were very close to each other.

55

7. Evaluation

dHashMasked performed slightly better than the others and achieved an average precision
of 86.82%. The effectiveness of all dHashMasked models was among the best results with
all classifiers.

Classifier Dataset Precision Recall AUC
Deep Learning dHashMask 94.74% 81.82% 93.94%
Distributed Random Forest dHash 84.27% 85.71% 92.12%
Distributed Random Forest dHashMask 81.63% 90.91% 91.67%
Naive Bayes All 82.22% 84.09% 91.57%
Naive Bayes dHashMask 84.09% 84.09% 91.46%
Naive Bayes pHash 82.61% 86.36% 91.31%
Naive Bayes pHashMask 82.98% 88.64% 91.31%
Naive Bayes dHash 84.09% 84.09% 91.26%
Distributed Random Forest pHashMask 79.59% 88.64% 90.86%
Distributed Random Forest All 84.09% 84.09% 90.43%
Distributed Random Forest pHash 86.05% 84.09% 90.38%
Deep Learning All 86.36% 86.36% 88.89%
Deep Learning pHash 80.85% 86.36% 88.51%
Deep Learning pHashMask 80.95% 77.27% 87.47%
Deep Learning dHash 86.52% 86.36% 86.97%

Table 7.2: Effectiveness of all combinations of classifiers and datasets ranked by AUC

Figure 7.1: ROC curve of best performing Deep Learning classifier with dHashMasked

dataset

56

7.3. Classifier Effectiveness

Actual/Predicted False True Error Rate
False 43 2 0.0444 2 / 45
True 8 36 0.1818 8 / 44
Total 51 38 0.1124 10 / 89

Table 7.3: Confusion Matrix of best performing Deep Learning classifier with dHashMasked

dataset

7.3 Classifier Effectiveness

On average, the Naive Bayes classifier achieved the highest AUC values, closely followed
by the Distributed Random Forest classifier. Its results are very consistent throughout
all datasets.

Deep Learning DRF Naive Bayes
AUC 89.16% 91.09% 91.38%
Precision 85.88% 83.13% 83.20%
Recall 83.63% 86.69% 85.45%

Table 7.4: Average effectiveness of classifiers over all datasets

7.4 Feature Evaluation

To evaluate the importance of the feature subsets, models were trained with only one
feature set at a time with the Naive Bayes classifier. A model based only on OCR-related
features achieved 82.22% precision and the highest AUC value of 87.58%. The model
based on redirect performed poorly - This likely is caused by a lack of AAB websites using
redirects. The model based on visual similarity features resulted in mediocre 74.51%
precision, 86.36% recall and 82.17% AUC.

FeatureSet Precision Recall AUC
OCR 82.22% 84.09% 87.58%

Redirects 49.44% 100.00% 57.47%
VisualSimilarity 74.51% 86.36% 82.17%

Table 7.5: Effectiveness of feature sets with Naive Bayes classifier

7.5 Evaluation with Alexa top 1 Million Websites

To test the model with more representative data, three lists each containing 100 URLs
were generated. They are randomly selected samples from the top 1,000, 100,000 and
1,000,000 Alexa pages.

57

7. Evaluation

Of those 300 websites 258 (86%) were crawled successfully, the remaining 42 (14%) were
unreachable or timed out while loading, so that visual similarity comparison could not
be performed. Mughees et al. [51] encountered 558 (0.56%) AAB websites within their
dataset of 100.000 websites. therefor it was expected to encounter between zero and one
AAB website in each of these datasets.

1K 100K 1Mio Total
Candidate URLs 100 100 100 300
Successfully Crawled 89 83 86 258
Positives 14 9 12 35
False positives 11 8 12 31
False negatives 0 0 0 0
True positives 3 1 0 4

Table 7.6: Evaluation of predictions for Alexa top 1.000.000 data samples

The best performing Deep Learning model was used for prediction. In total 35 websites
(13,57%) were classified as using AAB scripts. Screenshots of all crawled websites were
manually checked for presence of AAB warnings, which revealed 4 true positives and no
false negatives.

Page Alexa Rank Category Detection Action Alexa Sample
redtube.com 206 Pornography Banner, soft blocking 1K
bild.de 533 News Redirect, hard blocking 1K
drtuber.com 735 Pornography Banner, soft blocking 1K
autoplus.fr 26453 News Pop-up, soft blocking 100K

Table 7.7: True positives

58

CHAPTER 8
Discussion

In this thesis we discussed the latest developments of the adblocking arms-race. In the
State of The Art Section we summarized the technical means available to both sides of
the adblocking arms race. Current research shows a shift away from web resource-based
adblocking towards active adblocking and stealthy adblocking. In other words adblockers
can be put into a position, where they no longer can proactively identify and block
HTTP(S) requests to unwanted resources when ads are delivered by the same publisher
as the contents of a website. The AAB scripts we encountered in the case study are based
on the simple premise that fake bait elements trigger an active adblocker and therefor
are not present in the DOM or are hidden by CSS attribute modifications. This can be
effective against classical adblockers, but so far all solutions known to the author have
been successfully countered by more sophisticated adblockers such as Anti-Adblock Killer,
which also inject page-specific JavaScript to disable detection scripts. This challenges the
community-based rule generation process of classical adblockers because the page-specific
scripts now have more privileges than the previous rules with syntactic limitations. This
means that it becomes easier for a malicious attacker to contribute code with undesired
side-effects and therefor quality control becomes a greater issue than with classical filter
lists.

Even though the user side is in a privileged position because browser extensions can
leverage higher privileges than the JavaScript contained in websites, it should not be
forgotten that the advertising industry does not only fight adblocking with technical
methods, but also uses lobbying and legal actions. The goal doesn’t appear to be to
completely defeat all adblockers but rather to make it harder for mainstream users to
install and configure effective adblockers properly. Nevertheless the economic rules of
supply and demand also apply to websites and therefor websites which applied AAB
scripts have lost significant numbers of users. If a website’s contents are not unique, as is
the case with the majority of news websites, annoyed users will fluctuate to competitors,
thereby decreasing the website’s reach. Only considering direct revenue from ads is a

59

8. Discussion

narrow-minded perspective because adblocker users can still be beneficial to websites
by influencing others to visit a website or creating user content such as comments and
reviews.

Malvertising is still a valid reason for blocking ads since websites with AAB scripts have
fallen victim to malvertising campaigns. By pressuring users to disable their adblockers,
publishers knowingly have exposed them to risks without taking responsibility for the
incurred damages or providing effective solutions for preventing such incidents in the
future.

8.1 Limitations of Visual Anti-Adblock Detection
The results of automated AAB detection with the implemented webcrawler showed that
it was capable of identifying true positives. However this was achieved with a rather
high false positive rate. After reviewing data and screenshots of the false positives, the
following reasons were identified:

The performance of the webcrawler was a limiting factor, because every page needed to
be visited at least three times per browser configuration. Due to potentially long loading
times and adblock detection being triggered delayed in some instances, it needed to work
with conservative timeout limits. Even though crawling processes were run in parallel,
due to high memory consumption of Firefox the number of instances was limited to 4 on
an Intel Xeon X5460 machine with 8 GB of memory. This in turn limited the sample size
and therefor also the amount of data available for training the machine learning models.
It is very likely, that the model would yield better results with more training data.

Many of the false positives were websites heavily loaded with dynamic content such as
large continuously changing banners filling up large areas of the screen. Some of them also
contained videos, which started playback automatically as well as dynamically changing
background images.

Figure 8.1: Too much dynamic content to apply visual similarity algorithms. Source:
topix.com

A known limitation of the perceptional visual similarity algorithms is that they compare
the same areas of images and are sensitive to positional changes of page elements. Therefor

60

topix.com

8.2. Future Work

large ad banners which move the contents towards the bottom of a page (see Figure 8.2)
can cause high difference scores besides the fact that the contents are similar.

Figure 8.2: Ad banner shifts content downwards. Source: chron.com

Another reason for false positives is derived from the inherent problem of long loading
times, which also is among the most common motivations for using adblockers. In some
cases the pages didn’t render correctly due to slow loading of ads, which in turn leads to
significant differences in visual appearance and text.

Figure 8.3: Parked domain with only ad as content. Source: fullmoviestorrent.com

Towards the lower ranks of the Alexa top 1 million pages there was a large number of
parked domains, which didn’t have any content besides ads. Due to the ads not being
shown anymore with an active adblocker, the visual appearance changed significantly as
well as the amount of text on the screen (see Figure 8.3). This clearly demonstrates that
the noise of removed ads can also cause false positives.

8.2 Future Work

In the current version the crawler’s performance comes close to AAB detection based on
analysis of DOM changes. Even though it has a significantly higher false positive rate,
visual AB detection has the advantage of being resistant against source code obfuscation
and can also detect AAB warnings if they are displayed in the form of an image. For

61

chron.com
fullmoviestorrent.com

8. Discussion

future research it would be of interest if the combination of both methods could further
improve results.

In this thesis only landing pages of websites were analyzed. During the research phase we
found that some websites show AAB warnings only on subpages, or limit certain aspects
of functionality such as video playback and comments. For a more complete estimate of
the number of AAB websites, a systematic approach for testing subpages and individual
website features would be required.

Furthermore this work focuses on AAB warnings and content access restrictions. Another
aspect that to the knowledge of the author has not yet received attention is silent adblock
detection for user tracking. For this purpose as well as for countering AAB scripts a
methodology for differentiating between real ads and bait elements in real-time would
need to be developed.

62

CHAPTER 9
Conclusion

In this thesis we researched the current state of the arms race between publishers and
adblockers. We found that most anti-adblocking scripts inject bait elements, which are
DOM elements or web resources that are blocked by adblockers due to their name, URI
or characteristics and in a second step verify the presence of them. Effective measures
for circumventing them include manipulation of CSS attributes of anti-adblock warnings,
signature-based blocking or manipulation of JavaScript API calls and tampering with
browser storage. Whereas detection methods are very similar for most anti-adblocking
scripts, they differ in the way they react to active adblockers. Reactions can be categorized
as silent, soft and hard blocking. In a case study we found that anti-adblockers can be
effective against classical adblockers but are circumvented by more sophisticated solutions.
User numbers have significantly declined for websites, which started using them. Among
258 randomly selected websites from the Alexa top 1 million pages we found 4 (1.55%),
which hinted their users to disable their adblockers.

63

Bibliography

[1] Peter Abeln. Ad blocker detection: An overlay modal with randomly generated
id. https://github.com/chrisaljoudi/uBlock/issues/1553. Accessed:
2017-06-21.

[2] Digital Advertising Alliance. Adchoices. http://youradchoices.com/. Ac-
cessed: 2017-08-03.

[3] Nate Anderson. How a banner ad for H&R block appeared on apple.com — with-
out Apple’s OK. http://arstechnica.com/tech-policy/2013/04/how-
a-banner-ad-for-hs-ok/. Accessed: 2016-09-28.

[4] Sean Blanchfield. Halloween security breach. https://pagefair.com/blog/
2015/halloween-security-breach/?nabe=4982323603046400:1. Ac-
cessed: 2016-01-16.

[5] Karl Bode. Mediacom injecting their ads into other websites. http://www.
dslreports.com/shownews/112918. Accessed: 2016-09-28.

[6] Karl Bode. Reddit’s technology subreddit ponders banning wired & forbes for
blocking adblock users. https://www.techdirt.com/articles/20160509/
07311734387/reddits-technology-subreddit-ponders-banning-
wired-forbes-blocking-adblock-users.shtml. Accessed: 2017-02-21.

[7] Carter Bowles. How the noscript tag impacts seo. https://northcutt.com/
how-the-noscript-tag-impacts-seo-hint-be-very-careful/. Ac-
cessed: 2016-12-06.

[8] Tim Bray. The javascript object notation (json) data interchange format. 2014.

[9] Johannes Buchner. ImageHash. https://github.com/JohannesBuchner/
imagehash. Accessed: 2017-06-12.

[10] Craig Buckler. Average page weight increased another 16 https:
//www.sitepoint.com/average-page-weight-increased-another-
16-2015/. Accessed: 2017-08-05.

65

https://github.com/chrisaljoudi/uBlock/issues/1553
http://youradchoices.com/
http://arstechnica.com/tech-policy/2013/04/how-a-banner-ad-for-hs-ok/
http://arstechnica.com/tech-policy/2013/04/how-a-banner-ad-for-hs-ok/
https://pagefair.com/blog/2015/halloween-security-breach/?nabe=4982323603046400:1
https://pagefair.com/blog/2015/halloween-security-breach/?nabe=4982323603046400:1
http://www.dslreports.com/shownews/112918
http://www.dslreports.com/shownews/112918
https://www.techdirt.com/articles/20160509/07311734387/reddits-technology-subreddit-ponders-banning-wired-forbes-blocking-adblock-users.shtml
https://www.techdirt.com/articles/20160509/07311734387/reddits-technology-subreddit-ponders-banning-wired-forbes-blocking-adblock-users.shtml
https://www.techdirt.com/articles/20160509/07311734387/reddits-technology-subreddit-ponders-banning-wired-forbes-blocking-adblock-users.shtml
https://northcutt.com/how-the-noscript-tag-impacts-seo-hint-be-very-careful/
https://northcutt.com/how-the-noscript-tag-impacts-seo-hint-be-very-careful/
https://github.com/JohannesBuchner/imagehash
https://github.com/JohannesBuchner/imagehash
https://www.sitepoint.com/average-page-weight-increased-another-16-2015/
https://www.sitepoint.com/average-page-weight-increased-another-16-2015/
https://www.sitepoint.com/average-page-weight-increased-another-16-2015/

Bibliography

[11] Celery. Celery: Distributed task queue. http://www.celeryproject.org/.
Accessed: 2017-08-20.

[12] Joseph C Chen. Massive malvertising campaign in us leads to angler ex-
ploit kit/bedep. http://blog.trendmicro.com/trendlabs-security-
intelligence/malvertising-campaign-in-us-leads-to-angler-
exploit-kitbedep/. Accessed: 2016-12-08.

[13] Scott Cunningham. Getting lean with digital ad ux. https://www.iab.com/
news/lean/. Accessed: 2017-01-12.

[14] Charlie Curtsinger, Benjamin Livshits, Benjamin G Zorn, and Christian Seifert.
Zozzle: Fast and precise in-browser javascript malware detection. In USENIX
Security Symposium, pages 33–48, 2011.

[15] Bundesministerium der Justiz und für Verbraucherschutz. Gesetz über urheber-
recht und verwandte schutzrechte (urheberrechtsgesetz) § 95a schutz technischer
maßnahmen. http://www.gesetze-im-internet.de/urhg/__95a.html.
Accessed: 2016-10-10.

[16] Lewis DVorkin. Inside forbes: More numbers on our ad blocking plan.
https://www.forbes.com/sites/lewisdvorkin/2016/02/10/inside-
forbes-more-numbers-on-our-ad-blocking-plan-and-whats-
coming-next/#332279b96209. Accessed: 2017-02-21.

[17] Easylist. Easylist. https://easylist.to/. Accessed: 2016-08-24.

[18] Easylist. Easylist. https://pagefair.com/blog/2016/how-not-to-deal-
with-adblocking-lists-behind-the-scenes-update/. Accessed: 2017-
08-07.

[19] Steven Englehardt and Arvind Narayanan. Online tracking: A 1-million-site mea-
surement and analysis. In Proceedings of ACM CCS 2016, 2016.

[20] Fanboy. Fanboy annoyances list. https://www.fanboy.co.nz/. Accessed:
2016-08-24.

[21] Coalition for Better Ads. The initial better ads standards. https://www.
betterads.org/standards/. Accessed: 2017-07-20.

[22] Bundesamt für Sicherheit in der Informationstechnik (Germany). Surfen, aber
sicher! https://www.bsi-fuer-buerger.de/SharedDocs/Downloads/
DE/BSIFB/Broschueren/Brosch_A6_Surfen_aber_sicher.pdf?__
blob=publicationFile. Accessed: 2016-01-15.

[23] Hauke Gierow. Abgemahnter youtuber hat bild.de verklagt. http:
//www.golem.de/news/streit-um-adblock-video-abgemahnter-
youtuber-hat-bild-de-verklagt-1603-119649.html. Accessed: 2016-
10-10.

66

http://www.celeryproject.org/
http://blog.trendmicro.com/trendlabs-security-intelligence/malvertising-campaign-in-us-leads-to-angler-exploit-kitbedep/
http://blog.trendmicro.com/trendlabs-security-intelligence/malvertising-campaign-in-us-leads-to-angler-exploit-kitbedep/
http://blog.trendmicro.com/trendlabs-security-intelligence/malvertising-campaign-in-us-leads-to-angler-exploit-kitbedep/
https://www.iab.com/news/lean/
https://www.iab.com/news/lean/
http://www.gesetze-im-internet.de/urhg/__95a.html
https://www.forbes.com/sites/lewisdvorkin/2016/02/10/inside-forbes-more-numbers-on-our-ad-blocking-plan-and-whats-coming-next/#332279b96209
https://www.forbes.com/sites/lewisdvorkin/2016/02/10/inside-forbes-more-numbers-on-our-ad-blocking-plan-and-whats-coming-next/#332279b96209
https://www.forbes.com/sites/lewisdvorkin/2016/02/10/inside-forbes-more-numbers-on-our-ad-blocking-plan-and-whats-coming-next/#332279b96209
https://easylist.to/
https://pagefair.com/blog/2016/how-not-to-deal-with-adblocking-lists-behind-the-scenes-update/
https://pagefair.com/blog/2016/how-not-to-deal-with-adblocking-lists-behind-the-scenes-update/
https://www.fanboy.co.nz/
https://www.betterads.org/standards/
https://www.betterads.org/standards/
https://www.bsi-fuer-buerger.de/SharedDocs/Downloads/DE/BSIFB/Broschueren/Brosch_A6_Surfen_aber_sicher.pdf?__blob=publicationFile
https://www.bsi-fuer-buerger.de/SharedDocs/Downloads/DE/BSIFB/Broschueren/Brosch_A6_Surfen_aber_sicher.pdf?__blob=publicationFile
https://www.bsi-fuer-buerger.de/SharedDocs/Downloads/DE/BSIFB/Broschueren/Brosch_A6_Surfen_aber_sicher.pdf?__blob=publicationFile
http://www.golem.de/news/streit-um-adblock-video-abgemahnter-youtuber-hat-bild-de-verklagt-1603-119649.html
http://www.golem.de/news/streit-um-adblock-video-abgemahnter-youtuber-hat-bild-de-verklagt-1603-119649.html
http://www.golem.de/news/streit-um-adblock-video-abgemahnter-youtuber-hat-bild-de-verklagt-1603-119649.html

Bibliography

[24] Phillipa Gill, Vijay Erramilli, Augustin Chaintreau, Balachander Krishnamurthy,
Konstantina Papagiannaki, and Pablo Rodriguez. Follow the money: understanding
economics of online aggregation and advertising. In Proceedings of the 2013 conference
on Internet measurement conference, pages 141–148. ACM, 2013.

[25] Eyeo GmbH. Allowing acceptable ads in adblock plus. https://adblockplus.
org/en/acceptable-ads. Accessed: 2016-08-10.

[26] Daniel G Goldstein, R Preston McAfee, and Siddharth Suri. The cost of annoying
ads. In Proceedings of the 22nd international conference on World Wide Web, pages
459–470. International World Wide Web Conferences Steering Committee, 2013.

[27] Google. Examples of javascript, iframe, and image dart ad tags. https://support.
google.com/dfp_premium/answer/1131983?hl=en. Accessed: 2016-08-14.

[28] Friedhelm Greis. Bild.de kann adblocker-rate deutlich senken. https:
//www.golem.de/news/nach-werbeblockersperre-bild-de-kann-
adblocker-rate-deutlich-senken-1511-117293.html. Accessed:
2017-02-21.

[29] Christian Grothoff, Matthias Wachs, Monika Ermert, and Jacob Appelbaum. Nsa’s
morecowbell: Knell for dns. 01/2015 2015.

[30] H2O.ai. H2o.ai. https://www.h2o.ai/h2o/. Accessed: 2017-08-15.

[31] R. W. Hamming. Error detecting and error correcting codes. Bell System Technical
Journal, 29(2):147–160, 1950.

[32] Samuel Hoffstaetter. Python Tesseract. https://github.com/madmaze/
pytesseract. Accessed: 2017-07-28.

[33] Joel Hruska. Forbes forces readers to turn off ad blockers, promptly serves malware.
http://www.extremetech.com/internet/220696-forbes-forces-
readers-to-turn-off-ad-blockers-promptly-serves-malware.
Accessed: 2016-05-15.

[34] Brave Software Inc. Brave. https://brave.com/. Accessed: 2017-08-30.

[35] Ben Kneen. How does ad serving work? http://www.adopsinsider.com/ad-
serving/how-does-ad-serving-work/. Accessed: 2016-08-14.

[36] Barbara Kordy, Piotr Kordy, Sjouke Mauw, and Patrick Schweitzer. ADTool: Security
Analysis with Attack–Defense Trees, pages 173–176. Springer Berlin Heidelberg,
Berlin, Heidelberg, 2013.

[37] Neal Krawetz. Kind of like that. https://www.hackerfactor.com/blog/
index.php?/archives/529-Kind-of-Like-That.html. Accessed: 2017-
06-12.

67

https://adblockplus.org/en/acceptable-ads
https://adblockplus.org/en/acceptable-ads
https://support.google.com/dfp_premium/answer/1131983?hl=en
https://support.google.com/dfp_premium/answer/1131983?hl=en
https://www.golem.de/news/nach-werbeblockersperre-bild-de-kann-adblocker-rate-deutlich-senken-1511-117293.html
https://www.golem.de/news/nach-werbeblockersperre-bild-de-kann-adblocker-rate-deutlich-senken-1511-117293.html
https://www.golem.de/news/nach-werbeblockersperre-bild-de-kann-adblocker-rate-deutlich-senken-1511-117293.html
https://www.h2o.ai/h2o/
https://github.com/madmaze/pytesseract
https://github.com/madmaze/pytesseract
http://www.extremetech.com/internet/220696-forbes-forces-readers-to-turn-off-ad-blockers-promptly-serves-malware
http://www.extremetech.com/internet/220696-forbes-forces-readers-to-turn-off-ad-blockers-promptly-serves-malware
https://brave.com/
http://www.adopsinsider.com/ad-serving/how-does-ad-serving-work/
http://www.adopsinsider.com/ad-serving/how-does-ad-serving-work/
https://www.hackerfactor.com/blog/index.php?/archives/529-Kind-of-Like-That.html
https://www.hackerfactor.com/blog/index.php?/archives/529-Kind-of-Like-That.html

Bibliography

[38] Neal Krawetz. Looks like it. https://www.hackerfactor.com/blog/index.
php?/archives/529-Kind-of-Like-That.html. Accessed: 2017-06-12.

[39] Balachander Krishnamurthy and Craig E Wills. Cat and mouse: content delivery
tradeoffs in web access. In Proceedings of the 15th international conference on World
Wide Web, pages 337–346. ACM, 2006.

[40] Jürgen Kuri. Klage gegen adblock plus: Teilerfolg für springer, niederlage für eyeo
bei "acceptable ads". http://www.heise.de/newsticker/meldung/Klage-
gegen-Adblock-Plus-Teilerfolg-fuer-Springer-Niederlage-fuer-
Eyeo-bei-Acceptable-Ads-3248585.html. Accessed: 2016-08-10.

[41] Van Lam Le, Ian Welch, Xiaoying Gao, and Peter Komisarczuk. Anatomy of drive-by
download attack. In Proceedings of the Eleventh Australasian Information Security
Conference - Volume 138, AISC ’13, pages 49–58, Darlinghurst, Australia, Australia,
2013. Australian Computer Society, Inc.

[42] Philippe Le Hégaret, Ray Whitmer, and Lauren Wood. Document object model
(dom). W3C recommendation (January 2005) http://www. w3. org/DOM, 2002.

[43] Woody Leonhard. Another privacy threat: Dns logging and how to
avoid it. http://www.infoworld.com/article/2608352/internet-
privacy/another-privacy-threat--dns-logging-and-how-to-
avoid-it.html. Accessed: 2016-09-03.

[44] Zhou Li, Kehuan Zhang, Yinglian Xie, Fang Yu, and XiaoFeng Wang. Knowing
your enemy: understanding and detecting malicious web advertising. In Proceedings
of the 2012 ACM conference on Computer and Communications Security, pages
674–686. ACM, 2012.

[45] Jonathan Mayer and Arvind Narayanan. Do not track - universal web tracking opt
out. http://donottrack.us. Accessed: 2017-01-07.

[46] Secret Media. A web without advertising - the implications and consequences of
adblocking technologies on equal access to free content. http://docplayer.net/
2003236-A-web-without-advertising.html. Accessed: 2016-05-10.

[47] Georg Merzdovnik, Markus Huber, Damjan Buhov, Nick Nikiforakis, Sebastian
Neuner, Martin Schmiedecker, and Edgar Weippl. Block me if you can: A large-scale
study of tracker-blocking tools. In Proceedings of the 2nd IEEE European Symposium
on Security and Privacy (IEEE EuroS&P), 2017.

[48] David Meyer. Here’s how the ad-blocking debate just collided with net neu-
trality in europe. http://fortune.com/2016/02/19/three-network-ad-
blocking/. Accessed: 2016-09-28.

[49] Mozilla. Firefox. https://www.mozilla.org/en-US/firefox/. Accessed:
2017-08-28.

68

https://www.hackerfactor.com/blog/index.php?/archives/529-Kind-of-Like-That.html
https://www.hackerfactor.com/blog/index.php?/archives/529-Kind-of-Like-That.html
http://www.heise.de/newsticker/meldung/Klage-gegen-Adblock-Plus-Teilerfolg-fuer-Springer-Niederlage-fuer-Eyeo-bei-Acceptable-Ads-3248585.html
http://www.heise.de/newsticker/meldung/Klage-gegen-Adblock-Plus-Teilerfolg-fuer-Springer-Niederlage-fuer-Eyeo-bei-Acceptable-Ads-3248585.html
http://www.heise.de/newsticker/meldung/Klage-gegen-Adblock-Plus-Teilerfolg-fuer-Springer-Niederlage-fuer-Eyeo-bei-Acceptable-Ads-3248585.html
http://www.infoworld.com/article/2608352/internet-privacy/another-privacy-threat--dns-logging-and-how-to-avoid-it.html
http://www.infoworld.com/article/2608352/internet-privacy/another-privacy-threat--dns-logging-and-how-to-avoid-it.html
http://www.infoworld.com/article/2608352/internet-privacy/another-privacy-threat--dns-logging-and-how-to-avoid-it.html
http://donottrack.us
http://docplayer.net/2003236-A-web-without-advertising.html
http://docplayer.net/2003236-A-web-without-advertising.html
http://fortune.com/2016/02/19/three-network-ad-blocking/
http://fortune.com/2016/02/19/three-network-ad-blocking/
https://www.mozilla.org/en-US/firefox/

Bibliography

[50] Mozilla. Firefox developer tools. https://developer.mozilla.org/son/
docs/Tools. Accessed: 2016-12-08.

[51] Muhammad Haris Mughees, Zhiyun Qian, and Zubair Shafiq. Detecting anti ad-
blockers in the wild. Proceedings on Privacy Enhancing Technologies, 1:16, 2017.

[52] Nick Nikiforakis, Alexandros Kapravelos, Wouter Joosen, Christopher Kruegel, Frank
Piessens, and Giovanni Vigna. Cookieless monster: Exploring the ecosystem of web-
based device fingerprinting. In Security and privacy (SP), 2013 IEEE symposium
on, pages 541–555. IEEE, 2013.

[53] Rishab Nithyanand, Sheharbano Khattak, Mobin Javed, Narseo Vallina-Rodriguez,
Marjan Falahrastegar, Julia E Powles, Emiliano De Cristofaro, Hamed Haddadi,
and Steven J Murdoch. Ad-blocking and counter blocking: A slice of the arms race.
arXiv preprint arXiv:1605.05077, 2016.

[54] Body of European Regulators for Electronic Communication. Berec guidelines
on the implementation by national regulators of european net neutrality rules.
http://berec.europa.eu/eng/document_register/subject_matter/
berec/regulatory_best_practices/guidelines/6160-berec-
guidelines-on-the-implementation-by-national-regulators-
of-european-net-neutrality-rules. Accessed: 2016-09-28.

[55] National Cyber Security Centre Ministry of Security and Justice (Netherlands). Cy-
ber security assessment netherlands 2016: Professional criminals are an ever greater
danger to digital security in the netherlands. https://www.ncsc.nl/english/
current-topics/Cyber+Security+Assessment+Netherlands/cyber-
security-assessment-netherlands-2016.html. Accessed: 2016-12-18.

[56] OpenDNS. A new reason to love OpenDNS: no more ads. https://www.opendns.
com/no-more-ads/. Accessed: 2016-09-13.

[57] OpenX. Ad networks vs. ad exchanges: How they stack up. http:
//openx.com/blog/openx-releases-new-whitepaper-ad-networks-
vs-ad-exchanges/. Accessed: 2016-08-12.

[58] Pagefair and Adobe. The 2015 ad blocking report. https://pagefair.com/
blog/2015/ad-blocking-report/. Accessed: 2016-05-09.

[59] Pagefair and Adobe. Adblocking goes mobile - pagefair2016 mobile adblocking
report, revised november 2016. https://pagefair.com/downloads/2016/
05/Adblocking-Goes-Mobile.pdf. Accessed: 2017-02-20.

[60] Pagefair and Adobe. The state of the blocked web - 2017 global adblock report.
https://pagefair.com/blog/2017/adblockreport/. Accessed: 2017-02-
20.

69

https://developer.mozilla.org/son/docs/Tools
https://developer.mozilla.org/son/docs/Tools
http://berec.europa.eu/eng/document_register/subject_matter/berec/regulatory_best_practices/guidelines/6160-berec-guidelines-on-the-implementation-by-national-regulators-of-european-net-neutrality-rules
http://berec.europa.eu/eng/document_register/subject_matter/berec/regulatory_best_practices/guidelines/6160-berec-guidelines-on-the-implementation-by-national-regulators-of-european-net-neutrality-rules
http://berec.europa.eu/eng/document_register/subject_matter/berec/regulatory_best_practices/guidelines/6160-berec-guidelines-on-the-implementation-by-national-regulators-of-european-net-neutrality-rules
http://berec.europa.eu/eng/document_register/subject_matter/berec/regulatory_best_practices/guidelines/6160-berec-guidelines-on-the-implementation-by-national-regulators-of-european-net-neutrality-rules
https://www.ncsc.nl/english/current-topics/Cyber+Security+Assessment+Netherlands/cyber-security-assessment-netherlands-2016.html
https://www.ncsc.nl/english/current-topics/Cyber+Security+Assessment+Netherlands/cyber-security-assessment-netherlands-2016.html
https://www.ncsc.nl/english/current-topics/Cyber+Security+Assessment+Netherlands/cyber-security-assessment-netherlands-2016.html
https://www.opendns.com/no-more-ads/
https://www.opendns.com/no-more-ads/
http://openx.com/blog/openx-releases-new-whitepaper-ad-networks-vs-ad-exchanges/
http://openx.com/blog/openx-releases-new-whitepaper-ad-networks-vs-ad-exchanges/
http://openx.com/blog/openx-releases-new-whitepaper-ad-networks-vs-ad-exchanges/
https://pagefair.com/blog/2015/ad-blocking-report/
https://pagefair.com/blog/2015/ad-blocking-report/
https://pagefair.com/downloads/2016/05/Adblocking-Goes-Mobile.pdf
https://pagefair.com/downloads/2016/05/Adblocking-Goes-Mobile.pdf
https://pagefair.com/blog/2017/adblockreport/

Bibliography

[61] Wladimir Palant. Javascript deobfuscator. https://palant.de/2009/02/13/
javascript-deobfuscator. Accessed: 2016-12-08.

[62] LLC Pi-hole. Pi-hole R©: A black hole for internet advertisements. https://pi-
hole.net/. Accessed: 2017-09-29.

[63] Inc Pivotal Software. Rabbitmq - messaging that just works. https://www.
rabbitmq.com/. Accessed: 2017-08-20.

[64] Flattr Plus. Flattr plus. https://flattrplus.com/. Accessed: 2016-08-10.

[65] Niels Provos, Panayiotis Mavrommatis, Moheeb Abu Rajab, and Fabian Monrose.
All your iframes point to us. In Proceedings of the 17th Conference on Security
Symposium, SS’08, pages 1–15, Berkeley, CA, USA, 2008. USENIX Association.

[66] Enric Pujol, Oliver Hohlfeld, and Anja Feldmann. Annoyed users: Ads and ad-
block usage in the wild. In Proceedings of the 2015 ACM Conference on Internet
Measurement Conference, pages 93–106. ACM, 2015.

[67] Python. Python Software Foundation. https://www.python.org/. Accessed:
2017-08-20.

[68] Sridhar Ramaswamy. Building a better web for everyone. https://www.blog.
google/topics/journalism-news/building-better-web-everyone/.
Accessed: 2017-08-08.

[69] Raymond.cc. 10 ad blocking extensions tested for best performance.
https://www.raymond.cc/blog/10-ad-blocking-extensions-
tested-for-best-performance/2/. Accessed: 2016-08-08.

[70] Inc. Red Hat. Fedora. https://getfedora.org/. Accessed: 2017-08-25.

[71] Reek. Anti-Adblock Killer. https://reek.github.io/anti-adblock-
killer/. Accessed: 2016-06-05.

[72] Franziska Roesner, Tadayoshi Kohno, and David Wetherall. Detecting and defending
against third-party tracking on the web. In Proceedings of the 9th USENIX con-
ference on Networked Systems Design and Implementation, pages 12–12. USENIX
Association, 2012.

[73] Selenium. Selenium - web browser automation. http://www.seleniumhq.org/.
Accessed: 2017-08-26.

[74] sitexw. Blockadblock. https://github.com/sitexw/BlockAdBlock. Ac-
cessed: 2016-12-04.

[75] Ray Smith. An overview of the tesseract ocr engine. In Document Analysis and
Recognition, 2007. ICDAR 2007. Ninth International Conference on, volume 2, pages
629–633. IEEE, 2007.

70

https://palant.de/2009/02/13/javascript-deobfuscator
https://palant.de/2009/02/13/javascript-deobfuscator
https://pi-hole.net/
https://pi-hole.net/
https://www.rabbitmq.com/
https://www.rabbitmq.com/
https://flattrplus.com/
https://www.python.org/
https://www.blog.google/topics/journalism-news/building-better-web-everyone/
https://www.blog.google/topics/journalism-news/building-better-web-everyone/
https://www.raymond.cc/blog/10-ad-blocking-extensions-tested-for-best-performance/2/
https://www.raymond.cc/blog/10-ad-blocking-extensions-tested-for-best-performance/2/
https://getfedora.org/
https://reek.github.io/anti-adblock-killer/
https://reek.github.io/anti-adblock-killer/
http://www.seleniumhq.org/
https://github.com/sitexw/BlockAdBlock

Bibliography

[76] StatCounter. Browser market share worldwide. http://gs.statcounter.com/
browser-market-share. Accessed: 2017-08-08.

[77] Grant Storey, Dillon Reisman, Jonathan Mayer, and Arvind Narayanan. The
future of ad blocking: An analytical framework and new techniques. arXiv preprint
arXiv:1705.08568, 2017.

[78] Sven T. Jsdetox. http://relentless-coding.org/projects/jsdetox/.
Accessed: 2017-07-25.

[79] Ian Thomas. Online ad business 101, part vi – ad exchanges. http:
//www.liesdamnedlies.com/2008/11/online-ad-business-101-
part-vi-ad-exchanges.html. Accessed: 2016-08-13.

[80] Ian Thomas. Online advertising business 101, part ii - how does adserving actu-
ally work? http://www.liesdamnedlies.com/2008/06/online-advert-
1.html. Accessed: 2016-08-13.

[81] Thomas Unger, Martin Mulazzani, Dominik Fruhwirt, Markus Huber, Sebastian
Schrittwieser, and Edgar Weippl. Shpf: Enhancing http (s) session security with
browser fingerprinting. In Availability, Reliability and Security (ARES), 2013 Eighth
International Conference on, pages 255–261. IEEE, 2013.

[82] David P. Wiggins. Xvfb - virtual framebuffer X server for X Version 11. https://
www.x.org/archive/X11R7.6/doc/man/man1/Xvfb.1.xhtml. Accessed:
2017-08-28.

[83] John Wilander. Intelligent tracking prevention. https://webkit.org/blog/
7675/intelligent-tracking-prevention/. Accessed: 2017-06-20.

[84] Wei Xu, Fangfang Zhang, and Sencun Zhu. The power of obfuscation techniques
in malicious javascript code: A measurement study. In Malicious and Unwanted
Software (MALWARE), 2012 7th International Conference on, pages 9–16. IEEE,
2012.

71

http://gs.statcounter.com/browser-market-share
http://gs.statcounter.com/browser-market-share
http://relentless-coding.org/projects/jsdetox/
http://www.liesdamnedlies.com/2008/11/online-ad-business-101-part-vi-ad-exchanges.html
http://www.liesdamnedlies.com/2008/11/online-ad-business-101-part-vi-ad-exchanges.html
http://www.liesdamnedlies.com/2008/11/online-ad-business-101-part-vi-ad-exchanges.html
http://www.liesdamnedlies.com/2008/06/online-advert-1.html
http://www.liesdamnedlies.com/2008/06/online-advert-1.html
https://www.x.org/archive/X11R7.6/doc/man/man1/Xvfb.1.xhtml
https://www.x.org/archive/X11R7.6/doc/man/man1/Xvfb.1.xhtml
https://webkit.org/blog/7675/intelligent-tracking-prevention/
https://webkit.org/blog/7675/intelligent-tracking-prevention/

	Kurzfassung
	Abstract
	Contents
	Introduction
	Motivation and problem definition

	Background
	Online advertising ecosystem
	Problems with online ads
	Anti-Adblocking (AAB)
	Anti-anti-adblocking

	State of the Art
	Attacks against and Defenses of Adblocking
	AAB detection
	Tracking
	Latest developments

	Methodology
	Literature review
	Case study
	Webcrawler

	Case Study
	Bild.de
	Forbes.com
	Wired.com
	Comparison

	Software Design
	Software Architecture
	Candidate Generator
	Crawler
	Result Aggregator
	Result Verifier
	Visual Similarity Comparer
	OCR Reader

	Evaluation
	Candidate Generation
	Visual Similarity Algorithms
	Classifier Effectiveness
	Feature Evaluation
	Evaluation with Alexa top 1 Million Websites

	Discussion
	Limitations of Visual Anti-Adblock Detection
	Future Work

	Conclusion
	Bibliography

